1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
|
/****************************************************************************
* Copyright (C) 2014-2015 Intel Corporation. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* @file builder_misc.cpp
*
* @brief Implementation for miscellaneous builder functions
*
* Notes:
*
******************************************************************************/
#include "builder.h"
#include "common/rdtsc_buckets.h"
#include <cstdarg>
namespace SwrJit
{
void __cdecl CallPrint(const char* fmt, ...);
//////////////////////////////////////////////////////////////////////////
/// @brief Convert an IEEE 754 32-bit single precision float to an
/// 16 bit float with 5 exponent bits and a variable
/// number of mantissa bits.
/// @param val - 32-bit float
/// @todo Maybe move this outside of this file into a header?
static uint16_t Convert32To16Float(float val)
{
uint32_t sign, exp, mant;
uint32_t roundBits;
// Extract the sign, exponent, and mantissa
uint32_t uf = *(uint32_t*)&val;
sign = (uf & 0x80000000) >> 31;
exp = (uf & 0x7F800000) >> 23;
mant = uf & 0x007FFFFF;
// Check for out of range
if (std::isnan(val))
{
exp = 0x1F;
mant = 0x200;
sign = 1; // set the sign bit for NANs
}
else if (std::isinf(val))
{
exp = 0x1f;
mant = 0x0;
}
else if (exp > (0x70 + 0x1E)) // Too big to represent -> max representable value
{
exp = 0x1E;
mant = 0x3FF;
}
else if ((exp <= 0x70) && (exp >= 0x66)) // It's a denorm
{
mant |= 0x00800000;
for (; exp <= 0x70; mant >>= 1, exp++)
;
exp = 0;
mant = mant >> 13;
}
else if (exp < 0x66) // Too small to represent -> Zero
{
exp = 0;
mant = 0;
}
else
{
// Saves bits that will be shifted off for rounding
roundBits = mant & 0x1FFFu;
// convert exponent and mantissa to 16 bit format
exp = exp - 0x70;
mant = mant >> 13;
// Essentially RTZ, but round up if off by only 1 lsb
if (roundBits == 0x1FFFu)
{
mant++;
// check for overflow
if ((mant & 0xC00u) != 0)
exp++;
// make sure only the needed bits are used
mant &= 0x3FF;
}
}
uint32_t tmpVal = (sign << 15) | (exp << 10) | mant;
return (uint16_t)tmpVal;
}
//////////////////////////////////////////////////////////////////////////
/// @brief Convert an IEEE 754 16-bit float to an 32-bit single precision
/// float
/// @param val - 16-bit float
/// @todo Maybe move this outside of this file into a header?
static float ConvertSmallFloatTo32(UINT val)
{
UINT result;
if ((val & 0x7fff) == 0)
{
result = ((uint32_t)(val & 0x8000)) << 16;
}
else if ((val & 0x7c00) == 0x7c00)
{
result = ((val & 0x3ff) == 0) ? 0x7f800000 : 0x7fc00000;
result |= ((uint32_t)val & 0x8000) << 16;
}
else
{
uint32_t sign = (val & 0x8000) << 16;
uint32_t mant = (val & 0x3ff) << 13;
uint32_t exp = (val >> 10) & 0x1f;
if ((exp == 0) && (mant != 0)) // Adjust exponent and mantissa for denormals
{
mant <<= 1;
while (mant < (0x400 << 13))
{
exp--;
mant <<= 1;
}
mant &= (0x3ff << 13);
}
exp = ((exp - 15 + 127) & 0xff) << 23;
result = sign | exp | mant;
}
return *(float*)&result;
}
Constant *Builder::C(bool i)
{
return ConstantInt::get(IRB()->getInt1Ty(), (i ? 1 : 0));
}
Constant *Builder::C(char i)
{
return ConstantInt::get(IRB()->getInt8Ty(), i);
}
Constant *Builder::C(uint8_t i)
{
return ConstantInt::get(IRB()->getInt8Ty(), i);
}
Constant *Builder::C(int i)
{
return ConstantInt::get(IRB()->getInt32Ty(), i);
}
Constant *Builder::C(int64_t i)
{
return ConstantInt::get(IRB()->getInt64Ty(), i);
}
Constant *Builder::C(uint16_t i)
{
return ConstantInt::get(mInt16Ty,i);
}
Constant *Builder::C(uint32_t i)
{
return ConstantInt::get(IRB()->getInt32Ty(), i);
}
Constant *Builder::C(float i)
