aboutsummaryrefslogtreecommitdiffstats
path: root/src/intel/compiler/brw_eu_validate.c
blob: 358a0347a9314e7bc821f5f36e5813fd77c0e28f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
/*
 * Copyright © 2015-2019 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

/** @file brw_eu_validate.c
 *
 * This file implements a pass that validates shader assembly.
 *
 * The restrictions implemented herein are intended to verify that instructions
 * in shader assembly do not violate restrictions documented in the graphics
 * programming reference manuals.
 *
 * The restrictions are difficult for humans to quickly verify due to their
 * complexity and abundance.
 *
 * It is critical that this code is thoroughly unit tested because false
 * results will lead developers astray, which is worse than having no validator
 * at all. Functional changes to this file without corresponding unit tests (in
 * test_eu_validate.cpp) will be rejected.
 */

#include "brw_eu.h"

/* We're going to do lots of string concatenation, so this should help. */
struct string {
   char *str;
   size_t len;
};

static void
cat(struct string *dest, const struct string src)
{
   dest->str = realloc(dest->str, dest->len + src.len + 1);
   memcpy(dest->str + dest->len, src.str, src.len);
   dest->str[dest->len + src.len] = '\0';
   dest->len = dest->len + src.len;
}
#define CAT(dest, src) cat(&dest, (struct string){src, strlen(src)})

static bool
contains(const struct string haystack, const struct string needle)
{
   return haystack.str && memmem(haystack.str, haystack.len,
                                 needle.str, needle.len) != NULL;
}
#define CONTAINS(haystack, needle) \
   contains(haystack, (struct string){needle, strlen(needle)})

#define error(str)   "\tERROR: " str "\n"
#define ERROR_INDENT "\t       "

#define ERROR(msg) ERROR_IF(true, msg)
#define ERROR_IF(cond, msg)                             \
   do {                                                 \
      if ((cond) && !CONTAINS(error_msg, error(msg))) { \
         CAT(error_msg, error(msg));                    \
      }                                                 \
   } while(0)

#define CHECK(func, args...)                             \
   do {                                                  \
      struct string __msg = func(devinfo, inst, ##args); \
      if (__msg.str) {                                   \
         cat(&error_msg, __msg);                         \
         free(__msg.str);                                \
      }                                                  \
   } while (0)

#define STRIDE(stride) (stride != 0 ? 1 << ((stride) - 1) : 0)
#define WIDTH(width)   (1 << (width))

static bool
inst_is_send(const struct gen_device_info *devinfo, const brw_inst *inst)
{
   switch (brw_inst_opcode(devinfo, inst)) {
   case BRW_OPCODE_SEND:
   case BRW_OPCODE_SENDC:
   case BRW_OPCODE_SENDS:
   case BRW_OPCODE_SENDSC:
      return true;
   default:
      return false;
   }
}

static bool
inst_is_split_send(const struct gen_device_info *devinfo, const brw_inst *inst)
{
   switch (brw_inst_opcode(devinfo, inst)) {
   case BRW_OPCODE_SENDS:
   case BRW_OPCODE_SENDSC:
      return true;
   default:
      return false;
   }
}

static unsigned
signed_type(unsigned type)
{
   switch (type) {
   case BRW_REGISTER_TYPE_UD: return BRW_REGISTER_TYPE_D;
   case BRW_REGISTER_TYPE_UW: return BRW_REGISTER_TYPE_W;
   case BRW_REGISTER_TYPE_UB: return BRW_REGISTER_TYPE_B;
   case BRW_REGISTER_TYPE_UQ: return BRW_REGISTER_TYPE_Q;
   default:                   return type;
   }
}

static bool
inst_is_raw_move(const struct gen_device_info *devinfo, const brw_inst *inst)
{
   unsigned dst_type = signed_type(brw_inst_dst_type(devinfo, inst));
   unsigned src_type = signed_type(brw_inst_src0_type(devinfo, inst));

   if (brw_inst_src0_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE) {
      /* FIXME: not strictly true */
      if (brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_VF ||
          brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_UV ||
          brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_V) {
         return false;
      }
   } else if (brw_inst_src0_negate(devinfo, inst) ||
              brw_inst_src0_abs(devinfo, inst)) {
      return false;
   }

   return brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MOV &&
          brw_inst_saturate(devinfo, inst) == 0 &&
          dst_type == src_type;
}

static bool
dst_is_null(const struct gen_device_info *devinfo, const brw_inst *inst)
{
   return brw_inst_dst_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
          brw_inst_dst_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
}

static bool
src0_is_null(const struct gen_device_info *devinfo, const brw_inst *inst)
{
   return brw_inst_src0_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
          brw_inst_src0_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
}

static bool
src1_is_null(const struct gen_device_info *devinfo, const brw_inst *inst)
{
   return brw_inst_src1_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
          brw_inst_src1_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
}

static bool
src0_is_grf(const struct gen_device_info *devinfo, const brw_inst *inst)
{
   return brw_inst_src0_reg_file(devinfo, inst) == BRW_GENERAL_REGISTER_FILE;
}

static bool
src0_has_scalar_region(const struct gen_device_info *devinfo, const brw_inst *inst)
{
   return brw_inst_src0_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 &&
          brw_inst_src0_width(devinfo, inst) == BRW_WIDTH_1 &&
          brw_inst_src0_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0;
}

static bool
src1_has_scalar_region(const struct gen_device_info *devinfo, const brw_inst *inst)
{
   return brw_inst_src1_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 &&
          brw_inst_src1_width(devinfo, inst) == BRW_WIDTH_1 &&
          brw_inst_src1_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0;
}

static unsigned
num_sources_from_inst(const struct gen_device_info *devinfo,
                      const brw_inst *inst)
{
   const struct opcode_desc *desc =
      brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
   unsigned math_function;

