1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
|
/*
* Copyright © 2019 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <fcntl.h>
#include <string.h>
#include <xf86drm.h>
#include <gtest/gtest.h>
#include "dev/gen_device_info.h"
#include "drm-uapi/i915_drm.h"
#include "genxml/gen_macros.h"
#include "util/macros.h"
class gen_mi_builder_test;
struct address {
uint32_t gem_handle;
uint32_t offset;
};
#define __gen_address_type struct address
#define __gen_user_data ::gen_mi_builder_test
uint64_t __gen_combine_address(gen_mi_builder_test *test, void *location,
struct address addr, uint32_t delta);
void * __gen_get_batch_dwords(gen_mi_builder_test *test, unsigned num_dwords);
struct address
__gen_address_offset(address addr, uint64_t offset)
{
addr.offset += offset;
return addr;
}
#if GEN_GEN >= 8 || GEN_IS_HASWELL
#define RSVD_TEMP_REG 0x2678 /* MI_ALU_REG15 */
#else
#define RSVD_TEMP_REG 0x2430 /* GEN7_3DPRIM_START_VERTEX */
#endif
#define GEN_MI_BUILDER_NUM_ALLOC_GPRS 15
#define INPUT_DATA_OFFSET 0
#define OUTPUT_DATA_OFFSET 2048
#include "genxml/genX_pack.h"
#include "gen_mi_builder.h"
#include <vector>
class gen_mi_builder_test : public ::testing::Test {
public:
gen_mi_builder_test();
~gen_mi_builder_test();
void SetUp();
void *emit_dwords(int num_dwords);
void submit_batch();
inline address in_addr(uint32_t offset)
{
address addr;
addr.gem_handle = data_bo_handle;
addr.offset = INPUT_DATA_OFFSET + offset;
return addr;
}
inline address out_addr(uint32_t offset)
{
address addr;
addr.gem_handle = data_bo_handle;
addr.offset = OUTPUT_DATA_OFFSET + offset;
return addr;
}
inline gen_mi_value in_mem64(uint32_t offset)
{
return gen_mi_mem64(in_addr(offset));
}
inline gen_mi_value in_mem32(uint32_t offset)
{
return gen_mi_mem32(in_addr(offset));
}
inline gen_mi_value out_mem64(uint32_t offset)
{
return gen_mi_mem64(out_addr(offset));
}
inline gen_mi_value out_mem32(uint32_t offset)
{
return gen_mi_mem32(out_addr(offset));
}
int fd;
gen_device_info devinfo;
uint32_t batch_bo_handle;
uint32_t batch_offset;
void *batch_map;
std::vector<drm_i915_gem_relocation_entry> relocs;
uint32_t data_bo_handle;
void *data_map;
char *input;
char *output;
uint64_t canary;
gen_mi_builder b;
};
gen_mi_builder_test::gen_mi_builder_test() :
fd(-1)
{ }
gen_mi_builder_test::~gen_mi_builder_test()
{
close(fd);
}
// 1 MB of batch should be enough for anyone, right?
#define BATCH_BO_SIZE (256 * 4096)
#define DATA_BO_SIZE 4096
void
gen_mi_builder_test::SetUp()
{
drmDevicePtr devices[8];
int max_devices = drmGetDevices2(0, devices, 8);
int i;
for (i = 0; i < max_devices; i++) {
if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
devices[i]->bustype == DRM_BUS_PCI &&
devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
fd = open(devices[i]->nodes[DRM_NODE_RENDER], O_RDWR | O_CLOEXEC);
if (fd < 0)
continue;
/* We don't really need to do this when running on hardware because
* we can just pull it from the drmDevice. However, without doing
* this, intel_dump_gpu gets a bit of heartburn and we can't use the
* --device option with it.