{
return ConstantFP::get(IRB()->getFloatTy(), i);
}
Constant *Builder::PRED(bool pred)
{
return ConstantInt::get(IRB()->getInt1Ty(), (pred ? 1 : 0));
}
Value *Builder::VIMMED1(int i)
{
return ConstantVector::getSplat(mVWidth, cast<ConstantInt>(C(i)));
}
Value *Builder::VIMMED1(uint32_t i)
{
return ConstantVector::getSplat(mVWidth, cast<ConstantInt>(C(i)));
}
Value *Builder::VIMMED1(float i)
{
return ConstantVector::getSplat(mVWidth, cast<ConstantFP>(C(i)));
}
Value *Builder::VIMMED1(bool i)
{
return ConstantVector::getSplat(mVWidth, cast<ConstantInt>(C(i)));
}
Value *Builder::VUNDEF_IPTR()
{
return UndefValue::get(VectorType::get(mInt32PtrTy,mVWidth));
}
Value *Builder::VUNDEF_I()
{
return UndefValue::get(VectorType::get(mInt32Ty, mVWidth));
}
Value *Builder::VUNDEF(Type *ty, uint32_t size)
{
return UndefValue::get(VectorType::get(ty, size));
}
Value *Builder::VUNDEF_F()
{
return UndefValue::get(VectorType::get(mFP32Ty, mVWidth));
}
Value *Builder::VUNDEF(Type* t)
{
return UndefValue::get(VectorType::get(t, mVWidth));
}
Value *Builder::VBROADCAST(Value *src)
{
// check if src is already a vector
if (src->getType()->isVectorTy())
{
return src;
}
return VECTOR_SPLAT(mVWidth, src);
}
uint32_t Builder::IMMED(Value* v)
{
SWR_ASSERT(isa<ConstantInt>(v));
ConstantInt *pValConst = cast<ConstantInt>(v);
return pValConst->getZExtValue();
}
int32_t Builder::S_IMMED(Value* v)
{
SWR_ASSERT(isa<ConstantInt>(v));
ConstantInt *pValConst = cast<ConstantInt>(v);
return pValConst->getSExtValue();
}
Value *Builder::GEP(Value* ptr, const std::initializer_list<Value*> &indexList)
{
std::vector<Value*> indices;
for (auto i : indexList)
indices.push_back(i);
return GEPA(ptr, indices);
}
Value *Builder::GEP(Value* ptr, const std::initializer_list<uint32_t> &indexList)
{
std::vector<Value*> indices;
for (auto i : indexList)
indices.push_back(C(i));
return GEPA(ptr, indices);
}
LoadInst *Builder::LOAD(Value *basePtr, const std::initializer_list<uint32_t> &indices, const llvm::Twine& name)
{
std::vector<Value*> valIndices;
for (auto i : indices)
valIndices.push_back(C(i));
return LOAD(GEPA(basePtr, valIndices), name);
}
LoadInst *Builder::LOADV(Value *basePtr, const std::initializer_list<Value*> &indices, const llvm::Twine& name)
{
std::vector<Value*> valIndices;
for (auto i : indices)
valIndices.push_back(i);
return LOAD(GEPA(basePtr, valIndices), name);
}
StoreInst *Builder::STORE(Value *val, Value *basePtr, const std::initializer_list<uint32_t> &indices)
{
std::vector<Value*> valIndices;
for (auto i : indices)
valIndices.push_back(C(i));
return STORE(val, GEPA(basePtr, valIndices));
}
StoreInst *Builder::STOREV(Value *val, Value *basePtr, const std::initializer_list<Value*> &indices)
{
std::vector<Value*> valIndices;
for (auto i : indices)
valIndices.push_back(i);
return STORE(val, GEPA(basePtr, valIndices));
}
CallInst *Builder::CALL(Value *Callee, const std::initializer_list<Value*> &argsList)
{
std::vector<Value*> args;
for (auto arg : argsList)
args.push_back(arg);
return CALLA(Callee, args);
}
CallInst *Builder::CALL(Value *Callee, Value* arg)
{
std::vector<Value*> args;
args.push_back(arg);
return CALLA(Callee, args);
}
CallInst *Builder::CALL2(Value *Callee, Value* arg1, Value* arg2)
{
std::vector<Value*> args;
args.push_back(arg1);
args.push_back(arg2);
return CALLA(Callee, args);
}
CallInst *Builder::CALL3(Value *Callee, Value* arg1, Value* arg2, Value* arg3)
{
std::vector<Value*> args;
args.push_back(arg1);
args.push_back(arg2);
args.push_back(arg3);
return CALLA(Callee, args);
}
//////////////////////////////////////////////////////////////////////////
