aboutsummaryrefslogtreecommitdiffstats
path: root/src/gallium/state_trackers/clover/spirv/invocation.cpp
blob: 620c6b1e0ea57a38bb1bd9382d62772f838bf266 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
//
// Copyright 2018 Pierre Moreau
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
// OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//

#include "invocation.hpp"

#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#ifdef HAVE_CLOVER_SPIRV
#include <spirv-tools/libspirv.hpp>
#include <spirv-tools/linker.hpp>
#endif

#include "core/error.hpp"
#include "core/platform.hpp"
#include "invocation.hpp"
#include "llvm/util.hpp"
#include "pipe/p_state.h"
#include "util/algorithm.hpp"
#include "util/functional.hpp"
#include "util/u_math.h"

#include "compiler/spirv/spirv.h"

#define SPIRV_HEADER_WORD_SIZE 5

using namespace clover;

#ifdef HAVE_CLOVER_SPIRV
namespace {

   template<typename T>
   T get(const char *source, size_t index) {
      const uint32_t *word_ptr = reinterpret_cast<const uint32_t *>(source);
      return static_cast<T>(word_ptr[index]);
   }

   enum module::argument::type
   convert_storage_class(SpvStorageClass storage_class, std::string &err) {
      switch (storage_class) {
      case SpvStorageClassFunction:
         return module::argument::scalar;
      case SpvStorageClassUniformConstant:
         return module::argument::constant;
      case SpvStorageClassWorkgroup:
         return module::argument::local;
      case SpvStorageClassCrossWorkgroup:
         return module::argument::global;
      default:
         err += "Invalid storage type " + std::to_string(storage_class) + "\n";
         throw build_error();
      }
   }

   enum module::argument::type
   convert_image_type(SpvId id, SpvDim dim, SpvAccessQualifier access,
                      std::string &err) {
      if (dim == SpvDim2D && access == SpvAccessQualifierReadOnly)
         return module::argument::image2d_rd;
      else if (dim == SpvDim2D && access == SpvAccessQualifierWriteOnly)
         return module::argument::image2d_wr;
      else if (dim == SpvDim3D && access == SpvAccessQualifierReadOnly)
         return module::argument::image3d_rd;
      else if (dim == SpvDim3D && access == SpvAccessQualifierWriteOnly)
         return module::argument::image3d_wr;
      else {
         err += "Unknown access qualifier " + std::to_string(access)
             +  " or dimension " + std::to_string(dim) + " for image "
             +  std::to_string(id) + ".\n";
         throw build_error();
      }
   }

   module::section
   make_text_section(const std::vector<char> &code,
                     enum module::section::type section_type) {
      const pipe_binary_program_header header { uint32_t(code.size()) };
      module::section text { 0, section_type, header.num_bytes, {} };

      text.data.insert(text.data.end(), reinterpret_cast<const char *>(&header),
                       reinterpret_cast<const char *>(&header) + sizeof(header));
      text.data.insert(text.data.end(), code.begin(), code.end());

      return text;
   }

   module
   create_module_from_spirv(const std::vector<char> &source,
                            size_t pointer_byte_size,
                            std::string &err) {
      const size_t length = source.size() / sizeof(uint32_t);
      size_t i = SPIRV_HEADER_WORD_SIZE; // Skip header

      std::string kernel_name;
      size_t kernel_nb = 0u;
      std::vector<module::argument> args;

      module m;

      std::unordered_map<SpvId, std::string> kernels;
      std::unordered_map<SpvId, module::argument> types;
      std::unordered_map<SpvId, SpvId> pointer_types;
      std::unordered_map<SpvId, unsigned int> constants;
      std::unordered_set<SpvId> packed_structures;
      std::unordered_map<SpvId, std::vector<SpvFunctionParameterAttribute>>
         func_param_attr_map;

      while (i < length) {
         const auto inst = &source[i * sizeof(uint32_t)];
         const auto desc_word = get<uint32_t>(inst, 0);
         const auto opcode = static_cast<SpvOp>(desc_word & SpvOpCodeMask);
         const unsigned int num_operands = desc_word >> SpvWordCountShift;

