aboutsummaryrefslogtreecommitdiffstats
path: root/src/glsl/lower_instructions.cpp
blob: 845cfff36480c661726c0057e2bf58e28f054fde (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
/*
 * Copyright © 2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

/**
 * \file lower_instructions.cpp
 *
 * Many GPUs lack native instructions for certain expression operations, and
 * must replace them with some other expression tree.  This pass lowers some
 * of the most common cases, allowing the lowering code to be implemented once
 * rather than in each driver backend.
 *
 * Currently supported transformations:
 * - SUB_TO_ADD_NEG
 * - DIV_TO_MUL_RCP
 * - INT_DIV_TO_MUL_RCP
 * - EXP_TO_EXP2
 * - POW_TO_EXP2
 * - LOG_TO_LOG2
 * - MOD_TO_FLOOR
 * - LDEXP_TO_ARITH
 * - DFREXP_TO_ARITH
 * - BITFIELD_INSERT_TO_BFM_BFI
 * - CARRY_TO_ARITH
 * - BORROW_TO_ARITH
 * - SAT_TO_CLAMP
 * - DOPS_TO_DFRAC
 *
 * SUB_TO_ADD_NEG:
 * ---------------
 * Breaks an ir_binop_sub expression down to add(op0, neg(op1))
 *
 * This simplifies expression reassociation, and for many backends
 * there is no subtract operation separate from adding the negation.
 * For backends with native subtract operations, they will probably
 * want to recognize add(op0, neg(op1)) or the other way around to
 * produce a subtract anyway.
 *
 * DIV_TO_MUL_RCP and INT_DIV_TO_MUL_RCP:
 * --------------------------------------
 * Breaks an ir_binop_div expression down to op0 * (rcp(op1)).
 *
 * Many GPUs don't have a divide instruction (945 and 965 included),
 * but they do have an RCP instruction to compute an approximate
 * reciprocal.  By breaking the operation down, constant reciprocals
 * can get constant folded.
 *
 * DIV_TO_MUL_RCP only lowers floating point division; INT_DIV_TO_MUL_RCP
 * handles the integer case, converting to and from floating point so that
 * RCP is possible.
 *
 * EXP_TO_EXP2 and LOG_TO_LOG2:
 * ----------------------------
 * Many GPUs don't have a base e log or exponent instruction, but they
 * do have base 2 versions, so this pass converts exp and log to exp2
 * and log2 operations.
 *
 * POW_TO_EXP2:
 * -----------
 * Many older GPUs don't have an x**y instruction.  For these GPUs, convert
 * x**y to 2**(y * log2(x)).
 *
 * MOD_TO_FLOOR:
 * -------------
 * Breaks an ir_binop_mod expression down to (op0 - op1 * floor(op0 / op1))
 *
 * Many GPUs don't have a MOD instruction (945 and 965 included), and
 * if we have to break it down like this anyway, it gives an
 * opportunity to do things like constant fold the (1.0 / op1) easily.
 *
 * Note: before we used to implement this as op1 * fract(op / op1) but this
 * implementation had significant precision errors.
 *
 * LDEXP_TO_ARITH:
 * -------------
 * Converts ir_binop_ldexp to arithmetic and bit operations for float sources.
 *
 * DFREXP_DLDEXP_TO_ARITH:
 * ---------------
 * Converts ir_binop_ldexp, ir_unop_frexp_sig, and ir_unop_frexp_exp to
 * arithmetic and bit ops for double arguments.
 *
 * BITFIELD_INSERT_TO_BFM_BFI:
 * ---------------------------
 * Breaks ir_quadop_bitfield_insert into ir_binop_bfm (bitfield mask) and
 * ir_triop_bfi (bitfield insert).
 *
 * Many GPUs implement the bitfieldInsert() built-in from ARB_gpu_shader_5
 * with a pair of instructions.
 *
 * CARRY_TO_ARITH:
 * ---------------
 * Converts ir_carry into (x + y) < x.
 *
 * BORROW_TO_ARITH:
 * ----------------
 * Converts ir_borrow into (x < y).
 *
 * SAT_TO_CLAMP:
 * -------------
 * Converts ir_unop_saturate into min(max(x, 0.0), 1.0)
 *
 * DOPS_TO_DFRAC:
 * --------------
 * Converts double trunc, ceil, floor, round to fract
 */