Value *Builder::DEBUGTRAP()
{
Function *func = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::debugtrap);
return CALL(func);
}
Value *Builder::VRCP(Value *va)
{
return FDIV(VIMMED1(1.0f), va); // 1 / a
}
Value *Builder::VPLANEPS(Value* vA, Value* vB, Value* vC, Value* &vX, Value* &vY)
{
Value* vOut = FMADDPS(vA, vX, vC);
vOut = FMADDPS(vB, vY, vOut);
return vOut;
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate an i32 masked load operation in LLVM IR. If not
/// supported on the underlying platform, emulate it with float masked load
/// @param src - base address pointer for the load
/// @param vMask - SIMD wide mask that controls whether to access memory load 0
Value *Builder::MASKLOADD(Value* src,Value* mask)
{
Value* vResult;
// use avx2 gather instruction is available
if(JM()->mArch.AVX2())
{
Function *func = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::x86_avx2_maskload_d_256);
vResult = CALL(func,{src,mask});
}
else
{
// maskload intrinsic expects integer mask operand in llvm >= 3.8
#if (LLVM_VERSION_MAJOR > 3) || (LLVM_VERSION_MAJOR == 3 && LLVM_VERSION_MINOR >= 8)
mask = BITCAST(mask,VectorType::get(mInt32Ty,mVWidth));
#else
mask = BITCAST(mask,VectorType::get(mFP32Ty,mVWidth));
#endif
Function *func = Intrinsic::getDeclaration(JM()->mpCurrentModule,Intrinsic::x86_avx_maskload_ps_256);
vResult = BITCAST(CALL(func,{src,mask}), VectorType::get(mInt32Ty,mVWidth));
}
return vResult;
}
//////////////////////////////////////////////////////////////////////////
/// @brief insert a JIT call to CallPrint
/// - outputs formatted string to both stdout and VS output window
/// - DEBUG builds only
/// Usage example:
/// PRINT("index %d = 0x%p\n",{C(lane), pIndex});
/// where C(lane) creates a constant value to print, and pIndex is the Value*
/// result from a GEP, printing out the pointer to memory
/// @param printStr - constant string to print, which includes format specifiers
/// @param printArgs - initializer list of Value*'s to print to std out
CallInst *Builder::PRINT(const std::string &printStr,const std::initializer_list<Value*> &printArgs)
{
// push the arguments to CallPrint into a vector
std::vector<Value*> printCallArgs;
// save room for the format string. we still need to modify it for vectors
printCallArgs.resize(1);
// search through the format string for special processing
size_t pos = 0;
std::string tempStr(printStr);
pos = tempStr.find('%', pos);
auto v = printArgs.begin();
while ((pos != std::string::npos) && (v != printArgs.end()))
{
Value* pArg = *v;
Type* pType = pArg->getType();
if (pType->isVectorTy())
{
Type* pContainedType = pType->getContainedType(0);
if (toupper(tempStr[pos + 1]) == 'X')
{
tempStr[pos] = '0';
tempStr[pos + 1] = 'x';
tempStr.insert(pos + 2, "%08X ");
pos += 7;
printCallArgs.push_back(VEXTRACT(pArg, C(0)));
std::string vectorFormatStr;
for (uint32_t i = 1; i < pType->getVectorNumElements(); ++i)
{
vectorFormatStr += "0x%08X ";
printCallArgs.push_back(VEXTRACT(pArg, C(i)));
}
tempStr.insert(pos, vectorFormatStr);
pos += vectorFormatStr.size();
}
else if ((tempStr[pos + 1] == 'f') && (pContainedType->isFloatTy()))
{
uint32_t i = 0;
for (; i < (pArg->getType()->getVectorNumElements()) - 1; i++)
{
tempStr.insert(pos, std::string("%f "));
pos += 3;
printCallArgs.push_back(FP_EXT(VEXTRACT(pArg, C(i)), Type::getDoubleTy(JM()->mContext)));
}
printCallArgs.push_back(FP_EXT(VEXTRACT(pArg, C(i)), Type::getDoubleTy(JM()->mContext)));
}
else if ((tempStr[pos + 1] == 'd') && (pContainedType->isIntegerTy()))
{
uint32_t i = 0;
for (; i < (pArg->getType()->getVectorNumElements()) - 1; i++)