         switch (opcode) {
         case SpvOpEntryPoint:
            if (get<SpvExecutionModel>(inst, 1) == SpvExecutionModelKernel)
               kernels.emplace(get<SpvId>(inst, 2),
                               source.data() + (i + 3u) * sizeof(uint32_t));
            break;

         case SpvOpDecorate: {
            const auto id = get<SpvId>(inst, 1);
            const auto decoration = get<SpvDecoration>(inst, 2);
            if (decoration == SpvDecorationCPacked)
               packed_structures.emplace(id);
            else if (decoration == SpvDecorationFuncParamAttr) {
               const auto attribute =
                  get<SpvFunctionParameterAttribute>(inst, 3u);
               func_param_attr_map[id].push_back(attribute);
            }
            break;
         }

         case SpvOpGroupDecorate: {
            const auto group_id = get<SpvId>(inst, 1);
            if (packed_structures.count(group_id)) {
               for (unsigned int i = 2u; i < num_operands; ++i)
                  packed_structures.emplace(get<SpvId>(inst, i));
            }
            const auto func_param_attr_iter =
               func_param_attr_map.find(group_id);
            if (func_param_attr_iter != func_param_attr_map.end()) {
               for (unsigned int i = 2u; i < num_operands; ++i)
                  func_param_attr_map.emplace(get<SpvId>(inst, i),
                                              func_param_attr_iter->second);
            }
            break;
         }

         case SpvOpConstant:
            // We only care about constants that represent the size of arrays.
            // If they are passed as argument, they will never be more than
            // 4GB-wide, and even if they did, a clover::module::argument size
            // is represented by an int.
            constants[get<SpvId>(inst, 2)] = get<unsigned int>(inst, 3u);
            break;

         case SpvOpTypeInt: // FALLTHROUGH
         case SpvOpTypeFloat: {
            const auto size = get<uint32_t>(inst, 2) / 8u;
            types[get<SpvId>(inst, 1)] = { module::argument::scalar, size,
                                           size, size,
                                           module::argument::zero_ext };
            break;
         }

         case SpvOpTypeArray: {
            const auto id = get<SpvId>(inst, 1);
            const auto type_id = get<SpvId>(inst, 2);
            const auto types_iter = types.find(type_id);
            if (types_iter == types.end())
               break;

            const auto constant_id = get<SpvId>(inst, 3);
            const auto constants_iter = constants.find(constant_id);
            if (constants_iter == constants.end()) {
               err += "Constant " + std::to_string(constant_id) +
                  " is missing\n";
               throw build_error();
            }
            const auto elem_size = types_iter->second.size;
            const auto elem_nbs = constants_iter->second;
            const auto size = elem_size * elem_nbs;
            types[id] = { module::argument::scalar, size, size,
                          types_iter->second.target_align,
                          module::argument::zero_ext };
            break;
         }

         case SpvOpTypeStruct: {
            const auto id = get<SpvId>(inst, 1);
            const bool is_packed = packed_structures.count(id);

            unsigned struct_size = 0u;
            unsigned struct_align = 1u;
            for (unsigned j = 2u; j < num_operands; ++j) {
               const auto type_id = get<SpvId>(inst, j);
               const auto types_iter = types.find(type_id);

               // If a type was not found, that means it is not one of the
               // types allowed as kernel arguments. And since the module has
               // been validated, this means this type is not used for kernel
               // arguments, and therefore can be ignored.
               if (types_iter == types.end())
                  break;

               const auto alignment = is_packed ? 1u
                                                : types_iter->second.target_align;
               const auto padding = (-struct_size) & (alignment - 1u);
               struct_size += padding + types_iter->second.target_size;
               struct_align = std::max(struct_align, alignment);
            }
            struct_size += (-struct_size) & (struct_align - 1u);
            types[id] = { module::argument::scalar, struct_size, struct_size,
                          struct_align, module::argument::zero_ext };
            break;
         }

         case SpvOpTypeVector: {
            const auto id = get<SpvId>(inst, 1);
            const auto type_id = get<SpvId>(inst, 2);
            const auto types_iter = types.find(type_id);