   if (brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MATH) {
      math_function = brw_inst_math_function(devinfo, inst);
   } else if (devinfo->gen < 6 &&
              brw_inst_opcode(devinfo, inst) == BRW_OPCODE_SEND) {
      if (brw_inst_sfid(devinfo, inst) == BRW_SFID_MATH) {
         /* src1 must be a descriptor (including the information to determine
          * that the SEND is doing an extended math operation), but src0 can
          * actually be null since it serves as the source of the implicit GRF
          * to MRF move.
          *
          * If we stop using that functionality, we'll have to revisit this.
          */
         return 2;
      } else {
         /* Send instructions are allowed to have null sources since they use
          * the base_mrf field to specify which message register source.
          */
         return 0;
      }
   } else {
      assert(desc->nsrc < 4);
      return desc->nsrc;
   }

   switch (math_function) {
   case BRW_MATH_FUNCTION_INV:
   case BRW_MATH_FUNCTION_LOG:
   case BRW_MATH_FUNCTION_EXP:
   case BRW_MATH_FUNCTION_SQRT:
   case BRW_MATH_FUNCTION_RSQ:
   case BRW_MATH_FUNCTION_SIN:
   case BRW_MATH_FUNCTION_COS:
   case BRW_MATH_FUNCTION_SINCOS:
   case GEN8_MATH_FUNCTION_INVM:
   case GEN8_MATH_FUNCTION_RSQRTM:
      return 1;
   case BRW_MATH_FUNCTION_FDIV:
   case BRW_MATH_FUNCTION_POW:
   case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER:
   case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT:
   case BRW_MATH_FUNCTION_INT_DIV_REMAINDER:
      return 2;
   default:
      unreachable("not reached");
   }
}

static struct string
sources_not_null(const struct gen_device_info *devinfo,
                 const brw_inst *inst)
{
   unsigned num_sources = num_sources_from_inst(devinfo, inst);
   struct string error_msg = { .str = NULL, .len = 0 };

   /* Nothing to test. 3-src instructions can only have GRF sources, and
    * there's no bit to control the file.
    */
   if (num_sources == 3)
      return (struct string){};

   /* Nothing to test.  Split sends can only encode a file in sources that are
    * allowed to be NULL.
    */
   if (inst_is_split_send(devinfo, inst))
      return (struct string){};

   if (num_sources >= 1)
      ERROR_IF(src0_is_null(devinfo, inst), "src0 is null");

   if (num_sources == 2)
      ERROR_IF(src1_is_null(devinfo, inst), "src1 is null");

   return error_msg;
}

static struct string
send_restrictions(const struct gen_device_info *devinfo,
                  const brw_inst *inst)
{
   struct string error_msg = { .str = NULL, .len = 0 };

   if (inst_is_split_send(devinfo, inst)) {
      ERROR_IF(brw_inst_send_src1_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
               brw_inst_send_src1_reg_nr(devinfo, inst) != BRW_ARF_NULL,
               "src1 of split send must be a GRF or NULL");

      ERROR_IF(brw_inst_eot(devinfo, inst) &&
               brw_inst_src0_da_reg_nr(devinfo, inst) < 112,
               "send with EOT must use g112-g127");
      ERROR_IF(brw_inst_eot(devinfo, inst) &&
               brw_inst_send_src1_reg_file(devinfo, inst) == BRW_GENERAL_REGISTER_FILE &&
               brw_inst_send_src1_reg_nr(devinfo, inst) < 112,
               "send with EOT must use g112-g127");

      if (brw_inst_send_src1_reg_file(devinfo, inst) == BRW_GENERAL_REGISTER_FILE) {
         /* Assume minimums if we don't know */
         unsigned mlen = 1;
         if (!brw_inst_send_sel_reg32_desc(devinfo, inst)) {
            const uint32_t desc = brw_inst_send_desc(devinfo, inst);
            mlen = brw_message_desc_mlen(devinfo, desc);
         }

         unsigned ex_mlen = 1;
         if (!brw_inst_send_sel_reg32_ex_desc(devinfo, inst)) {
            const uint32_t ex_desc = brw_inst_send_ex_desc(devinfo, inst);
            ex_mlen = brw_message_ex_desc_ex_mlen(devinfo, ex_desc);
         }
         const unsigned src0_reg_nr = brw_inst_src0_da_reg_nr(devinfo, inst);
         const unsigned src1_reg_nr = brw_inst_send_src1_reg_nr(devinfo, inst);
         ERROR_IF((src0_reg_nr <= src1_reg_nr &&
                   src1_reg_nr < src0_reg_nr + mlen) ||
                  (src1_reg_nr <= src0_reg_nr &&
                   src0_reg_nr < src1_reg_nr + ex_mlen),
                   "split send payloads must not overlap");
      }
   } else if (inst_is_send(devinfo, inst)) {
      ERROR_IF(brw_inst_src0_address_mode(devinfo, inst) != BRW_ADDRESS_DIRECT,
               "send must use direct addressing");

      if (devinfo->gen >= 7) {
         ERROR_IF(!src0_is_grf(devinfo, inst), "send from non-GRF");
         ERROR_IF(brw_inst_eot(devinfo, inst) &&
                  brw_inst_src0_da_reg_nr(devinfo, inst) < 112,
                  "send with EOT must use g112-g127");
      }

      if (devinfo->gen >= 8) {
         ERROR_IF(!dst_is_null(devinfo, inst) &&
                  (brw_inst_dst_da_reg_nr(devinfo, inst) +
                   brw_inst_rlen(devinfo, inst) > 127) &&
                  (brw_inst_src0_da_reg_nr(devinfo, inst) +
                   brw_inst_mlen(devinfo, inst) >
                   brw_inst_dst_da_reg_nr(devinfo, inst)),
                  "r127 must not be used for return address when there is "
                  "a src and dest overlap");
      }
   }

   return error_msg;
}

static bool
is_unsupported_inst(const struct gen_device_info *devinfo,
                    const brw_inst *inst)
{
   return brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst)) == NULL;
}

static enum brw_reg_type
execution_type_for_type(enum brw_reg_type type)
{
   switch (type) {
   case BRW_REGISTER_TYPE_NF:
   case BRW_REGISTER_TYPE_DF:
   case BRW_REGISTER_TYPE_F:
   case BRW_REGISTER_TYPE_HF:
      return type;