#include "c99_math.h"
#include "program/prog_instruction.h" /* for swizzle */
#include "glsl_types.h"
#include "ir.h"
#include "ir_builder.h"
#include "ir_optimization.h"

using namespace ir_builder;

namespace {

class lower_instructions_visitor : public ir_hierarchical_visitor {
public:
   lower_instructions_visitor(unsigned lower)
      : progress(false), lower(lower) { }

   ir_visitor_status visit_leave(ir_expression *);

   bool progress;

private:
   unsigned lower; /** Bitfield of which operations to lower */

   void sub_to_add_neg(ir_expression *);
   void div_to_mul_rcp(ir_expression *);
   void int_div_to_mul_rcp(ir_expression *);
   void mod_to_floor(ir_expression *);
   void exp_to_exp2(ir_expression *);
   void pow_to_exp2(ir_expression *);
   void log_to_log2(ir_expression *);
   void bitfield_insert_to_bfm_bfi(ir_expression *);
   void ldexp_to_arith(ir_expression *);
   void dldexp_to_arith(ir_expression *);
   void dfrexp_sig_to_arith(ir_expression *);
   void dfrexp_exp_to_arith(ir_expression *);
   void carry_to_arith(ir_expression *);
   void borrow_to_arith(ir_expression *);
   void sat_to_clamp(ir_expression *);
   void double_dot_to_fma(ir_expression *);
   void double_lrp(ir_expression *);
   void dceil_to_dfrac(ir_expression *);
   void dfloor_to_dfrac(ir_expression *);
   void dround_even_to_dfrac(ir_expression *);
   void dtrunc_to_dfrac(ir_expression *);
   void dsign_to_csel(ir_expression *);
};

} /* anonymous namespace */

/**
 * Determine if a particular type of lowering should occur
 */
#define lowering(x) (this->lower & x)

bool
lower_instructions(exec_list *instructions, unsigned what_to_lower)
{
   lower_instructions_visitor v(what_to_lower);

   visit_list_elements(&v, instructions);
   return v.progress;
}

void
lower_instructions_visitor::sub_to_add_neg(ir_expression *ir)
{
   ir->operation = ir_binop_add;
   ir->operands[1] = new(ir) ir_expression(ir_unop_neg, ir->operands[1]->type,
					   ir->operands[1], NULL);
   this->progress = true;
}

void
lower_instructions_visitor::div_to_mul_rcp(ir_expression *ir)
{
   assert(ir->operands[1]->type->is_float() || ir->operands[1]->type->is_double());

   /* New expression for the 1.0 / op1 */
   ir_rvalue *expr;
   expr = new(ir) ir_expression(ir_unop_rcp,
				ir->operands[1]->type,
				ir->operands[1]);

   /* op0 / op1 -> op0 * (1.0 / op1) */
   ir->operation = ir_binop_mul;
   ir->operands[1] = expr;

   this->progress = true;
}

void
lower_instructions_visitor::int_div_to_mul_rcp(ir_expression *ir)
{
   assert(ir->operands[1]->type->is_integer());

   /* Be careful with integer division -- we need to do it as a
    * float and re-truncate, since rcp(n > 1) of an integer would
    * just be 0.
    */
   ir_rvalue *op0, *op1;
   const struct glsl_type *vec_type;

   vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
				      ir->operands[1]->type->vector_elements,
				      ir->operands[1]->type->matrix_columns);

   if (ir->operands[1]->type->base_type == GLSL_TYPE_INT)
      op1 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[1], NULL);
   else
      op1 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[1], NULL);

   op1 = new(ir) ir_expression(ir_unop_rcp, op1->type, op1, NULL);

   vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
				      ir->operands[0]->type->vector_elements,
				      ir->operands[0]->type->matrix_columns);

   if (ir->operands[0]->type->base_type == GLSL_TYPE_INT)
      op0 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[0], NULL);
   else
      op0 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[0], NULL);

   vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
				      ir->type->vector_elements,
				      ir->type->matrix_columns);

   op0 = new(ir) ir_expression(ir_binop_mul, vec_type, op0, op1);

   if (ir->operands[1]->type->base_type == GLSL_TYPE_INT) {
      ir->operation = ir_unop_f2i;
      ir->operands[0] = op0;
   } else {
      ir->operation = ir_unop_i2u;
      ir->operands[0] = new(ir) ir_expression(ir_unop_f2i, op0);
   }
   ir->operands[1] = NULL;

   this->progress = true;
}

void
lower_instructions_visitor::exp_to_exp2(ir_expression *ir)
{
   ir_constant *log2_e = new(ir) ir_constant(float(M_LOG2E));

   ir->operation = ir_unop_exp2;
   ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[0]->type,
					   ir->operands[0], log2_e);
   this->progress = true;
}

void
lower_instructions_visitor::pow_to_exp2(ir_expression *ir)
{
   ir_expression *const log2_x =
      new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
			    ir->operands[0]);

   ir->operation = ir_unop_exp2;
   ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[1]->type,
					   ir->operands[1], log2_x);
   ir->operands[1] = NULL;
   this->progress = true;
}

void
lower_instructions_visitor::log_to_log2(ir_expression *ir)
{
   ir->operation = ir_binop_mul;
   ir->operands[0] = new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
					   ir->operands[0], NULL);
   ir->operands[1] = new(ir) ir_constant(float(1.0 / M_LOG2E));
   this->progress = true;
}

void
lower_instructions_visitor::mod_to_floor(ir_expression *ir)
{
   ir_variable *x = new(ir) ir_variable(ir->operands[0]->type, "mod_x",
                                         ir_var_temporary);
   ir_variable *y = new(ir) ir_variable(ir->operands[1]->type, "mod_y",
                                         ir_var_temporary);
   this->base_ir->insert_before(x);
   this->base_ir->insert_before(y);

   ir_assignment *const assign_x =
      new(ir) ir_assignment(new(ir) ir_dereference_variable(x),
                            ir->operands[0], NULL);
   ir_assignment *const assign_y =
      new(ir) ir_assignment(new(ir) ir_dereference_variable(y),
                            ir->operands[1], NULL);

   this->base_ir->insert_before(assign_x);
   this->base_ir->insert_before(assign_y);

   ir_expression *const div_expr =
      new(ir) ir_expression(ir_binop_div, x->type,
                            new(ir) ir_dereference_variable(x),
                            new(ir) ir_dereference_variable(y));