            // If a type was not found, that means it is not one of the
            // types allowed as kernel arguments. And since the module has
            // been validated, this means this type is not used for kernel
            // arguments, and therefore can be ignored.
            if (types_iter == types.end())
               break;

            const auto elem_size = types_iter->second.size;
            const auto elem_nbs = get<uint32_t>(inst, 3);
            const auto size = elem_size * elem_nbs;
            types[id] = { module::argument::scalar, size, size, size,
                          module::argument::zero_ext };
            break;
         }

         case SpvOpTypeForwardPointer: // FALLTHROUGH
         case SpvOpTypePointer: {
            const auto id = get<SpvId>(inst, 1);
            const auto storage_class = get<SpvStorageClass>(inst, 2);
            // Input means this is for a builtin variable, which can not be
            // passed as an argument to a kernel.
            if (storage_class == SpvStorageClassInput)
               break;
            types[id] = { convert_storage_class(storage_class, err),
                          sizeof(cl_mem),
                          static_cast<module::size_t>(pointer_byte_size),
                          static_cast<module::size_t>(pointer_byte_size),
                          module::argument::zero_ext };
            if (opcode == SpvOpTypePointer)
               pointer_types[id] = get<SpvId>(inst, 3);
            break;
         }

         case SpvOpTypeSampler:
            types[get<SpvId>(inst, 1)] = { module::argument::sampler,
                                             sizeof(cl_sampler) };
            break;

         case SpvOpTypeImage: {
            const auto id = get<SpvId>(inst, 1);
            const auto dim = get<SpvDim>(inst, 3);
            const auto access = get<SpvAccessQualifier>(inst, 9);
            types[id] = { convert_image_type(id, dim, access, err),
                          sizeof(cl_mem), sizeof(cl_mem), sizeof(cl_mem),
                          module::argument::zero_ext };
            break;
         }

         case SpvOpTypePipe: // FALLTHROUGH
         case SpvOpTypeQueue: {
            err += "TypePipe and TypeQueue are valid SPIR-V 1.0 types, but are "
                   "not available in the currently supported OpenCL C version."
                   "\n";
            throw build_error();
         }

         case SpvOpFunction: {
            const auto kernels_iter = kernels.find(get<SpvId>(inst, 2));
            if (kernels_iter != kernels.end())
               kernel_name = kernels_iter->second;
            break;
         }

         case SpvOpFunctionParameter: {
            if (kernel_name.empty())
               break;

            const auto type_id = get<SpvId>(inst, 1);
            auto arg = types.find(type_id)->second;
            const auto &func_param_attr_iter =
               func_param_attr_map.find(get<SpvId>(inst, 2));
            if (func_param_attr_iter != func_param_attr_map.end()) {
               for (auto &i : func_param_attr_iter->second) {
                  switch (i) {
                  case SpvFunctionParameterAttributeSext:
                     arg.ext_type = module::argument::sign_ext;
                     break;
                  case SpvFunctionParameterAttributeZext:
                     arg.ext_type = module::argument::zero_ext;
                     break;
                  case SpvFunctionParameterAttributeByVal: {
                     const SpvId ptr_type_id =
                        pointer_types.find(type_id)->second;
                     arg = types.find(ptr_type_id)->second;
                     break;
                  }
                  default:
                     break;
                  }
               }
            }
            args.emplace_back(arg);
            break;
         }

         case SpvOpFunctionEnd:
            if (kernel_name.empty())
               break;
            m.syms.emplace_back(kernel_name, 0, kernel_nb, args);
            ++kernel_nb;
            kernel_name.clear();
            args.clear();
            break;

         default:
            break;
         }

         i += num_operands;
      }

      m.secs.push_back(make_text_section(source,
                                         module::section::text_intermediate));
      return m;
   }