   case BRW_REGISTER_TYPE_VF:
      return BRW_REGISTER_TYPE_F;

   case BRW_REGISTER_TYPE_Q:
   case BRW_REGISTER_TYPE_UQ:
      return BRW_REGISTER_TYPE_Q;

   case BRW_REGISTER_TYPE_D:
   case BRW_REGISTER_TYPE_UD:
      return BRW_REGISTER_TYPE_D;

   case BRW_REGISTER_TYPE_W:
   case BRW_REGISTER_TYPE_UW:
   case BRW_REGISTER_TYPE_B:
   case BRW_REGISTER_TYPE_UB:
   case BRW_REGISTER_TYPE_V:
   case BRW_REGISTER_TYPE_UV:
      return BRW_REGISTER_TYPE_W;
   }
   unreachable("not reached");
}

/**
 * Returns the execution type of an instruction \p inst
 */
static enum brw_reg_type
execution_type(const struct gen_device_info *devinfo, const brw_inst *inst)
{
   unsigned num_sources = num_sources_from_inst(devinfo, inst);
   enum brw_reg_type src0_exec_type, src1_exec_type;

   /* Execution data type is independent of destination data type, except in
    * mixed F/HF instructions on CHV and SKL+.
    */
   enum brw_reg_type dst_exec_type = brw_inst_dst_type(devinfo, inst);

   src0_exec_type = execution_type_for_type(brw_inst_src0_type(devinfo, inst));
   if (num_sources == 1) {
      if ((devinfo->gen >= 9 || devinfo->is_cherryview) &&
          src0_exec_type == BRW_REGISTER_TYPE_HF) {
         return dst_exec_type;
      }
      return src0_exec_type;
   }

   src1_exec_type = execution_type_for_type(brw_inst_src1_type(devinfo, inst));
   if (src0_exec_type == src1_exec_type)
      return src0_exec_type;

   /* Mixed operand types where one is float is float on Gen < 6
    * (and not allowed on later platforms)
    */
   if (devinfo->gen < 6 &&
       (src0_exec_type == BRW_REGISTER_TYPE_F ||
        src1_exec_type == BRW_REGISTER_TYPE_F))
      return BRW_REGISTER_TYPE_F;

   if (src0_exec_type == BRW_REGISTER_TYPE_Q ||
       src1_exec_type == BRW_REGISTER_TYPE_Q)
      return BRW_REGISTER_TYPE_Q;

   if (src0_exec_type == BRW_REGISTER_TYPE_D ||
       src1_exec_type == BRW_REGISTER_TYPE_D)
      return BRW_REGISTER_TYPE_D;

   if (src0_exec_type == BRW_REGISTER_TYPE_W ||
       src1_exec_type == BRW_REGISTER_TYPE_W)
      return BRW_REGISTER_TYPE_W;

   if (src0_exec_type == BRW_REGISTER_TYPE_DF ||
       src1_exec_type == BRW_REGISTER_TYPE_DF)
      return BRW_REGISTER_TYPE_DF;

   if (devinfo->gen >= 9 || devinfo->is_cherryview) {
      if (dst_exec_type == BRW_REGISTER_TYPE_F ||
          src0_exec_type == BRW_REGISTER_TYPE_F ||
          src1_exec_type == BRW_REGISTER_TYPE_F) {
         return BRW_REGISTER_TYPE_F;
      } else {
         return BRW_REGISTER_TYPE_HF;
      }
   }

   assert(src0_exec_type == BRW_REGISTER_TYPE_F);
   return BRW_REGISTER_TYPE_F;
}

/**
 * Returns whether a region is packed
 *
 * A region is packed if its elements are adjacent in memory, with no
 * intervening space, no overlap, and no replicated values.
 */
static bool
is_packed(unsigned vstride, unsigned width, unsigned hstride)
{
   if (vstride == width) {
      if (vstride == 1) {
         return hstride == 0;
      } else {
         return hstride == 1;
      }
   }

   return false;
}

/**
 * Checks restrictions listed in "General Restrictions Based on Operand Types"
 * in the "Register Region Restrictions" section.
 */
static struct string
general_restrictions_based_on_operand_types(const struct gen_device_info *devinfo,
                                            const brw_inst *inst)
{
   const struct opcode_desc *desc =
      brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
   unsigned num_sources = num_sources_from_inst(devinfo, inst);
   unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
   struct string error_msg = { .str = NULL, .len = 0 };

   if (num_sources == 3)
      return (struct string){};

   if (inst_is_send(devinfo, inst))
      return (struct string){};

   if (exec_size == 1)
      return (struct string){};

   if (desc->ndst == 0)
      return (struct string){};

   /* The PRMs say:
    *
    *    Where n is the largest element size in bytes for any source or
    *    destination operand type, ExecSize * n must be <= 64.
    *
    * But we do not attempt to enforce it, because it is implied by other
    * rules:
    *
    *    - that the destination stride must match the execution data type
    *    - sources may not span more than two adjacent GRF registers
    *    - destination may not span more than two adjacent GRF registers
    *
    * In fact, checking it would weaken testing of the other rules.
    */

   unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
   enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
   bool dst_type_is_byte =
      brw_inst_dst_type(devinfo, inst) == BRW_REGISTER_TYPE_B ||
      brw_inst_dst_type(devinfo, inst) == BRW_REGISTER_TYPE_UB;

   if (dst_type_is_byte) {
      if (is_packed(exec_size * dst_stride, exec_size, dst_stride)) {
         if (!inst_is_raw_move(devinfo, inst)) {
            ERROR("Only raw MOV supports a packed-byte destination");
            return error_msg;
         } else {
            return (struct string){};
         }
      }
   }

   unsigned exec_type = execution_type(devinfo, inst);
   unsigned exec_type_size = brw_reg_type_to_size(exec_type);
   unsigned dst_type_size = brw_reg_type_to_size(dst_type);