   /* Don't generate new IR that would need to be lowered in an additional
    * pass.
    */
   if (lowering(DIV_TO_MUL_RCP) && (ir->type->is_float() || ir->type->is_double()))
      div_to_mul_rcp(div_expr);

   ir_expression *const floor_expr =
      new(ir) ir_expression(ir_unop_floor, x->type, div_expr);

   if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
      dfloor_to_dfrac(floor_expr);

   ir_expression *const mul_expr =
      new(ir) ir_expression(ir_binop_mul,
                            new(ir) ir_dereference_variable(y),
                            floor_expr);

   ir->operation = ir_binop_sub;
   ir->operands[0] = new(ir) ir_dereference_variable(x);
   ir->operands[1] = mul_expr;
   this->progress = true;
}

void
lower_instructions_visitor::bitfield_insert_to_bfm_bfi(ir_expression *ir)
{
   /* Translates
    *    ir_quadop_bitfield_insert base insert offset bits
    * into
    *    ir_triop_bfi (ir_binop_bfm bits offset) insert base
    */

   ir_rvalue *base_expr = ir->operands[0];

   ir->operation = ir_triop_bfi;
   ir->operands[0] = new(ir) ir_expression(ir_binop_bfm,
                                           ir->type->get_base_type(),
                                           ir->operands[3],
                                           ir->operands[2]);
   /* ir->operands[1] is still the value to insert. */
   ir->operands[2] = base_expr;
   ir->operands[3] = NULL;

   this->progress = true;
}

void
lower_instructions_visitor::ldexp_to_arith(ir_expression *ir)
{
   /* Translates
    *    ir_binop_ldexp x exp
    * into
    *
    *    extracted_biased_exp = rshift(bitcast_f2i(abs(x)), exp_shift);
    *    resulting_biased_exp = extracted_biased_exp + exp;
    *
    *    if (resulting_biased_exp < 1) {
    *       return copysign(0.0, x);
    *    }
    *
    *    return bitcast_u2f((bitcast_f2u(x) & sign_mantissa_mask) |
    *                       lshift(i2u(resulting_biased_exp), exp_shift));
    *
    * which we can't actually implement as such, since the GLSL IR doesn't
    * have vectorized if-statements. We actually implement it without branches
    * using conditional-select:
    *
    *    extracted_biased_exp = rshift(bitcast_f2i(abs(x)), exp_shift);
    *    resulting_biased_exp = extracted_biased_exp + exp;
    *
    *    is_not_zero_or_underflow = gequal(resulting_biased_exp, 1);
    *    x = csel(is_not_zero_or_underflow, x, copysign(0.0f, x));
    *    resulting_biased_exp = csel(is_not_zero_or_underflow,
    *                                resulting_biased_exp, 0);
    *
    *    return bitcast_u2f((bitcast_f2u(x) & sign_mantissa_mask) |
    *                       lshift(i2u(resulting_biased_exp), exp_shift));
    */

   const unsigned vec_elem = ir->type->vector_elements;

   /* Types */
   const glsl_type *ivec = glsl_type::get_instance(GLSL_TYPE_INT, vec_elem, 1);
   const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);

   /* Constants */
   ir_constant *zeroi = ir_constant::zero(ir, ivec);

   ir_constant *sign_mask = new(ir) ir_constant(0x80000000u, vec_elem);

   ir_constant *exp_shift = new(ir) ir_constant(23);
   ir_constant *exp_width = new(ir) ir_constant(8);

   /* Temporary variables */
   ir_variable *x = new(ir) ir_variable(ir->type, "x", ir_var_temporary);
   ir_variable *exp = new(ir) ir_variable(ivec, "exp", ir_var_temporary);

   ir_variable *zero_sign_x = new(ir) ir_variable(ir->type, "zero_sign_x",
                                                  ir_var_temporary);

   ir_variable *extracted_biased_exp =
      new(ir) ir_variable(ivec, "extracted_biased_exp", ir_var_temporary);
   ir_variable *resulting_biased_exp =
      new(ir) ir_variable(ivec, "resulting_biased_exp", ir_var_temporary);

   ir_variable *is_not_zero_or_underflow =
      new(ir) ir_variable(bvec, "is_not_zero_or_underflow", ir_var_temporary);

   ir_instruction &i = *base_ir;