   bool
   check_capabilities(const device &dev, const std::vector<char> &source,
                      std::string &r_log) {
      const size_t length = source.size() / sizeof(uint32_t);
      size_t i = SPIRV_HEADER_WORD_SIZE; // Skip header

      while (i < length) {
         const auto desc_word = get<uint32_t>(source.data(), i);
         const auto opcode = static_cast<SpvOp>(desc_word & SpvOpCodeMask);
         const unsigned int num_operands = desc_word >> SpvWordCountShift;

         if (opcode != SpvOpCapability)
            break;

         const auto capability = get<SpvCapability>(source.data(), i + 1u);
         switch (capability) {
         // Mandatory capabilities
         case SpvCapabilityAddresses:
         case SpvCapabilityFloat16Buffer:
         case SpvCapabilityGroups:
         case SpvCapabilityInt64:
         case SpvCapabilityInt16:
         case SpvCapabilityInt8:
         case SpvCapabilityKernel:
         case SpvCapabilityLinkage:
         case SpvCapabilityVector16:
            break;
         // Optional capabilities
         case SpvCapabilityImageBasic:
         case SpvCapabilityLiteralSampler:
         case SpvCapabilitySampled1D:
         case SpvCapabilityImage1D:
         case SpvCapabilitySampledBuffer:
         case SpvCapabilityImageBuffer:
            if (!dev.image_support()) {
               r_log += "Capability 'ImageBasic' is not supported.\n";
               return false;
            }
            break;
         case SpvCapabilityFloat64:
            if (!dev.has_doubles()) {
               r_log += "Capability 'Float64' is not supported.\n";
               return false;
            }
            break;
         // Enabled through extensions
         case SpvCapabilityFloat16:
            if (!dev.has_halves()) {
               r_log += "Capability 'Float16' is not supported.\n";
               return false;
            }
            break;
         default:
            r_log += "Capability '" + std::to_string(capability) +
                     "' is not supported.\n";
            return false;
         }

         i += num_operands;
      }

      return true;
   }

   bool
   check_extensions(const device &dev, const std::vector<char> &source,
                    std::string &r_log) {
      const size_t length = source.size() / sizeof(uint32_t);
      size_t i = SPIRV_HEADER_WORD_SIZE; // Skip header

      while (i < length) {
         const auto desc_word = get<uint32_t>(source.data(), i);
         const auto opcode = static_cast<SpvOp>(desc_word & SpvOpCodeMask);
         const unsigned int num_operands = desc_word >> SpvWordCountShift;

         if (opcode == SpvOpCapability) {
            i += num_operands;
            continue;
         }
         if (opcode != SpvOpExtension)
            break;

         const char *extension = source.data() + (i + 1u) * sizeof(uint32_t);
         const std::string device_extensions = dev.supported_extensions();
         const std::string platform_extensions =
            dev.platform.supported_extensions();
         if (device_extensions.find(extension) == std::string::npos &&
             platform_extensions.find(extension) == std::string::npos) {
            r_log += "Extension '" + std::string(extension) +
                     "' is not supported.\n";
            return false;
         }

         i += num_operands;
      }

      return true;
   }

   bool
   check_memory_model(const device &dev, const std::vector<char> &source,
                      std::string &r_log) {
      const size_t length = source.size() / sizeof(uint32_t);
      size_t i = SPIRV_HEADER_WORD_SIZE; // Skip header

      while (i < length) {
         const auto desc_word = get<uint32_t>(source.data(), i);
         const auto opcode = static_cast<SpvOp>(desc_word & SpvOpCodeMask);
         const unsigned int num_operands = desc_word >> SpvWordCountShift;

         switch (opcode) {
         case SpvOpMemoryModel:
            switch (get<SpvAddressingModel>(source.data(), i + 1u)) {
            case SpvAddressingModelPhysical32:
               return dev.address_bits() == 32;
            case SpvAddressingModelPhysical64:
               return dev.address_bits() == 64;
            default:
               unreachable("Only Physical32 and Physical64 are valid for OpenCL, and the binary was already validated");
               return false;
            }
            break;
         default:
            break;
         }