*/
int device_id;
drm_i915_getparam getparam = drm_i915_getparam();
getparam.param = I915_PARAM_CHIPSET_ID;
getparam.value = &device_id;
ASSERT_EQ(drmIoctl(fd, DRM_IOCTL_I915_GETPARAM,
(void *)&getparam), 0) << strerror(errno);
ASSERT_TRUE(gen_get_device_info(device_id, &devinfo));
if (devinfo.gen != GEN_GEN || devinfo.is_haswell != GEN_IS_HASWELL) {
close(fd);
fd = -1;
continue;
}
/* Found a device! */
break;
}
}
ASSERT_TRUE(i < max_devices) << "Failed to find a DRM device";
// Create the batch buffer
drm_i915_gem_create gem_create = drm_i915_gem_create();
gem_create.size = BATCH_BO_SIZE;
ASSERT_EQ(drmIoctl(fd, DRM_IOCTL_I915_GEM_CREATE,
(void *)&gem_create), 0) << strerror(errno);
batch_bo_handle = gem_create.handle;
drm_i915_gem_caching gem_caching = drm_i915_gem_caching();
gem_caching.handle = batch_bo_handle;
gem_caching.caching = I915_CACHING_CACHED;
ASSERT_EQ(drmIoctl(fd, DRM_IOCTL_I915_GEM_SET_CACHING,
(void *)&gem_caching), 0) << strerror(errno);
drm_i915_gem_mmap gem_mmap = drm_i915_gem_mmap();
gem_mmap.handle = batch_bo_handle;
gem_mmap.offset = 0;
gem_mmap.size = BATCH_BO_SIZE;
gem_mmap.flags = 0;
ASSERT_EQ(drmIoctl(fd, DRM_IOCTL_I915_GEM_MMAP,
(void *)&gem_mmap), 0) << strerror(errno);
batch_map = (void *)(uintptr_t)gem_mmap.addr_ptr;
// Start the batch at zero
batch_offset = 0;
// Create the data buffer
gem_create = drm_i915_gem_create();
gem_create.size = DATA_BO_SIZE;
ASSERT_EQ(drmIoctl(fd, DRM_IOCTL_I915_GEM_CREATE,
(void *)&gem_create), 0) << strerror(errno);
data_bo_handle = gem_create.handle;
gem_caching = drm_i915_gem_caching();
gem_caching.handle = data_bo_handle;
gem_caching.caching = I915_CACHING_CACHED;
ASSERT_EQ(drmIoctl(fd, DRM_IOCTL_I915_GEM_SET_CACHING,
(void *)&gem_caching), 0) << strerror(errno);
gem_mmap = drm_i915_gem_mmap();
gem_mmap.handle = data_bo_handle;
gem_mmap.offset = 0;
gem_mmap.size = DATA_BO_SIZE;
gem_mmap.flags = 0;
ASSERT_EQ(drmIoctl(fd, DRM_IOCTL_I915_GEM_MMAP,
(void *)&gem_mmap), 0) << strerror(errno);
data_map = (void *)(uintptr_t)gem_mmap.addr_ptr;
input = (char *)data_map + INPUT_DATA_OFFSET;
output = (char *)data_map + OUTPUT_DATA_OFFSET;
// Fill the test data with garbage
memset(data_map, 139, DATA_BO_SIZE);
memset(&canary, 139, sizeof(canary));
gen_mi_builder_init(&b, this);
}
void *
gen_mi_builder_test::emit_dwords(int num_dwords)
{
void *ptr = (void *)((char *)batch_map + batch_offset);
batch_offset += num_dwords * 4;
assert(batch_offset < BATCH_BO_SIZE);
return ptr;
}
void
gen_mi_builder_test::submit_batch()
{
gen_mi_builder_emit(&b, GENX(MI_BATCH_BUFFER_END), bbe);
// Round batch up to an even number of dwords.