   /* Copy <x> and <exp> arguments. */
   i.insert_before(x);
   i.insert_before(assign(x, ir->operands[0]));
   i.insert_before(exp);
   i.insert_before(assign(exp, ir->operands[1]));

   /* Extract the biased exponent from <x>. */
   i.insert_before(extracted_biased_exp);
   i.insert_before(assign(extracted_biased_exp,
                          rshift(bitcast_f2i(abs(x)), exp_shift)));

   i.insert_before(resulting_biased_exp);
   i.insert_before(assign(resulting_biased_exp,
                          add(extracted_biased_exp, exp)));

   /* Test if result is ±0.0, subnormal, or underflow by checking if the
    * resulting biased exponent would be less than 0x1. If so, the result is
    * 0.0 with the sign of x. (Actually, invert the conditions so that
    * immediate values are the second arguments, which is better for i965)
    */
   i.insert_before(zero_sign_x);
   i.insert_before(assign(zero_sign_x,
                          bitcast_u2f(bit_and(bitcast_f2u(x), sign_mask))));

   i.insert_before(is_not_zero_or_underflow);
   i.insert_before(assign(is_not_zero_or_underflow,
                          gequal(resulting_biased_exp,
                                  new(ir) ir_constant(0x1, vec_elem))));
   i.insert_before(assign(x, csel(is_not_zero_or_underflow,
                                  x, zero_sign_x)));
   i.insert_before(assign(resulting_biased_exp,
                          csel(is_not_zero_or_underflow,
                               resulting_biased_exp, zeroi)));

   /* We could test for overflows by checking if the resulting biased exponent
    * would be greater than 0xFE. Turns out we don't need to because the GLSL
    * spec says:
    *
    *    "If this product is too large to be represented in the
    *     floating-point type, the result is undefined."
    */

   ir_constant *exp_shift_clone = exp_shift->clone(ir, NULL);
   ir->operation = ir_unop_bitcast_i2f;
   ir->operands[0] = bitfield_insert(bitcast_f2i(x), resulting_biased_exp,
                                     exp_shift_clone, exp_width);
   ir->operands[1] = NULL;

   /* Don't generate new IR that would need to be lowered in an additional
    * pass.
    */
   if (lowering(BITFIELD_INSERT_TO_BFM_BFI))
      bitfield_insert_to_bfm_bfi(ir->operands[0]->as_expression());

   this->progress = true;
}

void
lower_instructions_visitor::dldexp_to_arith(ir_expression *ir)
{
   /* See ldexp_to_arith for structure. Uses frexp_exp to extract the exponent
    * from the significand.
    */

   const unsigned vec_elem = ir->type->vector_elements;

   /* Types */
   const glsl_type *ivec = glsl_type::get_instance(GLSL_TYPE_INT, vec_elem, 1);
   const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);

   /* Constants */
   ir_constant *zeroi = ir_constant::zero(ir, ivec);

   ir_constant *sign_mask = new(ir) ir_constant(0x80000000u);

   ir_constant *exp_shift = new(ir) ir_constant(20);
   ir_constant *exp_width = new(ir) ir_constant(11);
   ir_constant *exp_bias = new(ir) ir_constant(1022, vec_elem);

   /* Temporary variables */
   ir_variable *x = new(ir) ir_variable(ir->type, "x", ir_var_temporary);
   ir_variable *exp = new(ir) ir_variable(ivec, "exp", ir_var_temporary);

   ir_variable *zero_sign_x = new(ir) ir_variable(ir->type, "zero_sign_x",
                                                  ir_var_temporary);

   ir_variable *extracted_biased_exp =
      new(ir) ir_variable(ivec, "extracted_biased_exp", ir_var_temporary);
   ir_variable *resulting_biased_exp =
      new(ir) ir_variable(ivec, "resulting_biased_exp", ir_var_temporary);

   ir_variable *is_not_zero_or_underflow =
      new(ir) ir_variable(bvec, "is_not_zero_or_underflow", ir_var_temporary);

   ir_instruction &i = *base_ir;

   /* Copy <x> and <exp> arguments. */
   i.insert_before(x);
   i.insert_before(assign(x, ir->operands[0]));
   i.insert_before(exp);
   i.insert_before(assign(exp, ir->operands[1]));

   ir_expression *frexp_exp = expr(ir_unop_frexp_exp, x);
   if (lowering(DFREXP_DLDEXP_TO_ARITH))
      dfrexp_exp_to_arith(frexp_exp);

   /* Extract the biased exponent from <x>. */
   i.insert_before(extracted_biased_exp);
   i.insert_before(assign(extracted_biased_exp, add(frexp_exp, exp_bias)));

   i.insert_before(resulting_biased_exp);
   i.insert_before(assign(resulting_biased_exp,
                          add(extracted_biased_exp, exp)));