   /* On IVB/BYT, region parameters and execution size for DF are in terms of
    * 32-bit elements, so they are doubled. For evaluating the validity of an
    * instruction, we halve them.
    */
   if (devinfo->gen == 7 && !devinfo->is_haswell &&
       exec_type_size == 8 && dst_type_size == 4)
      dst_type_size = 8;

   if (exec_type_size > dst_type_size) {
      if (!(dst_type_is_byte && inst_is_raw_move(devinfo, inst))) {
         ERROR_IF(dst_stride * dst_type_size != exec_type_size,
                  "Destination stride must be equal to the ratio of the sizes "
                  "of the execution data type to the destination type");
      }

      unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);

      if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 &&
          brw_inst_dst_address_mode(devinfo, inst) == BRW_ADDRESS_DIRECT) {
         /* The i965 PRM says:
          *
          *    Implementation Restriction: The relaxed alignment rule for byte
          *    destination (#10.5) is not supported.
          */
         if ((devinfo->gen > 4 || devinfo->is_g4x) && dst_type_is_byte) {
            ERROR_IF(subreg % exec_type_size != 0 &&
                     subreg % exec_type_size != 1,
                     "Destination subreg must be aligned to the size of the "
                     "execution data type (or to the next lowest byte for byte "
                     "destinations)");
         } else {
            ERROR_IF(subreg % exec_type_size != 0,
                     "Destination subreg must be aligned to the size of the "
                     "execution data type");
         }
      }
   }

   return error_msg;
}

/**
 * Checks restrictions listed in "General Restrictions on Regioning Parameters"
 * in the "Register Region Restrictions" section.
 */
static struct string
general_restrictions_on_region_parameters(const struct gen_device_info *devinfo,
                                          const brw_inst *inst)
{
   const struct opcode_desc *desc =
      brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
   unsigned num_sources = num_sources_from_inst(devinfo, inst);
   unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
   struct string error_msg = { .str = NULL, .len = 0 };

   if (num_sources == 3)
      return (struct string){};

   /* Split sends don't have the bits in the instruction to encode regions so
    * there's nothing to check.
    */
   if (inst_is_split_send(devinfo, inst))
      return (struct string){};

   if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16) {
      if (desc->ndst != 0 && !dst_is_null(devinfo, inst))
         ERROR_IF(brw_inst_dst_hstride(devinfo, inst) != BRW_HORIZONTAL_STRIDE_1,
                  "Destination Horizontal Stride must be 1");

      if (num_sources >= 1) {
         if (devinfo->is_haswell || devinfo->gen >= 8) {
            ERROR_IF(brw_inst_src0_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
                     brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
                     brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_2 &&
                     brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
                     "In Align16 mode, only VertStride of 0, 2, or 4 is allowed");
         } else {
            ERROR_IF(brw_inst_src0_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
                     brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
                     brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
                     "In Align16 mode, only VertStride of 0 or 4 is allowed");
         }
      }

      if (num_sources == 2) {
         if (devinfo->is_haswell || devinfo->gen >= 8) {
            ERROR_IF(brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
                     brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
                     brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_2 &&
                     brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
                     "In Align16 mode, only VertStride of 0, 2, or 4 is allowed");
         } else {
            ERROR_IF(brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
                     brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
                     brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
                     "In Align16 mode, only VertStride of 0 or 4 is allowed");
         }
      }

      return error_msg;
   }

   for (unsigned i = 0; i < num_sources; i++) {
      unsigned vstride, width, hstride, element_size, subreg;
      enum brw_reg_type type;

#define DO_SRC(n)                                                              \
      if (brw_inst_src ## n ## _reg_file(devinfo, inst) ==                     \
          BRW_IMMEDIATE_VALUE)                                                 \
         continue;                                                             \
                                                                               \
      vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst));          \
      width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst));               \
      hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst));          \
      type = brw_inst_src ## n ## _type(devinfo, inst);                        \
      element_size = brw_reg_type_to_size(type);                               \
      subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst)

      if (i == 0) {
         DO_SRC(0);
      } else {
         DO_SRC(1);
      }
#undef DO_SRC

      /* On IVB/BYT, region parameters and execution size for DF are in terms of
       * 32-bit elements, so they are doubled. For evaluating the validity of an
       * instruction, we halve them.
       */
      if (devinfo->gen == 7 && !devinfo->is_haswell &&
          element_size == 8)
         element_size = 4;

      /* ExecSize must be greater than or equal to Width. */
      ERROR_IF(exec_size < width, "ExecSize must be greater than or equal "
                                  "to Width");

      /* If ExecSize = Width and HorzStride ≠ 0,
       * VertStride must be set to Width * HorzStride.
       */
      if (exec_size == width && hstride != 0) {
         ERROR_IF(vstride != width * hstride,
                  "If ExecSize = Width and HorzStride ≠ 0, "
                  "VertStride must be set to Width * HorzStride");
      }

      /* If Width = 1, HorzStride must be 0 regardless of the values of
       * ExecSize and VertStride.
       */
      if (width == 1) {
         ERROR_IF(hstride != 0,
                  "If Width = 1, HorzStride must be 0 regardless "
                  "of the values of ExecSize and VertStride");
      }

      /* If ExecSize = Width = 1, both VertStride and HorzStride must be 0. */
      if (exec_size == 1 && width == 1) {
         ERROR_IF(vstride != 0 || hstride != 0,
                  "If ExecSize = Width = 1, both VertStride "
                  "and HorzStride must be 0");
      }

      /* If VertStride = HorzStride = 0, Width must be 1 regardless of the
       * value of ExecSize.
       */
      if (vstride == 0 && hstride == 0) {
         ERROR_IF(width != 1,
                  "If VertStride = HorzStride = 0, Width must be "
                  "1 regardless of the value of ExecSize");
      }