if (batch_offset & 4)
gen_mi_builder_emit(&b, GENX(MI_NOOP), noop);
drm_i915_gem_exec_object2 objects[2];
memset(objects, 0, sizeof(objects));
objects[0].handle = data_bo_handle;
objects[0].relocation_count = 0;
objects[0].relocs_ptr = 0;
objects[0].flags = EXEC_OBJECT_WRITE;
objects[0].offset = -1;
if (GEN_GEN >= 8)
objects[0].flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
objects[1].handle = batch_bo_handle;
objects[1].relocation_count = relocs.size();
objects[1].relocs_ptr = (uintptr_t)(void *)&relocs[0];
objects[1].flags = 0;
objects[1].offset = -1;
if (GEN_GEN >= 8)
objects[1].flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
drm_i915_gem_execbuffer2 execbuf = drm_i915_gem_execbuffer2();
execbuf.buffers_ptr = (uintptr_t)(void *)objects;
execbuf.buffer_count = 2;
execbuf.batch_start_offset = 0;
execbuf.batch_len = batch_offset;
execbuf.flags = I915_EXEC_HANDLE_LUT | I915_EXEC_RENDER;
ASSERT_EQ(drmIoctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2,
(void *)&execbuf), 0) << strerror(errno);
drm_i915_gem_wait gem_wait = drm_i915_gem_wait();
gem_wait.bo_handle = batch_bo_handle;
gem_wait.timeout_ns = INT64_MAX;
ASSERT_EQ(drmIoctl(fd, DRM_IOCTL_I915_GEM_WAIT,
(void *)&gem_wait), 0) << strerror(errno);
}
uint64_t
__gen_combine_address(gen_mi_builder_test *test, void *location,
address addr, uint32_t delta)
{
drm_i915_gem_relocation_entry reloc = drm_i915_gem_relocation_entry();
reloc.target_handle = addr.gem_handle == test->data_bo_handle ? 0 : 1;
reloc.delta = addr.offset + delta;
reloc.offset = (char *)location - (char *)test->batch_map;
reloc.presumed_offset = -1;
test->relocs.push_back(reloc);
return reloc.delta;
}
void *
__gen_get_batch_dwords(gen_mi_builder_test *test, unsigned num_dwords)
{
return test->emit_dwords(num_dwords);
}
#include "genxml/genX_pack.h"
#include "gen_mi_builder.h"
TEST_F(gen_mi_builder_test, imm_mem)
{
const uint64_t value = 0x0123456789abcdef;
gen_mi_store(&b, out_mem64(0), gen_mi_imm(value));
gen_mi_store(&b, out_mem32(8), gen_mi_imm(value));
submit_batch();
// 64 -> 64
EXPECT_EQ(*(uint64_t *)(output + 0), value);
// 64 -> 32
EXPECT_EQ(*(uint32_t *)(output + 8), (uint32_t)value);
EXPECT_EQ(*(uint32_t *)(output + 12), (uint32_t)canary);
}
TEST_F(gen_mi_builder_test, mem_mem)
{
const uint64_t value = 0x0123456789abcdef;
*(uint64_t *)input = value;
gen_mi_store(&b, out_mem64(0), in_mem64(0));
gen_mi_store(&b, out_mem32(8), in_mem64(0));
gen_mi_store(&b, out_mem32(16), in_mem32(0));
gen_mi_store(&b, out_mem64(24), in_mem32(0));
submit_batch();
// 64 -> 64
EXPECT_EQ(*(uint64_t *)(output + 0), value);
// 64 -> 32
EXPECT_EQ(*(uint32_t *)(output + 8), (uint32_t)value);
EXPECT_EQ(*(uint32_t *)(output + 12), (uint32_t)canary);
// 32 -> 32
EXPECT_EQ(*(uint32_t *)(output + 16), (uint32_t)value);
EXPECT_EQ(*(uint32_t *)(output + 20), (uint32_t)canary);
// 32 -> 64
EXPECT_EQ(*(uint64_t *)(output + 24), (uint64_t)(uint32_t)value);
}
TEST_F(gen_mi_builder_test, imm_reg)
{
const uint64_t value = 0x0123456789abcdef;
gen_mi_store(&b, gen_mi_reg64(RSVD_TEMP_REG), gen_mi_imm(canary));