   /* Test if result is ±0.0, subnormal, or underflow by checking if the
    * resulting biased exponent would be less than 0x1. If so, the result is
    * 0.0 with the sign of x. (Actually, invert the conditions so that
    * immediate values are the second arguments, which is better for i965)
    * TODO: Implement in a vector fashion.
    */
   i.insert_before(zero_sign_x);
   for (unsigned elem = 0; elem < vec_elem; elem++) {
      ir_variable *unpacked =
         new(ir) ir_variable(glsl_type::uvec2_type, "unpacked", ir_var_temporary);
      i.insert_before(unpacked);
      i.insert_before(
            assign(unpacked,
                   expr(ir_unop_unpack_double_2x32, swizzle(x, elem, 1))));
      i.insert_before(assign(unpacked, bit_and(swizzle_y(unpacked), sign_mask->clone(ir, NULL)),
                             WRITEMASK_Y));
      i.insert_before(assign(unpacked, ir_constant::zero(ir, glsl_type::uint_type), WRITEMASK_X));
      i.insert_before(assign(zero_sign_x,
                             expr(ir_unop_pack_double_2x32, unpacked),
                             1 << elem));
   }
   i.insert_before(is_not_zero_or_underflow);
   i.insert_before(assign(is_not_zero_or_underflow,
                          gequal(resulting_biased_exp,
                                  new(ir) ir_constant(0x1, vec_elem))));
   i.insert_before(assign(x, csel(is_not_zero_or_underflow,
                                  x, zero_sign_x)));
   i.insert_before(assign(resulting_biased_exp,
                          csel(is_not_zero_or_underflow,
                               resulting_biased_exp, zeroi)));

   /* We could test for overflows by checking if the resulting biased exponent
    * would be greater than 0xFE. Turns out we don't need to because the GLSL
    * spec says:
    *
    *    "If this product is too large to be represented in the
    *     floating-point type, the result is undefined."
    */

   ir_rvalue *results[4] = {NULL};
   for (unsigned elem = 0; elem < vec_elem; elem++) {
      ir_variable *unpacked =
         new(ir) ir_variable(glsl_type::uvec2_type, "unpacked", ir_var_temporary);
      i.insert_before(unpacked);
      i.insert_before(
            assign(unpacked,
                   expr(ir_unop_unpack_double_2x32, swizzle(x, elem, 1))));

      ir_expression *bfi = bitfield_insert(
            swizzle_y(unpacked),
            i2u(swizzle(resulting_biased_exp, elem, 1)),
            exp_shift->clone(ir, NULL),
            exp_width->clone(ir, NULL));

      if (lowering(BITFIELD_INSERT_TO_BFM_BFI))
         bitfield_insert_to_bfm_bfi(bfi);

      i.insert_before(assign(unpacked, bfi, WRITEMASK_Y));

      results[elem] = expr(ir_unop_pack_double_2x32, unpacked);
   }

   ir->operation = ir_quadop_vector;
   ir->operands[0] = results[0];
   ir->operands[1] = results[1];
   ir->operands[2] = results[2];
   ir->operands[3] = results[3];

   /* Don't generate new IR that would need to be lowered in an additional
    * pass.
    */

   this->progress = true;
}

void
lower_instructions_visitor::dfrexp_sig_to_arith(ir_expression *ir)
{
   const unsigned vec_elem = ir->type->vector_elements;
   const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);

   /* Double-precision floating-point values are stored as
    *   1 sign bit;
    *   11 exponent bits;
    *   52 mantissa bits.
    *
    * We're just extracting the significand here, so we only need to modify
    * the upper 32-bit uint. Unfortunately we must extract each double
    * independently as there is no vector version of unpackDouble.
    */

   ir_instruction &i = *base_ir;

   ir_variable *is_not_zero =
      new(ir) ir_variable(bvec, "is_not_zero", ir_var_temporary);
   ir_rvalue *results[4] = {NULL};

   ir_constant *dzero = new(ir) ir_constant(0.0, vec_elem);
   i.insert_before(is_not_zero);
   i.insert_before(
         assign(is_not_zero,
                nequal(abs(ir->operands[0]->clone(ir, NULL)), dzero)));

   /* TODO: Remake this as more vector-friendly when int64 support is
    * available.
    */
   for (unsigned elem = 0; elem < vec_elem; elem++) {
      ir_constant *zero = new(ir) ir_constant(0u, 1);
      ir_constant *sign_mantissa_mask = new(ir) ir_constant(0x800fffffu, 1);

      /* Exponent of double floating-point values in the range [0.5, 1.0). */
      ir_constant *exponent_value = new(ir) ir_constant(0x3fe00000u, 1);

      ir_variable *bits =
         new(ir) ir_variable(glsl_type::uint_type, "bits", ir_var_temporary);
      ir_variable *unpacked =
         new(ir) ir_variable(glsl_type::uvec2_type, "unpacked", ir_var_temporary);

      ir_rvalue *x = swizzle(ir->operands[0]->clone(ir, NULL), elem, 1);

      i.insert_before(bits);
      i.insert_before(unpacked);
      i.insert_before(assign(unpacked, expr(ir_unop_unpack_double_2x32, x)));