{
tempStr.insert(pos, std::string("%d "));
pos += 3;
printCallArgs.push_back(VEXTRACT(pArg, C(i)));
}
printCallArgs.push_back(VEXTRACT(pArg, C(i)));
}
}
else
{
if (toupper(tempStr[pos + 1]) == 'X')
{
tempStr[pos] = '0';
tempStr.insert(pos + 1, "x%08");
printCallArgs.push_back(pArg);
pos += 3;
}
// for %f we need to cast float Values to doubles so that they print out correctly
else if ((tempStr[pos + 1] == 'f') && (pType->isFloatTy()))
{
printCallArgs.push_back(FP_EXT(pArg, Type::getDoubleTy(JM()->mContext)));
pos++;
}
else
{
printCallArgs.push_back(pArg);
}
}
// advance to the next arguement
v++;
pos = tempStr.find('%', ++pos);
}
// create global variable constant string
Constant *constString = ConstantDataArray::getString(JM()->mContext,tempStr,true);
GlobalVariable *gvPtr = new GlobalVariable(constString->getType(),true,GlobalValue::InternalLinkage,constString,"printStr");
JM()->mpCurrentModule->getGlobalList().push_back(gvPtr);
// get a pointer to the first character in the constant string array
std::vector<Constant*> geplist{C(0),C(0)};
Constant *strGEP = ConstantExpr::getGetElementPtr(nullptr, gvPtr,geplist,false);
// insert the pointer to the format string in the argument vector
printCallArgs[0] = strGEP;
// get pointer to CallPrint function and insert decl into the module if needed
std::vector<Type*> args;
args.push_back(PointerType::get(mInt8Ty,0));
FunctionType* callPrintTy = FunctionType::get(Type::getVoidTy(JM()->mContext),args,true);
Function *callPrintFn = cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("CallPrint", callPrintTy));
// if we haven't yet added the symbol to the symbol table
if((sys::DynamicLibrary::SearchForAddressOfSymbol("CallPrint")) == nullptr)
{
sys::DynamicLibrary::AddSymbol("CallPrint", (void *)&CallPrint);
}
// insert a call to CallPrint
return CALLA(callPrintFn,printCallArgs);
}
//////////////////////////////////////////////////////////////////////////
/// @brief Wrapper around PRINT with initializer list.
CallInst* Builder::PRINT(const std::string &printStr)
{
return PRINT(printStr, {});
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate a masked gather operation in LLVM IR. If not
/// supported on the underlying platform, emulate it with loads
/// @param vSrc - SIMD wide value that will be loaded if mask is invalid
/// @param pBase - Int8* base VB address pointer value
/// @param vIndices - SIMD wide value of VB byte offsets
/// @param vMask - SIMD wide mask that controls whether to access memory or the src values
/// @param scale - value to scale indices by
Value *Builder::GATHERPS(Value* vSrc, Value* pBase, Value* vIndices, Value* vMask, Value* scale)
{
Value* vGather;
// use avx2 gather instruction if available
if(JM()->mArch.AVX2())
{
// force mask to <N x float>, required by vgather
vMask = BITCAST(vMask, mSimdFP32Ty);
vGather = VGATHERPS(vSrc,pBase,vIndices,vMask,scale);
}
else
{
Value* pStack = STACKSAVE();
// store vSrc on the stack. this way we can select between a valid load address and the vSrc address
Value* vSrcPtr = ALLOCA(vSrc->getType());
STORE(vSrc, vSrcPtr);
vGather = VUNDEF_F();
Value *vScaleVec = VBROADCAST(Z_EXT(scale,mInt32Ty));
Value *vOffsets = MUL(vIndices,vScaleVec);
Value *mask = MASK(vMask);
for(uint32_t i = 0; i < mVWidth; ++i)
{
// single component byte index
Value *offset = VEXTRACT(vOffsets,C(i));
// byte pointer to component
Value *loadAddress = GEP(pBase,offset);
loadAddress = BITCAST(loadAddress,PointerType::get(mFP32Ty,0));
// pointer to the value to load if we're masking off a component
Value *maskLoadAddress = GEP(vSrcPtr,{C(0), C(i)});