      /* VertStride must be used to cross GRF register boundaries. This rule
       * implies that elements within a 'Width' cannot cross GRF boundaries.
       */
      const uint64_t mask = (1ULL << element_size) - 1;
      unsigned rowbase = subreg;

      for (int y = 0; y < exec_size / width; y++) {
         uint64_t access_mask = 0;
         unsigned offset = rowbase;

         for (int x = 0; x < width; x++) {
            access_mask |= mask << offset;
            offset += hstride * element_size;
         }

         rowbase += vstride * element_size;

         if ((uint32_t)access_mask != 0 && (access_mask >> 32) != 0) {
            ERROR("VertStride must be used to cross GRF register boundaries");
            break;
         }
      }
   }

   /* Dst.HorzStride must not be 0. */
   if (desc->ndst != 0 && !dst_is_null(devinfo, inst)) {
      ERROR_IF(brw_inst_dst_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0,
               "Destination Horizontal Stride must not be 0");
   }

   return error_msg;
}

/**
 * Creates an \p access_mask for an \p exec_size, \p element_size, and a region
 *
 * An \p access_mask is a 32-element array of uint64_t, where each uint64_t is
 * a bitmask of bytes accessed by the region.
 *
 * For instance the access mask of the source gX.1<4,2,2>F in an exec_size = 4
 * instruction would be
 *
 *    access_mask[0] = 0x00000000000000F0
 *    access_mask[1] = 0x000000000000F000
 *    access_mask[2] = 0x0000000000F00000
 *    access_mask[3] = 0x00000000F0000000
 *    access_mask[4-31] = 0
 *
 * because the first execution channel accesses bytes 7-4 and the second
 * execution channel accesses bytes 15-12, etc.
 */
static void
align1_access_mask(uint64_t access_mask[static 32],
                   unsigned exec_size, unsigned element_size, unsigned subreg,
                   unsigned vstride, unsigned width, unsigned hstride)
{
   const uint64_t mask = (1ULL << element_size) - 1;
   unsigned rowbase = subreg;
   unsigned element = 0;

   for (int y = 0; y < exec_size / width; y++) {
      unsigned offset = rowbase;

      for (int x = 0; x < width; x++) {
         access_mask[element++] = mask << offset;
         offset += hstride * element_size;
      }

      rowbase += vstride * element_size;
   }

   assert(element == 0 || element == exec_size);
}

/**
 * Returns the number of registers accessed according to the \p access_mask
 */
static int
registers_read(const uint64_t access_mask[static 32])
{
   int regs_read = 0;

   for (unsigned i = 0; i < 32; i++) {
      if (access_mask[i] > 0xFFFFFFFF) {
         return 2;
      } else if (access_mask[i]) {
         regs_read = 1;
      }
   }

   return regs_read;
}

/**
 * Checks restrictions listed in "Region Alignment Rules" in the "Register
 * Region Restrictions" section.
 */
static struct string
region_alignment_rules(const struct gen_device_info *devinfo,
                       const brw_inst *inst)
{
   const struct opcode_desc *desc =
      brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
   unsigned num_sources = num_sources_from_inst(devinfo, inst);
   unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
   uint64_t dst_access_mask[32], src0_access_mask[32], src1_access_mask[32];
   struct string error_msg = { .str = NULL, .len = 0 };

   if (num_sources == 3)
      return (struct string){};

   if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16)
      return (struct string){};

   if (inst_is_send(devinfo, inst))
      return (struct string){};

   memset(dst_access_mask, 0, sizeof(dst_access_mask));
   memset(src0_access_mask, 0, sizeof(src0_access_mask));
   memset(src1_access_mask, 0, sizeof(src1_access_mask));

   for (unsigned i = 0; i < num_sources; i++) {
      unsigned vstride, width, hstride, element_size, subreg;
      enum brw_reg_type type;

      /* In Direct Addressing mode, a source cannot span more than 2 adjacent
       * GRF registers.
       */

#define DO_SRC(n)                                                              \
      if (brw_inst_src ## n ## _address_mode(devinfo, inst) !=                 \
          BRW_ADDRESS_DIRECT)                                                  \
         continue;                                                             \
                                                                               \
      if (brw_inst_src ## n ## _reg_file(devinfo, inst) ==                     \
          BRW_IMMEDIATE_VALUE)                                                 \
         continue;                                                             \
                                                                               \
      vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst));          \
      width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst));               \
      hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst));          \
      type = brw_inst_src ## n ## _type(devinfo, inst);                        \
      element_size = brw_reg_type_to_size(type);                               \
      subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst);             \
      align1_access_mask(src ## n ## _access_mask,                             \
                         exec_size, element_size, subreg,                      \
                         vstride, width, hstride)

      if (i == 0) {
         DO_SRC(0);
      } else {
         DO_SRC(1);
      }
#undef DO_SRC

      unsigned num_vstride = exec_size / width;
      unsigned num_hstride = width;
      unsigned vstride_elements = (num_vstride - 1) * vstride;
      unsigned hstride_elements = (num_hstride - 1) * hstride;
      unsigned offset = (vstride_elements + hstride_elements) * element_size +
                        subreg;
      ERROR_IF(offset >= 64,
               "A source cannot span more than 2 adjacent GRF registers");
   }

   if (desc->ndst == 0 || dst_is_null(devinfo, inst))
      return error_msg;

   unsigned stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
   enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
   unsigned element_size = brw_reg_type_to_size(dst_type);
   unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
   unsigned offset = ((exec_size - 1) * stride * element_size) + subreg;
   ERROR_IF(offset >= 64,
            "A destination cannot span more than 2 adjacent GRF registers");

   if (error_msg.str)
      return error_msg;

   /* On IVB/BYT, region parameters and execution size for DF are in terms of
    * 32-bit elements, so they are doubled. For evaluating the validity of an
    * instruction, we halve them.
    */
   if (devinfo->gen == 7 && !devinfo->is_haswell &&
       element_size == 8)
      element_size = 4;

   align1_access_mask(dst_access_mask, exec_size, element_size, subreg,
                      exec_size == 1 ? 0 : exec_size * stride,
                      exec_size == 1 ? 1 : exec_size,
                      exec_size == 1 ? 0 : stride);

   unsigned dst_regs = registers_read(dst_access_mask);
   unsigned src0_regs = registers_read(src0_access_mask);
   unsigned src1_regs = registers_read(src1_access_mask);