      /* Manipulate the high uint to remove the exponent and replace it with
       * either the default exponent or zero.
       */
      i.insert_before(assign(bits, swizzle_y(unpacked)));
      i.insert_before(assign(bits, bit_and(bits, sign_mantissa_mask)));
      i.insert_before(assign(bits, bit_or(bits,
                                          csel(swizzle(is_not_zero, elem, 1),
                                               exponent_value,
                                               zero))));
      i.insert_before(assign(unpacked, bits, WRITEMASK_Y));
      results[elem] = expr(ir_unop_pack_double_2x32, unpacked);
   }

   /* Put the dvec back together */
   ir->operation = ir_quadop_vector;
   ir->operands[0] = results[0];
   ir->operands[1] = results[1];
   ir->operands[2] = results[2];
   ir->operands[3] = results[3];

   this->progress = true;
}

void
lower_instructions_visitor::dfrexp_exp_to_arith(ir_expression *ir)
{
   const unsigned vec_elem = ir->type->vector_elements;
   const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
   const glsl_type *uvec = glsl_type::get_instance(GLSL_TYPE_UINT, vec_elem, 1);

   /* Double-precision floating-point values are stored as
    *   1 sign bit;
    *   11 exponent bits;
    *   52 mantissa bits.
    *
    * We're just extracting the exponent here, so we only care about the upper
    * 32-bit uint.
    */

   ir_instruction &i = *base_ir;

   ir_variable *is_not_zero =
      new(ir) ir_variable(bvec, "is_not_zero", ir_var_temporary);
   ir_variable *high_words =
      new(ir) ir_variable(uvec, "high_words", ir_var_temporary);
   ir_constant *dzero = new(ir) ir_constant(0.0, vec_elem);
   ir_constant *izero = new(ir) ir_constant(0, vec_elem);

   ir_rvalue *absval = abs(ir->operands[0]);

   i.insert_before(is_not_zero);
   i.insert_before(high_words);
   i.insert_before(assign(is_not_zero, nequal(absval->clone(ir, NULL), dzero)));

   /* Extract all of the upper uints. */
   for (unsigned elem = 0; elem < vec_elem; elem++) {
      ir_rvalue *x = swizzle(absval->clone(ir, NULL), elem, 1);

      i.insert_before(assign(high_words,
                             swizzle_y(expr(ir_unop_unpack_double_2x32, x)),
                             1 << elem));

   }
   ir_constant *exponent_shift = new(ir) ir_constant(20, vec_elem);
   ir_constant *exponent_bias = new(ir) ir_constant(-1022, vec_elem);

   /* For non-zero inputs, shift the exponent down and apply bias. */
   ir->operation = ir_triop_csel;
   ir->operands[0] = new(ir) ir_dereference_variable(is_not_zero);
   ir->operands[1] = add(exponent_bias, u2i(rshift(high_words, exponent_shift)));
   ir->operands[2] = izero;

   this->progress = true;
}

void
lower_instructions_visitor::carry_to_arith(ir_expression *ir)
{
   /* Translates
    *   ir_binop_carry x y
    * into
    *   sum = ir_binop_add x y
    *   bcarry = ir_binop_less sum x
    *   carry = ir_unop_b2i bcarry
    */

   ir_rvalue *x_clone = ir->operands[0]->clone(ir, NULL);
   ir->operation = ir_unop_i2u;
   ir->operands[0] = b2i(less(add(ir->operands[0], ir->operands[1]), x_clone));
   ir->operands[1] = NULL;

   this->progress = true;
}

void
lower_instructions_visitor::borrow_to_arith(ir_expression *ir)
{
   /* Translates
    *   ir_binop_borrow x y
    * into
    *   bcarry = ir_binop_less x y
    *   carry = ir_unop_b2i bcarry
    */

   ir->operation = ir_unop_i2u;
   ir->operands[0] = b2i(less(ir->operands[0], ir->operands[1]));
   ir->operands[1] = NULL;

   this->progress = true;
}

void
lower_instructions_visitor::sat_to_clamp(ir_expression *ir)
{
   /* Translates
    *   ir_unop_saturate x
    * into
    *   ir_binop_min (ir_binop_max(x, 0.0), 1.0)
    */

   ir->operation = ir_binop_min;
   ir->operands[0] = new(ir) ir_expression(ir_binop_max, ir->operands[0]->type,
                                           ir->operands[0],
                                           new(ir) ir_constant(0.0f));
   ir->operands[1] = new(ir) ir_constant(1.0f);

   this->progress = true;
}

void
lower_instructions_visitor::double_dot_to_fma(ir_expression *ir)
{
   ir_variable *temp = new(ir) ir_variable(ir->operands[0]->type->get_base_type(), "dot_res",
					   ir_var_temporary);
   this->base_ir->insert_before(temp);

   int nc = ir->operands[0]->type->components();
   for (int i = nc - 1; i >= 1; i--) {
      ir_assignment *assig;
      if (i == (nc - 1)) {
         assig = assign(temp, mul(swizzle(ir->operands[0]->clone(ir, NULL), i, 1),
                                  swizzle(ir->operands[1]->clone(ir, NULL), i, 1)));
      } else {
         assig = assign(temp, fma(swizzle(ir->operands[0]->clone(ir, NULL), i, 1),
                                  swizzle(ir->operands[1]->clone(ir, NULL), i, 1),
                                  temp));
      }
      this->base_ir->insert_before(assig);
   }

   ir->operation = ir_triop_fma;
   ir->operands[0] = swizzle(ir->operands[0], 0, 1);
   ir->operands[1] = swizzle(ir->operands[1], 0, 1);
   ir->operands[2] = new(ir) ir_dereference_variable(temp);

   this->progress = true;