Value *selMask = VEXTRACT(mask,C(i));
// switch in a safe address to load if we're trying to access a vertex
Value *validAddress = SELECT(selMask, loadAddress, maskLoadAddress);
Value *val = LOAD(validAddress);
vGather = VINSERT(vGather,val,C(i));
}
STACKRESTORE(pStack);
}
return vGather;
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate a masked gather operation in LLVM IR. If not
/// supported on the underlying platform, emulate it with loads
/// @param vSrc - SIMD wide value that will be loaded if mask is invalid
/// @param pBase - Int8* base VB address pointer value
/// @param vIndices - SIMD wide value of VB byte offsets
/// @param vMask - SIMD wide mask that controls whether to access memory or the src values
/// @param scale - value to scale indices by
Value *Builder::GATHERDD(Value* vSrc, Value* pBase, Value* vIndices, Value* vMask, Value* scale)
{
Value* vGather;
// use avx2 gather instruction if available
if(JM()->mArch.AVX2())
{
vGather = VGATHERDD(vSrc, pBase, vIndices, vMask, scale);
}
else
{
Value* pStack = STACKSAVE();
// store vSrc on the stack. this way we can select between a valid load address and the vSrc address
Value* vSrcPtr = ALLOCA(vSrc->getType());
STORE(vSrc, vSrcPtr);
vGather = VUNDEF_I();
Value *vScaleVec = VBROADCAST(Z_EXT(scale, mInt32Ty));
Value *vOffsets = MUL(vIndices, vScaleVec);
Value *mask = MASK(vMask);
for(uint32_t i = 0; i < mVWidth; ++i)
{
// single component byte index
Value *offset = VEXTRACT(vOffsets, C(i));
// byte pointer to component
Value *loadAddress = GEP(pBase, offset);
loadAddress = BITCAST(loadAddress, PointerType::get(mInt32Ty, 0));
// pointer to the value to load if we're masking off a component
Value *maskLoadAddress = GEP(vSrcPtr, {C(0), C(i)});
Value *selMask = VEXTRACT(mask, C(i));
// switch in a safe address to load if we're trying to access a vertex
Value *validAddress = SELECT(selMask, loadAddress, maskLoadAddress);
Value *val = LOAD(validAddress, C(0));
vGather = VINSERT(vGather, val, C(i));
}
STACKRESTORE(pStack);
}
return vGather;
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate a masked gather operation in LLVM IR. If not
/// supported on the underlying platform, emulate it with loads
/// @param vSrc - SIMD wide value that will be loaded if mask is invalid
/// @param pBase - Int8* base VB address pointer value
/// @param vIndices - SIMD wide value of VB byte offsets
/// @param vMask - SIMD wide mask that controls whether to access memory or the src values
/// @param scale - value to scale indices by
Value *Builder::GATHERPD(Value* vSrc, Value* pBase, Value* vIndices, Value* vMask, Value* scale)
{
Value* vGather;
// use avx2 gather instruction if available
if(JM()->mArch.AVX2())
{
vGather = VGATHERPD(vSrc, pBase, vIndices, vMask, scale);
}
else
{
Value* pStack = STACKSAVE();
// store vSrc on the stack. this way we can select between a valid load address and the vSrc address
Value* vSrcPtr = ALLOCA(vSrc->getType());
STORE(vSrc, vSrcPtr);
vGather = UndefValue::get(VectorType::get(mDoubleTy, 4));
Value *vScaleVec = VECTOR_SPLAT(4, Z_EXT(scale,mInt32Ty));
Value *vOffsets = MUL(vIndices,vScaleVec);
Value *mask = MASK(vMask);
for(uint32_t i = 0; i < mVWidth/2; ++i)
{
// single component byte index
Value *offset = VEXTRACT(vOffsets,C(i));
// byte pointer to component
Value *loadAddress = GEP(pBase,offset);
loadAddress = BITCAST(loadAddress,PointerType::get(mDoubleTy,0));
// pointer to the value to load if we're masking off a component
Value *maskLoadAddress = GEP(vSrcPtr,{C(0), C(i)});
Value *selMask = VEXTRACT(mask,C(i));
// switch in a safe address to load if we're trying to access a vertex