gen_mi_store(&b, gen_mi_reg64(RSVD_TEMP_REG), gen_mi_imm(value));
gen_mi_store(&b, out_mem64(0), gen_mi_reg64(RSVD_TEMP_REG));
gen_mi_store(&b, gen_mi_reg64(RSVD_TEMP_REG), gen_mi_imm(canary));
gen_mi_store(&b, gen_mi_reg32(RSVD_TEMP_REG), gen_mi_imm(value));
gen_mi_store(&b, out_mem64(8), gen_mi_reg64(RSVD_TEMP_REG));
submit_batch();
// 64 -> 64
EXPECT_EQ(*(uint64_t *)(output + 0), value);
// 64 -> 32
EXPECT_EQ(*(uint32_t *)(output + 8), (uint32_t)value);
EXPECT_EQ(*(uint32_t *)(output + 12), (uint32_t)canary);
}
TEST_F(gen_mi_builder_test, mem_reg)
{
const uint64_t value = 0x0123456789abcdef;
*(uint64_t *)input = value;
gen_mi_store(&b, gen_mi_reg64(RSVD_TEMP_REG), gen_mi_imm(canary));
gen_mi_store(&b, gen_mi_reg64(RSVD_TEMP_REG), in_mem64(0));
gen_mi_store(&b, out_mem64(0), gen_mi_reg64(RSVD_TEMP_REG));
gen_mi_store(&b, gen_mi_reg64(RSVD_TEMP_REG), gen_mi_imm(canary));
gen_mi_store(&b, gen_mi_reg32(RSVD_TEMP_REG), in_mem64(0));
gen_mi_store(&b, out_mem64(8), gen_mi_reg64(RSVD_TEMP_REG));
gen_mi_store(&b, gen_mi_reg64(RSVD_TEMP_REG), gen_mi_imm(canary));
gen_mi_store(&b, gen_mi_reg32(RSVD_TEMP_REG), in_mem32(0));
gen_mi_store(&b, out_mem64(16), gen_mi_reg64(RSVD_TEMP_REG));
gen_mi_store(&b, gen_mi_reg64(RSVD_TEMP_REG), gen_mi_imm(canary));
gen_mi_store(&b, gen_mi_reg64(RSVD_TEMP_REG), in_mem32(0));
gen_mi_store(&b, out_mem64(24), gen_mi_reg64(RSVD_TEMP_REG));
submit_batch();
// 64 -> 64
EXPECT_EQ(*(uint64_t *)(output + 0), value);
// 64 -> 32
EXPECT_EQ(*(uint32_t *)(output + 8), (uint32_t)value);
EXPECT_EQ(*(uint32_t *)(output + 12), (uint32_t)canary);
// 32 -> 32
EXPECT_EQ(*(uint32_t *)(output + 16), (uint32_t)value);
EXPECT_EQ(*(uint32_t *)(output + 20), (uint32_t)canary);
// 32 -> 64
EXPECT_EQ(*(uint64_t *)(output + 24), (uint64_t)(uint32_t)value);
}
TEST_F(gen_mi_builder_test, memset)
{
const unsigned memset_size = 256;
gen_mi_memset(&b, out_addr(0), 0xdeadbeef, memset_size);
submit_batch();
uint32_t *out_u32 = (uint32_t *)output;
for (unsigned i = 0; i < memset_size / sizeof(*out_u32); i++)
EXPECT_EQ(out_u32[i], 0xdeadbeef);
}
TEST_F(gen_mi_builder_test, memcpy)
{
const unsigned memcpy_size = 256;
uint8_t *in_u8 = (uint8_t *)input;
for (unsigned i = 0; i < memcpy_size; i++)
in_u8[i] = i;
gen_mi_memcpy(&b, out_addr(0), in_addr(0), 256);
submit_batch();
uint8_t *out_u8 = (uint8_t *)output;
for (unsigned i = 0; i < memcpy_size; i++)
EXPECT_EQ(out_u8[i], i);
}
/* Start of MI_MATH section */
#if GEN_GEN >= 8 || GEN_IS_HASWELL
/* Test adding of immediates of all kinds including
*
* - All zeroes
* - All ones
* - inverted constants
*/
TEST_F(gen_mi_builder_test, add_imm)
{
const uint64_t value = 0x0123456789abcdef;
const uint64_t add = 0xdeadbeefac0ffee2;
memcpy(input, &value, sizeof(value));
gen_mi_store(&b, out_mem64(0),
gen_mi_iadd(&b, in_mem64(0), gen_mi_imm(0)));
gen_mi_store(&b, out_mem64(8),
gen_mi_iadd(&b, in_mem64(0), gen_mi_imm(-1)));
gen_mi_store(&b, out_mem64(16),
gen_mi_iadd(&b, in_mem64(0), gen_mi_inot(&b, gen_mi_imm(0))));
gen_mi_store(&b, out_mem64(24),