}

void
lower_instructions_visitor::double_lrp(ir_expression *ir)
{
   int swizval;
   ir_rvalue *op0 = ir->operands[0], *op2 = ir->operands[2];
   ir_constant *one = new(ir) ir_constant(1.0, op2->type->vector_elements);

   switch (op2->type->vector_elements) {
   case 1:
      swizval = SWIZZLE_XXXX;
      break;
   default:
      assert(op0->type->vector_elements == op2->type->vector_elements);
      swizval = SWIZZLE_XYZW;
      break;
   }

   ir->operation = ir_triop_fma;
   ir->operands[0] = swizzle(op2, swizval, op0->type->vector_elements);
   ir->operands[2] = mul(sub(one, op2->clone(ir, NULL)), op0);

   this->progress = true;
}

void
lower_instructions_visitor::dceil_to_dfrac(ir_expression *ir)
{
   /*
    * frtemp = frac(x);
    * temp = sub(x, frtemp);
    * result = temp + ((frtemp != 0.0) ? 1.0 : 0.0);
    */
   ir_instruction &i = *base_ir;
   ir_constant *zero = new(ir) ir_constant(0.0, ir->operands[0]->type->vector_elements);
   ir_constant *one = new(ir) ir_constant(1.0, ir->operands[0]->type->vector_elements);
   ir_variable *frtemp = new(ir) ir_variable(ir->operands[0]->type, "frtemp",
                                             ir_var_temporary);

   i.insert_before(frtemp);
   i.insert_before(assign(frtemp, fract(ir->operands[0])));

   ir->operation = ir_binop_add;
   ir->operands[0] = sub(ir->operands[0]->clone(ir, NULL), frtemp);
   ir->operands[1] = csel(nequal(frtemp, zero), one, zero->clone(ir, NULL));

   this->progress = true;
}

void
lower_instructions_visitor::dfloor_to_dfrac(ir_expression *ir)
{
   /*
    * frtemp = frac(x);
    * result = sub(x, frtemp);
    */
   ir->operation = ir_binop_sub;
   ir->operands[1] = fract(ir->operands[0]->clone(ir, NULL));

   this->progress = true;
}
void
lower_instructions_visitor::dround_even_to_dfrac(ir_expression *ir)
{
   /*
    * insane but works
    * temp = x + 0.5;
    * frtemp = frac(temp);
    * t2 = sub(temp, frtemp);
    * if (frac(x) == 0.5)
    *     result = frac(t2 * 0.5) == 0 ? t2 : t2 - 1;
    *  else
    *     result = t2;

    */
   ir_instruction &i = *base_ir;
   ir_variable *frtemp = new(ir) ir_variable(ir->operands[0]->type, "frtemp",
                                             ir_var_temporary);
   ir_variable *temp = new(ir) ir_variable(ir->operands[0]->type, "temp",
                                           ir_var_temporary);
   ir_variable *t2 = new(ir) ir_variable(ir->operands[0]->type, "t2",
                                           ir_var_temporary);
   ir_constant *p5 = new(ir) ir_constant(0.5, ir->operands[0]->type->vector_elements);
   ir_constant *one = new(ir) ir_constant(1.0, ir->operands[0]->type->vector_elements);
   ir_constant *zero = new(ir) ir_constant(0.0, ir->operands[0]->type->vector_elements);

   i.insert_before(temp);
   i.insert_before(assign(temp, add(ir->operands[0], p5)));

   i.insert_before(frtemp);
   i.insert_before(assign(frtemp, fract(temp)));

   i.insert_before(t2);
   i.insert_before(assign(t2, sub(temp, frtemp)));

   ir->operation = ir_triop_csel;
   ir->operands[0] = equal(fract(ir->operands[0]->clone(ir, NULL)),
                           p5->clone(ir, NULL));
   ir->operands[1] = csel(equal(fract(mul(t2, p5->clone(ir, NULL))),
                                zero),
                          t2,
                          sub(t2, one));
   ir->operands[2] = new(ir) ir_dereference_variable(t2);

   this->progress = true;
}

void
lower_instructions_visitor::dtrunc_to_dfrac(ir_expression *ir)
{
   /*
    * frtemp = frac(x);
    * temp = sub(x, frtemp);
    * result = x >= 0 ? temp : temp + (frtemp == 0.0) ? 0 : 1;
    */
   ir_rvalue *arg = ir->operands[0];
   ir_instruction &i = *base_ir;