Value *validAddress = SELECT(selMask, loadAddress, maskLoadAddress);
Value *val = LOAD(validAddress);
vGather = VINSERT(vGather,val,C(i));
}
STACKRESTORE(pStack);
}
return vGather;
}
//////////////////////////////////////////////////////////////////////////
/// @brief convert x86 <N x float> mask to llvm <N x i1> mask
Value* Builder::MASK(Value* vmask)
{
Value* src = BITCAST(vmask, mSimdInt32Ty);
return ICMP_SLT(src, VIMMED1(0));
}
//////////////////////////////////////////////////////////////////////////
/// @brief convert llvm <N x i1> mask to x86 <N x i32> mask
Value* Builder::VMASK(Value* mask)
{
return S_EXT(mask, mSimdInt32Ty);
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate a VPSHUFB operation in LLVM IR. If not
/// supported on the underlying platform, emulate it
/// @param a - 256bit SIMD(32x8bit) of 8bit integer values
/// @param b - 256bit SIMD(32x8bit) of 8bit integer mask values
/// Byte masks in lower 128 lane of b selects 8 bit values from lower
/// 128bits of a, and vice versa for the upper lanes. If the mask
/// value is negative, '0' is inserted.
Value *Builder::PSHUFB(Value* a, Value* b)
{
Value* res;
// use avx2 pshufb instruction if available
if(JM()->mArch.AVX2())
{
res = VPSHUFB(a, b);
}
else
{
Constant* cB = dyn_cast<Constant>(b);
// number of 8 bit elements in b
uint32_t numElms = cast<VectorType>(cB->getType())->getNumElements();
// output vector
Value* vShuf = UndefValue::get(VectorType::get(mInt8Ty, numElms));
// insert an 8 bit value from the high and low lanes of a per loop iteration
numElms /= 2;
for(uint32_t i = 0; i < numElms; i++)
{
ConstantInt* cLow128b = cast<ConstantInt>(cB->getAggregateElement(i));
ConstantInt* cHigh128b = cast<ConstantInt>(cB->getAggregateElement(i + numElms));
// extract values from constant mask
char valLow128bLane = (char)(cLow128b->getSExtValue());
char valHigh128bLane = (char)(cHigh128b->getSExtValue());
Value* insertValLow128b;
Value* insertValHigh128b;
// if the mask value is negative, insert a '0' in the respective output position
// otherwise, lookup the value at mask position (bits 3..0 of the respective mask byte) in a and insert in output vector
insertValLow128b = (valLow128bLane < 0) ? C((char)0) : VEXTRACT(a, C((valLow128bLane & 0xF)));
insertValHigh128b = (valHigh128bLane < 0) ? C((char)0) : VEXTRACT(a, C((valHigh128bLane & 0xF) + numElms));
vShuf = VINSERT(vShuf, insertValLow128b, i);
vShuf = VINSERT(vShuf, insertValHigh128b, (i + numElms));
}
res = vShuf;
}
return res;
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate a VPSHUFB operation (sign extend 8 8bit values to 32
/// bits)in LLVM IR. If not supported on the underlying platform, emulate it
/// @param a - 128bit SIMD lane(16x8bit) of 8bit integer values. Only
/// lower 8 values are used.
Value *Builder::PMOVSXBD(Value* a)
{
// llvm-3.9 removed the pmovsxbd intrinsic
#if HAVE_LLVM < 0x309
// use avx2 byte sign extend instruction if available
if(JM()->mArch.AVX2())
{
Function *pmovsxbd = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::x86_avx2_pmovsxbd);
return CALL(pmovsxbd, std::initializer_list<Value*>{a});
}
else
#endif
{
// VPMOVSXBD output type
Type* v8x32Ty = VectorType::get(mInt32Ty, 8);
// Extract 8 values from 128bit lane and sign extend
return S_EXT(VSHUFFLE(a, a, C<int>({0, 1, 2, 3, 4, 5, 6, 7})), v8x32Ty);
}
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate a VPSHUFB operation (sign extend 8 16bit values to 32
/// bits)in LLVM IR. If not supported on the underlying platform, emulate it
/// @param a - 128bit SIMD lane(8x16bit) of 16bit integer values.