gen_mi_iadd(&b, in_mem64(0), gen_mi_inot(&b, gen_mi_imm(-1))));
gen_mi_store(&b, out_mem64(32),
gen_mi_iadd(&b, in_mem64(0), gen_mi_imm(add)));
gen_mi_store(&b, out_mem64(40),
gen_mi_iadd(&b, in_mem64(0), gen_mi_inot(&b, gen_mi_imm(add))));
gen_mi_store(&b, out_mem64(48),
gen_mi_iadd(&b, gen_mi_imm(0), in_mem64(0)));
gen_mi_store(&b, out_mem64(56),
gen_mi_iadd(&b, gen_mi_imm(-1), in_mem64(0)));
gen_mi_store(&b, out_mem64(64),
gen_mi_iadd(&b, gen_mi_inot(&b, gen_mi_imm(0)), in_mem64(0)));
gen_mi_store(&b, out_mem64(72),
gen_mi_iadd(&b, gen_mi_inot(&b, gen_mi_imm(-1)), in_mem64(0)));
gen_mi_store(&b, out_mem64(80),
gen_mi_iadd(&b, gen_mi_imm(add), in_mem64(0)));
gen_mi_store(&b, out_mem64(88),
gen_mi_iadd(&b, gen_mi_inot(&b, gen_mi_imm(add)), in_mem64(0)));
// And som add_imm just for good measure
gen_mi_store(&b, out_mem64(96), gen_mi_iadd_imm(&b, in_mem64(0), 0));
gen_mi_store(&b, out_mem64(104), gen_mi_iadd_imm(&b, in_mem64(0), add));
submit_batch();
EXPECT_EQ(*(uint64_t *)(output + 0), value);
EXPECT_EQ(*(uint64_t *)(output + 8), value - 1);
EXPECT_EQ(*(uint64_t *)(output + 16), value - 1);
EXPECT_EQ(*(uint64_t *)(output + 24), value);
EXPECT_EQ(*(uint64_t *)(output + 32), value + add);
EXPECT_EQ(*(uint64_t *)(output + 40), value + ~add);
EXPECT_EQ(*(uint64_t *)(output + 48), value);
EXPECT_EQ(*(uint64_t *)(output + 56), value - 1);
EXPECT_EQ(*(uint64_t *)(output + 64), value - 1);
EXPECT_EQ(*(uint64_t *)(output + 72), value);
EXPECT_EQ(*(uint64_t *)(output + 80), value + add);
EXPECT_EQ(*(uint64_t *)(output + 88), value + ~add);
EXPECT_EQ(*(uint64_t *)(output + 96), value);
EXPECT_EQ(*(uint64_t *)(output + 104), value + add);
}
TEST_F(gen_mi_builder_test, ilt_uge)
{
uint64_t values[8] = {
0x0123456789abcdef,
0xdeadbeefac0ffee2,
(uint64_t)-1,
1,
0,
1049571,
(uint64_t)-240058,
20204184,
};
memcpy(input, values, sizeof(values));
for (unsigned i = 0; i < ARRAY_SIZE(values); i++) {
for (unsigned j = 0; j < ARRAY_SIZE(values); j++) {
gen_mi_store(&b, out_mem32(i * 64 + j * 8 + 0),
gen_mi_ult(&b, in_mem64(i * 8), in_mem64(j * 8)));
gen_mi_store(&b, out_mem32(i * 64 + j * 8 + 4),
gen_mi_uge(&b, in_mem64(i * 8), in_mem64(j * 8)));
}
}
submit_batch();
for (unsigned i = 0; i < ARRAY_SIZE(values); i++) {
for (unsigned j = 0; j < ARRAY_SIZE(values); j++) {
uint32_t *out_u32 = (uint32_t *)(output + i * 64 + j * 8);
EXPECT_EQ(out_u32[0], values[i] < values[j] ? ~0u : 0u);
EXPECT_EQ(out_u32[1], values[i] >= values[j] ? ~0u : 0u);
}
}
}
TEST_F(gen_mi_builder_test, iand)
{
const uint64_t values[2] = {
0x0123456789abcdef,
0xdeadbeefac0ffee2,
};
memcpy(input, values, sizeof(values));
gen_mi_store(&b, out_mem64(0), gen_mi_iand(&b, in_mem64(0), in_mem64(8)));
submit_batch();
EXPECT_EQ(*(uint64_t *)output, values[0] & values[1]);
}
TEST_F(gen_mi_builder_test, imul_imm)
{
uint64_t lhs[2] = {
0x0123456789abcdef,
0xdeadbeefac0ffee2,
};
memcpy(input, lhs, sizeof(lhs));
/* Some random 32-bit unsigned integers. The first four have been
* hand-chosen just to ensure some good low integers; the rest were
* generated with a python script.