   ir_constant *zero = new(ir) ir_constant(0.0, arg->type->vector_elements);
   ir_constant *one = new(ir) ir_constant(1.0, arg->type->vector_elements);
   ir_variable *frtemp = new(ir) ir_variable(arg->type, "frtemp",
                                             ir_var_temporary);
   ir_variable *temp = new(ir) ir_variable(ir->operands[0]->type, "temp",
                                           ir_var_temporary);

   i.insert_before(frtemp);
   i.insert_before(assign(frtemp, fract(arg)));
   i.insert_before(temp);
   i.insert_before(assign(temp, sub(arg->clone(ir, NULL), frtemp)));

   ir->operation = ir_triop_csel;
   ir->operands[0] = gequal(arg->clone(ir, NULL), zero);
   ir->operands[1] = new (ir) ir_dereference_variable(temp);
   ir->operands[2] = add(temp,
                         csel(equal(frtemp, zero->clone(ir, NULL)),
                              zero->clone(ir, NULL),
                              one));

   this->progress = true;
}

void
lower_instructions_visitor::dsign_to_csel(ir_expression *ir)
{
   /*
    * temp = x > 0.0 ? 1.0 : 0.0;
    * result = x < 0.0 ? -1.0 : temp;
    */
   ir_rvalue *arg = ir->operands[0];
   ir_constant *zero = new(ir) ir_constant(0.0, arg->type->vector_elements);
   ir_constant *one = new(ir) ir_constant(1.0, arg->type->vector_elements);
   ir_constant *neg_one = new(ir) ir_constant(-1.0, arg->type->vector_elements);

   ir->operation = ir_triop_csel;
   ir->operands[0] = less(arg->clone(ir, NULL),
                          zero->clone(ir, NULL));
   ir->operands[1] = neg_one;
   ir->operands[2] = csel(greater(arg, zero),
                          one,
                          zero->clone(ir, NULL));

   this->progress = true;
}

ir_visitor_status
lower_instructions_visitor::visit_leave(ir_expression *ir)
{
   switch (ir->operation) {
   case ir_binop_dot:
      if (ir->operands[0]->type->is_double())
         double_dot_to_fma(ir);
      break;
   case ir_triop_lrp:
      if (ir->operands[0]->type->is_double())
         double_lrp(ir);
      break;
   case ir_binop_sub:
      if (lowering(SUB_TO_ADD_NEG))
	 sub_to_add_neg(ir);
      break;

   case ir_binop_div:
      if (ir->operands[1]->type->is_integer() && lowering(INT_DIV_TO_MUL_RCP))
	 int_div_to_mul_rcp(ir);
      else if ((ir->operands[1]->type->is_float() ||
                ir->operands[1]->type->is_double()) && lowering(DIV_TO_MUL_RCP))
	 div_to_mul_rcp(ir);
      break;

   case ir_unop_exp:
      if (lowering(EXP_TO_EXP2))
	 exp_to_exp2(ir);
      break;

   case ir_unop_log:
      if (lowering(LOG_TO_LOG2))
	 log_to_log2(ir);
      break;

   case ir_binop_mod:
      if (lowering(MOD_TO_FLOOR) && (ir->type->is_float() || ir->type->is_double()))
	 mod_to_floor(ir);
      break;

   case ir_binop_pow:
      if (lowering(POW_TO_EXP2))
	 pow_to_exp2(ir);
      break;

   case ir_quadop_bitfield_insert:
      if (lowering(BITFIELD_INSERT_TO_BFM_BFI))
         bitfield_insert_to_bfm_bfi(ir);
      break;

   case ir_binop_ldexp:
      if (lowering(LDEXP_TO_ARITH) && ir->type->is_float())
         ldexp_to_arith(ir);
      if (lowering(DFREXP_DLDEXP_TO_ARITH) && ir->type->is_double())
         dldexp_to_arith(ir);
      break;

   case ir_unop_frexp_exp:
      if (lowering(DFREXP_DLDEXP_TO_ARITH) && ir->operands[0]->type->is_double())
         dfrexp_exp_to_arith(ir);
      break;

   case ir_unop_frexp_sig:
      if (lowering(DFREXP_DLDEXP_TO_ARITH) && ir->operands[0]->type->is_double())
         dfrexp_sig_to_arith(ir);
      break;

   case ir_binop_carry:
      if (lowering(CARRY_TO_ARITH))
         carry_to_arith(ir);
      break;

   case ir_binop_borrow:
      if (lowering(BORROW_TO_ARITH))
         borrow_to_arith(ir);
      break;

   case ir_unop_saturate:
      if (lowering(SAT_TO_CLAMP))
         sat_to_clamp(ir);
      break;

   case ir_unop_trunc:
      if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
         dtrunc_to_dfrac(ir);
      break;

   case ir_unop_ceil:
      if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
         dceil_to_dfrac(ir);
      break;

   case ir_unop_floor:
      if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
         dfloor_to_dfrac(ir);
      break;

   case ir_unop_round_even:
      if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
         dround_even_to_dfrac(ir);
      break;

   case ir_unop_sign:
      if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
         dsign_to_csel(ir);
      break;
   default:
      return visit_continue;
   }

   return visit_continue;
}