Value *Builder::PMOVSXWD(Value* a)
{
// llvm-3.9 removed the pmovsxwd intrinsic
#if HAVE_LLVM < 0x309
// use avx2 word sign extend if available
if(JM()->mArch.AVX2())
{
Function *pmovsxwd = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::x86_avx2_pmovsxwd);
return CALL(pmovsxwd, std::initializer_list<Value*>{a});
}
else
#endif
{
// VPMOVSXWD output type
Type* v8x32Ty = VectorType::get(mInt32Ty, 8);
// Extract 8 values from 128bit lane and sign extend
return S_EXT(VSHUFFLE(a, a, C<int>({0, 1, 2, 3, 4, 5, 6, 7})), v8x32Ty);
}
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate a VPERMD operation (shuffle 32 bit integer values
/// across 128 bit lanes) in LLVM IR. If not supported on the underlying
/// platform, emulate it
/// @param a - 256bit SIMD lane(8x32bit) of integer values.
/// @param idx - 256bit SIMD lane(8x32bit) of 3 bit lane index values
Value *Builder::PERMD(Value* a, Value* idx)
{
Value* res;
// use avx2 permute instruction if available
if(JM()->mArch.AVX2())
{
res = VPERMD(a, idx);
}
else
{
if (isa<Constant>(idx))
{
res = VSHUFFLE(a, a, idx);
}
else
{
res = VUNDEF_I();
for (uint32_t l = 0; l < JM()->mVWidth; ++l)
{
Value* pIndex = VEXTRACT(idx, C(l));
Value* pVal = VEXTRACT(a, pIndex);
res = VINSERT(res, pVal, C(l));
}
}
}
return res;
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate a VPERMPS operation (shuffle 32 bit float values
/// across 128 bit lanes) in LLVM IR. If not supported on the underlying
/// platform, emulate it
/// @param a - 256bit SIMD lane(8x32bit) of float values.
/// @param idx - 256bit SIMD lane(8x32bit) of 3 bit lane index values
Value *Builder::PERMPS(Value* a, Value* idx)
{
Value* res;
// use avx2 permute instruction if available
if (JM()->mArch.AVX2())
{
// llvm 3.6.0 swapped the order of the args to vpermd
res = VPERMPS(idx, a);
}
else
{
if (isa<Constant>(idx))
{
res = VSHUFFLE(a, a, idx);
}
else
{
res = VUNDEF_F();
for (uint32_t l = 0; l < JM()->mVWidth; ++l)
{
Value* pIndex = VEXTRACT(idx, C(l));
Value* pVal = VEXTRACT(a, pIndex);
res = VINSERT(res, pVal, C(l));
}
}
}
return res;
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate a VCVTPH2PS operation (float16->float32 conversion)
/// in LLVM IR. If not supported on the underlying platform, emulate it
/// @param a - 128bit SIMD lane(8x16bit) of float16 in int16 format.
Value *Builder::CVTPH2PS(Value* a)
{
if (JM()->mArch.F16C())
{
return VCVTPH2PS(a);
}
else
{
FunctionType* pFuncTy = FunctionType::get(mFP32Ty, mInt16Ty);
Function* pCvtPh2Ps = cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("ConvertSmallFloatTo32", pFuncTy));
if (sys::DynamicLibrary::SearchForAddressOfSymbol("ConvertSmallFloatTo32") == nullptr)
{
sys::DynamicLibrary::AddSymbol("ConvertSmallFloatTo32", (void *)&ConvertSmallFloatTo32);
}
Value* pResult = UndefValue::get(mSimdFP32Ty);
for (uint32_t i = 0; i < mVWidth; ++i)
{
Value* pSrc = VEXTRACT(a, C(i));
Value* pConv = CALL(pCvtPh2Ps, std::initializer_list<Value*>{pSrc});
pResult = VINSERT(pResult, pConv, C(i));
}
return pResult;
}
}
//////////////////////////////////////////////////////////////////////////
/// @brief Generate a VCVTPS2PH operation (float32->float16 conversion)
/// in LLVM IR. If not supported on the underlying platform, emulate it
/// @param a - 128bit SIMD lane(8x16bit) of float16 in int16 format.