         i += num_operands;
      }

      return false;
   }

   // Copies the input binary and convert it to the endianness of the host CPU.
   std::vector<char>
   spirv_to_cpu(const std::vector<char> &binary)
   {
      const uint32_t first_word = get<uint32_t>(binary.data(), 0u);
      if (first_word == SpvMagicNumber)
         return binary;

      std::vector<char> cpu_endianness_binary(binary.size());
      for (size_t i = 0; i < (binary.size() / 4u); ++i) {
         const uint32_t word = get<uint32_t>(binary.data(), i);
         reinterpret_cast<uint32_t *>(cpu_endianness_binary.data())[i] =
            util_bswap32(word);
      }

      return cpu_endianness_binary;
   }

#ifdef HAVE_CLOVER_SPIRV
   std::string
   format_validator_msg(spv_message_level_t level, const char * /* source */,
                        const spv_position_t &position, const char *message) {
      std::string level_str;
      switch (level) {
      case SPV_MSG_FATAL:
         level_str = "Fatal";
         break;
      case SPV_MSG_INTERNAL_ERROR:
         level_str = "Internal error";
         break;
      case SPV_MSG_ERROR:
         level_str = "Error";
         break;
      case SPV_MSG_WARNING:
         level_str = "Warning";
         break;
      case SPV_MSG_INFO:
         level_str = "Info";
         break;
      case SPV_MSG_DEBUG:
         level_str = "Debug";
         break;
      }
      return "[" + level_str + "] At word No." +
             std::to_string(position.index) + ": \"" + message + "\"\n";
   }

   spv_target_env
   convert_opencl_str_to_target_env(const std::string &opencl_version) {
      if (opencl_version == "2.2") {
         return SPV_ENV_OPENCL_2_2;
      } else if (opencl_version == "2.1") {
         return SPV_ENV_OPENCL_2_1;
      } else if (opencl_version == "2.0") {
         return SPV_ENV_OPENCL_2_0;
      } else if (opencl_version == "1.2" ||
                 opencl_version == "1.1" ||
                 opencl_version == "1.0") {
         // SPIR-V is only defined for OpenCL >= 1.2, however some drivers
         // might use it with OpenCL 1.0 and 1.1.
         return SPV_ENV_OPENCL_1_2;
      } else {
         throw build_error("Invalid OpenCL version");
      }
   }
#endif

}

module
clover::spirv::compile_program(const std::vector<char> &binary,
                               const device &dev, std::string &r_log) {
   std::vector<char> source = spirv_to_cpu(binary);

   if (!is_valid_spirv(source, dev.device_version(), r_log))
      throw build_error();

   if (!check_capabilities(dev, source, r_log))
      throw build_error();
   if (!check_extensions(dev, source, r_log))
      throw build_error();
   if (!check_memory_model(dev, source, r_log))
      throw build_error();

   return create_module_from_spirv(source,
                                   dev.address_bits() == 32 ? 4u : 8u, r_log);
}

module
clover::spirv::link_program(const std::vector<module> &modules,
                            const device &dev, const std::string &opts,
                            std::string &r_log) {
   std::vector<std::string> options = clover::llvm::tokenize(opts);

   bool create_library = false;

   std::string ignored_options;
   for (const std::string &option : options) {
      if (option == "-create-library") {
         create_library = true;
      } else {
         ignored_options += "'" + option + "' ";
      }
   }
   if (!ignored_options.empty()) {
      r_log += "Ignoring the following link options: " + ignored_options
            + "\n";
   }

   spvtools::LinkerOptions linker_options;
   linker_options.SetCreateLibrary(create_library);

   module m;

   const auto section_type = create_library ? module::section::text_library :
                                              module::section::text_executable;

   std::vector<const uint32_t *> sections;
   sections.reserve(modules.size());
   std::vector<size_t> lengths;
   lengths.reserve(modules.size());

   auto const validator_consumer = [&r_log](spv_message_level_t level,
                                            const char *source,
                                            const spv_position_t &position,
                                            const char *message) {
      r_log += format_validator_msg(level, source, position, message);
   };