   /* The SNB, IVB, HSW, BDW, and CHV PRMs say:
    *
    *    When an instruction has a source region spanning two registers and a
    *    destination region contained in one register, the number of elements
    *    must be the same between two sources and one of the following must be
    *    true:
    *
    *       1. The destination region is entirely contained in the lower OWord
    *          of a register.
    *       2. The destination region is entirely contained in the upper OWord
    *          of a register.
    *       3. The destination elements are evenly split between the two OWords
    *          of a register.
    */
   if (devinfo->gen <= 8) {
      if (dst_regs == 1 && (src0_regs == 2 || src1_regs == 2)) {
         unsigned upper_oword_writes = 0, lower_oword_writes = 0;

         for (unsigned i = 0; i < exec_size; i++) {
            if (dst_access_mask[i] > 0x0000FFFF) {
               upper_oword_writes++;
            } else {
               assert(dst_access_mask[i] != 0);
               lower_oword_writes++;
            }
         }

         ERROR_IF(lower_oword_writes != 0 &&
                  upper_oword_writes != 0 &&
                  upper_oword_writes != lower_oword_writes,
                  "Writes must be to only one OWord or "
                  "evenly split between OWords");
      }
   }

   /* The IVB and HSW PRMs say:
    *
    *    When an instruction has a source region that spans two registers and
    *    the destination spans two registers, the destination elements must be
    *    evenly split between the two registers [...]
    *
    * The SNB PRM contains similar wording (but written in a much more
    * confusing manner).
    *
    * The BDW PRM says:
    *
    *    When destination spans two registers, the source may be one or two
    *    registers. The destination elements must be evenly split between the
    *    two registers.
    *
    * The SKL PRM says:
    *
    *    When destination of MATH instruction spans two registers, the
    *    destination elements must be evenly split between the two registers.
    *
    * It is not known whether this restriction applies to KBL other Gens after
    * SKL.
    */
   if (devinfo->gen <= 8 ||
       brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MATH) {

      /* Nothing explicitly states that on Gen < 8 elements must be evenly
       * split between two destination registers in the two exceptional
       * source-region-spans-one-register cases, but since Broadwell requires
       * evenly split writes regardless of source region, we assume that it was
       * an oversight and require it.
       */
      if (dst_regs == 2) {
         unsigned upper_reg_writes = 0, lower_reg_writes = 0;

         for (unsigned i = 0; i < exec_size; i++) {
            if (dst_access_mask[i] > 0xFFFFFFFF) {
               upper_reg_writes++;
            } else {
               assert(dst_access_mask[i] != 0);
               lower_reg_writes++;
            }
         }

         ERROR_IF(upper_reg_writes != lower_reg_writes,
                  "Writes must be evenly split between the two "
                  "destination registers");
      }
   }

   /* The IVB and HSW PRMs say:
    *
    *    When an instruction has a source region that spans two registers and
    *    the destination spans two registers, the destination elements must be
    *    evenly split between the two registers and each destination register
    *    must be entirely derived from one source register.
    *
    *    Note: In such cases, the regioning parameters must ensure that the
    *    offset from the two source registers is the same.
    *
    * The SNB PRM contains similar wording (but written in a much more
    * confusing manner).
    *
    * There are effectively three rules stated here:
    *
    *    For an instruction with a source and a destination spanning two
    *    registers,
    *
    *       (1) destination elements must be evenly split between the two
    *           registers
    *       (2) all destination elements in a register must be derived
    *           from one source register
    *       (3) the offset (i.e. the starting location in each of the two
    *           registers spanned by a region) must be the same in the two
    *           registers spanned by a region
    *
    * It is impossible to violate rule (1) without violating (2) or (3), so we
    * do not attempt to validate it.
    */
   if (devinfo->gen <= 7 && dst_regs == 2) {
      for (unsigned i = 0; i < num_sources; i++) {
#define DO_SRC(n)                                                             \
         if (src ## n ## _regs <= 1)                                          \
            continue;                                                         \
                                                                              \
         for (unsigned i = 0; i < exec_size; i++) {                           \
            if ((dst_access_mask[i] > 0xFFFFFFFF) !=                          \
                (src ## n ## _access_mask[i] > 0xFFFFFFFF)) {                 \
               ERROR("Each destination register must be entirely derived "    \
                     "from one source register");                             \
               break;                                                         \
            }                                                                 \
         }                                                                    \
                                                                              \
         unsigned offset_0 =                                                  \
            brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst);               \
         unsigned offset_1 = offset_0;                                        \
                                                                              \
         for (unsigned i = 0; i < exec_size; i++) {                           \
            if (src ## n ## _access_mask[i] > 0xFFFFFFFF) {                   \
               offset_1 = __builtin_ctzll(src ## n ## _access_mask[i]) - 32;  \
               break;                                                         \
            }                                                                 \
         }                                                                    \
                                                                              \
         ERROR_IF(num_sources == 2 && offset_0 != offset_1,                   \
                  "The offset from the two source registers "                 \
                  "must be the same")

         if (i == 0) {
            DO_SRC(0);
         } else {
            DO_SRC(1);
         }
#undef DO_SRC
      }
   }