*/
uint32_t rhs[20] = {
1, 2, 3, 5,
10800, 193, 64, 40,
3796, 256, 88, 473,
1421, 706, 175, 850,
39, 38985, 1941, 17,
};
for (unsigned i = 0; i < ARRAY_SIZE(lhs); i++) {
for (unsigned j = 0; j < ARRAY_SIZE(rhs); j++) {
gen_mi_store(&b, out_mem64(i * 160 + j * 8),
gen_mi_imul_imm(&b, in_mem64(i * 8), rhs[j]));
}
}
submit_batch();
for (unsigned i = 0; i < ARRAY_SIZE(lhs); i++) {
for (unsigned j = 0; j < ARRAY_SIZE(rhs); j++) {
EXPECT_EQ(*(uint64_t *)(output + i * 160 + j * 8), lhs[i] * rhs[j]);
}
}
}
TEST_F(gen_mi_builder_test, ishl_imm)
{
const uint64_t value = 0x0123456789abcdef;
memcpy(input, &value, sizeof(value));
const unsigned max_shift = 64;
for (unsigned i = 0; i <= max_shift; i++)
gen_mi_store(&b, out_mem64(i * 8), gen_mi_ishl_imm(&b, in_mem64(0), i));
submit_batch();
for (unsigned i = 0; i <= max_shift; i++) {
if (i >= 64) {
EXPECT_EQ(*(uint64_t *)(output + i * 8), 0);
} else {
EXPECT_EQ(*(uint64_t *)(output + i * 8), value << i);
}
}
}
TEST_F(gen_mi_builder_test, ushr32_imm)
{
const uint64_t value = 0x0123456789abcdef;
memcpy(input, &value, sizeof(value));
const unsigned max_shift = 64;
for (unsigned i = 0; i <= max_shift; i++)
gen_mi_store(&b, out_mem64(i * 8), gen_mi_ushr32_imm(&b, in_mem64(0), i));
submit_batch();
for (unsigned i = 0; i <= max_shift; i++) {
if (i >= 64) {
EXPECT_EQ(*(uint64_t *)(output + i * 8), 0);
} else {
EXPECT_EQ(*(uint64_t *)(output + i * 8), (value >> i) & UINT32_MAX);
}
}
}
TEST_F(gen_mi_builder_test, udiv32_imm)
{
/* Some random 32-bit unsigned integers. The first four have been
* hand-chosen just to ensure some good low integers; the rest were
* generated with a python script.
*/
uint32_t values[20] = {
1, 2, 3, 5,
10800, 193, 64, 40,
3796, 256, 88, 473,
1421, 706, 175, 850,
39, 38985, 1941, 17,
};
memcpy(input, values, sizeof(values));
for (unsigned i = 0; i < ARRAY_SIZE(values); i++) {
for (unsigned j = 0; j < ARRAY_SIZE(values); j++) {
gen_mi_store(&b, out_mem32(i * 80 + j * 4),
gen_mi_udiv32_imm(&b, in_mem32(i * 4), values[j]));
}
}
submit_batch();
for (unsigned i = 0; i < ARRAY_SIZE(values); i++) {
for (unsigned j = 0; j < ARRAY_SIZE(values); j++) {
EXPECT_EQ(*(uint32_t *)(output + i * 80 + j * 4),
values[i] / values[j]);
}
}
}
#endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
|