   for (const auto &mod : modules) {
      const auto &msec = find([](const module::section &sec) {
                  return sec.type == module::section::text_intermediate ||
                         sec.type == module::section::text_library;
               }, mod.secs);

      const auto c_il = ((struct pipe_binary_program_header*)msec.data.data())->blob;
      const auto length = msec.size;

      sections.push_back(reinterpret_cast<const uint32_t *>(c_il));
      lengths.push_back(length / sizeof(uint32_t));
   }

   std::vector<uint32_t> linked_binary;

   const std::string opencl_version = dev.device_version();
   const spv_target_env target_env =
      convert_opencl_str_to_target_env(opencl_version);

   const spvtools::MessageConsumer consumer = validator_consumer;
   spvtools::Context context(target_env);
   context.SetMessageConsumer(std::move(consumer));

   if (Link(context, sections.data(), lengths.data(), sections.size(),
            &linked_binary, linker_options) != SPV_SUCCESS)
      throw error(CL_LINK_PROGRAM_FAILURE);

   std::vector<char> final_binary{
         reinterpret_cast<char *>(linked_binary.data()),
         reinterpret_cast<char *>(linked_binary.data() +
               linked_binary.size()) };
   if (!is_valid_spirv(final_binary, opencl_version, r_log))
      throw error(CL_LINK_PROGRAM_FAILURE);

   for (const auto &mod : modules)
      m.syms.insert(m.syms.end(), mod.syms.begin(), mod.syms.end());

   m.secs.emplace_back(make_text_section(final_binary, section_type));

   return m;
}

bool
clover::spirv::is_valid_spirv(const std::vector<char> &binary,
                              const std::string &opencl_version,
                              std::string &r_log) {
   auto const validator_consumer =
      [&r_log](spv_message_level_t level, const char *source,
               const spv_position_t &position, const char *message) {
      r_log += format_validator_msg(level, source, position, message);
   };

   const spv_target_env target_env =
      convert_opencl_str_to_target_env(opencl_version);
   spvtools::SpirvTools spvTool(target_env);
   spvTool.SetMessageConsumer(validator_consumer);

   return spvTool.Validate(reinterpret_cast<const uint32_t *>(binary.data()),
                           binary.size() / 4u);
}

std::string
clover::spirv::print_module(const std::vector<char> &binary,
                            const std::string &opencl_version) {
   const spv_target_env target_env =
      convert_opencl_str_to_target_env(opencl_version);
   spvtools::SpirvTools spvTool(target_env);
   spv_context spvContext = spvContextCreate(target_env);
   if (!spvContext)
      return "Failed to create an spv_context for disassembling the module.";

   spv_text disassembly;
   spvBinaryToText(spvContext,
                   reinterpret_cast<const uint32_t *>(binary.data()),
                   binary.size() / 4u, SPV_BINARY_TO_TEXT_OPTION_NONE,
                   &disassembly, nullptr);
   spvContextDestroy(spvContext);

   const std::string disassemblyStr = disassembly->str;
   spvTextDestroy(disassembly);

   return disassemblyStr;
}

#else
bool
clover::spirv::is_valid_spirv(const std::vector<char> &/*binary*/,
                              const std::string &/*opencl_version*/,
                              std::string &/*r_log*/) {
   return false;
}

module
clover::spirv::compile_program(const std::vector<char> &binary,
                               const device &dev, std::string &r_log) {
   r_log += "SPIR-V support in clover is not enabled.\n";
   throw build_error();
}

module
clover::spirv::link_program(const std::vector<module> &/*modules*/,
                            const device &/*dev*/, const std::string &/*opts*/,
                            std::string &r_log) {
   r_log += "SPIR-V support in clover is not enabled.\n";
   throw error(CL_LINKER_NOT_AVAILABLE);
}

std::string
clover::spirv::print_module(const std::vector<char> &binary,
                            const std::string &opencl_version) {
   return std::string();
}
#endif