   /* The IVB and HSW PRMs say:
    *
    *    When destination spans two registers, the source MUST span two
    *    registers. The exception to the above rule:
    *        1. When source is scalar, the source registers are not
    *           incremented.
    *        2. When source is packed integer Word and destination is packed
    *           integer DWord, the source register is not incremented by the
    *           source sub register is incremented.
    *
    * The SNB PRM does not contain this rule, but the internal documentation
    * indicates that it applies to SNB as well. We assume that the rule applies
    * to Gen <= 5 although their PRMs do not state it.
    *
    * While the documentation explicitly says in exception (2) that the
    * destination must be an integer DWord, the hardware allows at least a
    * float destination type as well. We emit such instructions from
    *
    *    fs_visitor::emit_interpolation_setup_gen6
    *    fs_visitor::emit_fragcoord_interpolation
    *
    * and have for years with no ill effects.
    *
    * Additionally the simulator source code indicates that the real condition
    * is that the size of the destination type is 4 bytes.
    */
   if (devinfo->gen <= 7 && dst_regs == 2) {
      enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
      bool dst_is_packed_dword =
         is_packed(exec_size * stride, exec_size, stride) &&
         brw_reg_type_to_size(dst_type) == 4;

      for (unsigned i = 0; i < num_sources; i++) {
#define DO_SRC(n)                                                                  \
         unsigned vstride, width, hstride;                                         \
         vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst));           \
         width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst));                \
         hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst));           \
         bool src ## n ## _is_packed_word =                                        \
            is_packed(vstride, width, hstride) &&                                  \
            (brw_inst_src ## n ## _type(devinfo, inst) == BRW_REGISTER_TYPE_W ||   \
             brw_inst_src ## n ## _type(devinfo, inst) == BRW_REGISTER_TYPE_UW);   \
                                                                                   \
         ERROR_IF(src ## n ## _regs == 1 &&                                        \
                  !src ## n ## _has_scalar_region(devinfo, inst) &&                \
                  !(dst_is_packed_dword && src ## n ## _is_packed_word),           \
                  "When the destination spans two registers, the source must "     \
                  "span two registers\n" ERROR_INDENT "(exceptions for scalar "    \
                  "source and packed-word to packed-dword expansion)")

         if (i == 0) {
            DO_SRC(0);
         } else {
            DO_SRC(1);
         }
#undef DO_SRC
      }
   }

   return error_msg;
}

static struct string
vector_immediate_restrictions(const struct gen_device_info *devinfo,
                              const brw_inst *inst)
{
   unsigned num_sources = num_sources_from_inst(devinfo, inst);
   struct string error_msg = { .str = NULL, .len = 0 };

   if (num_sources == 3 || num_sources == 0)
      return (struct string){};

   unsigned file = num_sources == 1 ?
                   brw_inst_src0_reg_file(devinfo, inst) :
                   brw_inst_src1_reg_file(devinfo, inst);
   if (file != BRW_IMMEDIATE_VALUE)
      return (struct string){};

   enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
   unsigned dst_type_size = brw_reg_type_to_size(dst_type);
   unsigned dst_subreg = brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 ?
                         brw_inst_dst_da1_subreg_nr(devinfo, inst) : 0;
   unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
   enum brw_reg_type type = num_sources == 1 ?
                            brw_inst_src0_type(devinfo, inst) :
                            brw_inst_src1_type(devinfo, inst);

   /* The PRMs say:
    *
    *    When an immediate vector is used in an instruction, the destination
    *    must be 128-bit aligned with destination horizontal stride equivalent
    *    to a word for an immediate integer vector (v) and equivalent to a
    *    DWord for an immediate float vector (vf).
    *
    * The text has not been updated for the addition of the immediate unsigned
    * integer vector type (uv) on SNB, but presumably the same restriction
    * applies.
    */
   switch (type) {
   case BRW_REGISTER_TYPE_V:
   case BRW_REGISTER_TYPE_UV:
   case BRW_REGISTER_TYPE_VF:
      ERROR_IF(dst_subreg % (128 / 8) != 0,
               "Destination must be 128-bit aligned in order to use immediate "
               "vector types");

      if (type == BRW_REGISTER_TYPE_VF) {
         ERROR_IF(dst_type_size * dst_stride != 4,
                  "Destination must have stride equivalent to dword in order "
                  "to use the VF type");
      } else {
         ERROR_IF(dst_type_size * dst_stride != 2,
                  "Destination must have stride equivalent to word in order "
                  "to use the V or UV type");
      }
      break;
   default:
      break;
   }

   return error_msg;
}

static struct string
special_requirements_for_handling_double_precision_data_types(
                                       const struct gen_device_info *devinfo,
                                       const brw_inst *inst)
{
   unsigned num_sources = num_sources_from_inst(devinfo, inst);
   struct string error_msg = { .str = NULL, .len = 0 };

   if (num_sources == 3 || num_sources == 0)
      return (struct string){};

   /* Split sends don't have types so there's no doubles there. */
   if (inst_is_split_send(devinfo, inst))
      return (struct string){};

   enum brw_reg_type exec_type = execution_type(devinfo, inst);
   unsigned exec_type_size = brw_reg_type_to_size(exec_type);

   enum brw_reg_file dst_file = brw_inst_dst_reg_file(devinfo, inst);
   enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
   unsigned dst_type_size = brw_reg_type_to_size(dst_type);
   unsigned dst_hstride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
   unsigned dst_reg = brw_inst_dst_da_reg_nr(devinfo, inst);
   unsigned dst_subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
   unsigned dst_address_mode = brw_inst_dst_address_mode(devinfo, inst);

   bool is_integer_dword_multiply =
      devinfo->gen >= 8 &&
      brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MUL &&
      (brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_D ||
       brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_UD) &&
      (brw_inst_src1_type(devinfo, inst) == BRW_REGISTER_TYPE_D ||
       brw_inst_src1_type(devinfo, inst) == BRW_REGISTER_TYPE_UD);

   if (dst_type_size != 8 && exec_type_size != 8 && !is_integer_dword_multiply)
      return (struct string){};

   for (unsigned i = 0; i < num_sources; i++) {
      unsigned vstride, width, hstride, type_size, reg, subreg, address_mode;
      bool is_scalar_region;
      enum brw_reg_file file;
      enum brw_reg_type type;

#define DO_SRC(n)                                                              \
      if (brw_inst_src ## n ## _reg_file(devinfo, inst) ==                     \
          BRW_IMMEDIATE_VALUE)                                                 \
         continue;                                                             \
                                                                               \
      is_scalar_region = src ## n ## _has_scalar_region(devinfo, inst);        \
      vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst));          \
      width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst));               \
      hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst));          \
      file = brw_inst_src ## n ## _reg_file(devinfo, inst);                    \
      type = brw_inst_src ## n ## _type(devinfo, inst);                        \
      type_size = brw_reg_type_to_size(type);                                  \
      reg = brw_inst_src ## n ## _da_reg_nr(devinfo, inst);                    \
      subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst);             \
      address_mode = brw_inst_src ## n ## _address_mode(devinfo, inst)

      if (i == 0) {
         DO_SRC(0);
      } else {
         DO_SRC(1);
      }
#undef DO_SRC

      /* The PRMs say that for CHV, BXT:
       *
       *    When source or destination datatype is 64b or operation is integer
       *    DWord multiply, regioning in Align1 must follow these rules:
       *
       *    1. Source and Destination horizontal stride must be aligned to the
       *       same qword.
       *    2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.
       *    3. Source and Destination offset must be the same, except the case
       *       of scalar source.
       *
       * We assume that the restriction applies to GLK as well.
       */
      if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 &&
          (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
         unsigned src_stride = hstride * type_size;
         unsigned dst_stride = dst_hstride * dst_type_size;

         ERROR_IF(!is_scalar_region &&
                  (src_stride % 8 != 0 ||
                   dst_stride % 8 != 0 ||
                   src_stride != dst_stride),
                  "Source and destination horizontal stride must equal and a "
                  "multiple of a qword when the execution type is 64-bit");

         ERROR_IF(vstride != width * hstride,
                  "Vstride must be Width * Hstride when the execution type is "
                  "64-bit");

         ERROR_IF(!is_scalar_region && dst_subreg != subreg,
                  "Source and destination offset must be the same when the "
                  "execution type is 64-bit");
      }

      /* The PRMs say that for CHV, BXT:
       *
       *    When source or destination datatype is 64b or operation is integer
       *    DWord multiply, indirect addressing must not be used.
       *
       * We assume that the restriction applies to GLK as well.
       */
      if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
         ERROR_IF(BRW_ADDRESS_REGISTER_INDIRECT_REGISTER == address_mode ||
                  BRW_ADDRESS_REGISTER_INDIRECT_REGISTER == dst_address_mode,
                  "Indirect addressing is not allowed when the execution type "
                  "is 64-bit");
      }

      /* The PRMs say that for CHV, BXT:
       *
       *    ARF registers must never be used with 64b datatype or when
       *    operation is integer DWord multiply.
       *
       * We assume that the restriction applies to GLK as well.
       *
       * We assume that the restriction does not apply to the null register.
       */
      if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
         ERROR_IF(brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MAC ||
                  brw_inst_acc_wr_control(devinfo, inst) ||
                  (BRW_ARCHITECTURE_REGISTER_FILE == file &&
                   reg != BRW_ARF_NULL) ||
                  (BRW_ARCHITECTURE_REGISTER_FILE == dst_file &&
                   dst_reg != BRW_ARF_NULL),
                  "Architecture registers cannot be used when the execution "
                  "type is 64-bit");
      }
   }

   /* The PRMs say that for BDW, SKL:
    *
    *    If Align16 is required for an operation with QW destination and non-QW
    *    source datatypes, the execution size cannot exceed 2.
    *
    * We assume that the restriction applies to all Gen8+ parts.
    */
   if (devinfo->gen >= 8) {
      enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
      enum brw_reg_type src1_type =
         num_sources > 1 ? brw_inst_src1_type(devinfo, inst) : src0_type;
      unsigned src0_type_size = brw_reg_type_to_size(src0_type);
      unsigned src1_type_size = brw_reg_type_to_size(src1_type);

      ERROR_IF(brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16 &&
               dst_type_size == 8 &&
               (src0_type_size != 8 || src1_type_size != 8) &&
               brw_inst_exec_size(devinfo, inst) > BRW_EXECUTE_2,
               "In Align16 exec size cannot exceed 2 with a QWord destination "
               "and a non-QWord source");
   }

   /* The PRMs say that for CHV, BXT:
    *
    *    When source or destination datatype is 64b or operation is integer
    *    DWord multiply, DepCtrl must not be used.
    *
    * We assume that the restriction applies to GLK as well.
    */
   if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
      ERROR_IF(brw_inst_no_dd_check(devinfo, inst) ||
               brw_inst_no_dd_clear(devinfo, inst),
               "DepCtrl is not allowed when the execution type is 64-bit");
   }

   return error_msg;
}

bool
brw_validate_instructions(const struct gen_device_info *devinfo,
                          const void *assembly, int start_offset, int end_offset,
                          struct disasm_info *disasm)
{
   bool valid = true;

   for (int src_offset = start_offset; src_offset < end_offset;) {
      struct string error_msg = { .str = NULL, .len = 0 };
      const brw_inst *inst = assembly + src_offset;
      bool is_compact = brw_inst_cmpt_control(devinfo, inst);
      brw_inst uncompacted;

      if (is_compact) {
         brw_compact_inst *compacted = (void *)inst;
         brw_uncompact_instruction(devinfo, &uncompacted, compacted);
         inst = &uncompacted;
      }

      if (is_unsupported_inst(devinfo, inst)) {
         ERROR("Instruction not supported on this Gen");
      } else {
         CHECK(sources_not_null);
         CHECK(send_restrictions);
         CHECK(general_restrictions_based_on_operand_types);
         CHECK(general_restrictions_on_region_parameters);
         CHECK(region_alignment_rules);
         CHECK(vector_immediate_restrictions);
         CHECK(special_requirements_for_handling_double_precision_data_types);
      }

      if (error_msg.str && disasm) {
         disasm_insert_error(disasm, src_offset, error_msg.str);
      }
      valid = valid && error_msg.len == 0;
      free(error_msg.str);

      if (is_compact) {
         src_offset += sizeof(brw_compact_inst);
      } else {
         src_offset += sizeof(brw_inst);
      }
   }

   return valid;
}