Value *Builder::CVTPS2PH(Value* a, Value* rounding)
{
if (JM()->mArch.F16C())
{
return VCVTPS2PH(a, rounding);
}
else
{
// call scalar C function for now
FunctionType* pFuncTy = FunctionType::get(mInt16Ty, mFP32Ty);
Function* pCvtPs2Ph = cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("Convert32To16Float", pFuncTy));
if (sys::DynamicLibrary::SearchForAddressOfSymbol("Convert32To16Float") == nullptr)
{
sys::DynamicLibrary::AddSymbol("Convert32To16Float", (void *)&Convert32To16Float);
}
Value* pResult = UndefValue::get(mSimdInt16Ty);
for (uint32_t i = 0; i < mVWidth; ++i)
{
Value* pSrc = VEXTRACT(a, C(i));
Value* pConv = CALL(pCvtPs2Ph, std::initializer_list<Value*>{pSrc});
pResult = VINSERT(pResult, pConv, C(i));
}
return pResult;
}
}
Value *Builder::PMAXSD(Value* a, Value* b)
{
// llvm-3.9 removed the pmax intrinsics
#if HAVE_LLVM >= 0x309
Value* cmp = ICMP_SGT(a, b);
return SELECT(cmp, a, b);
#else
if (JM()->mArch.AVX2())
{
Function* pmaxsd = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::x86_avx2_pmaxs_d);
return CALL(pmaxsd, {a, b});
}
else
{
// use 4-wide sse max intrinsic on lower/upper halves of 8-wide sources
Function* pmaxsd = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::x86_sse41_pmaxsd);
// low 128
Value* aLo = VEXTRACTI128(a, C((uint8_t)0));
Value* bLo = VEXTRACTI128(b, C((uint8_t)0));
Value* resLo = CALL(pmaxsd, {aLo, bLo});
// high 128
Value* aHi = VEXTRACTI128(a, C((uint8_t)1));
Value* bHi = VEXTRACTI128(b, C((uint8_t)1));
Value* resHi = CALL(pmaxsd, {aHi, bHi});
// combine
Value* result = VINSERTI128(VUNDEF_I(), resLo, C((uint8_t)0));
result = VINSERTI128(result, resHi, C((uint8_t)1));
return result;
}
#endif
}
Value *Builder::PMINSD(Value* a, Value* b)
{
// llvm-3.9 removed the pmin intrinsics
#if HAVE_LLVM >= 0x309
Value* cmp = ICMP_SLT(a, b);
return SELECT(cmp, a, b);
#else
if (JM()->mArch.AVX2())
{
Function* pminsd = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::x86_avx2_pmins_d);
return CALL(pminsd, {a, b});
}
else
{
// use 4-wide sse max intrinsic on lower/upper halves of 8-wide sources
Function* pminsd = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::x86_sse41_pminsd);
// low 128
Value* aLo = VEXTRACTI128(a, C((uint8_t)0));
Value* bLo = VEXTRACTI128(b, C((uint8_t)0));
Value* resLo = CALL(pminsd, {aLo, bLo});
// high 128
Value* aHi = VEXTRACTI128(a, C((uint8_t)1));
Value* bHi = VEXTRACTI128(b, C((uint8_t)1));
Value* resHi = CALL(pminsd, {aHi, bHi});
// combine
Value* result = VINSERTI128(VUNDEF_I(), resLo, C((uint8_t)0));
result = VINSERTI128(result, resHi, C((uint8_t)1));
return result;
}
#endif
}
void Builder::Gather4(const SWR_FORMAT format, Value* pSrcBase, Value* byteOffsets,
Value* mask, Value* vGatherComponents[], bool bPackedOutput)
{
const SWR_FORMAT_INFO &info = GetFormatInfo(format);
if(info.type[0] == SWR_TYPE_FLOAT && info.bpc[0] == 32)
{
// ensure our mask is the correct type
mask = BITCAST(mask, mSimdFP32Ty);
GATHER4PS(info, pSrcBase, byteOffsets, mask, vGatherComponents, bPackedOutput);
}
else
{
// ensure our mask is the correct type
mask = BITCAST(mask, mSimdInt32Ty);
GATHER4DD(info, pSrcBase, byteOffsets, mask, vGatherComponents, bPackedOutput);
}
}
void Builder::GATHER4PS(const SWR_FORMAT_INFO &info, Value* pSrcBase, Value* byteOffsets,
Value* mask, Value* vGatherComponents[], bool bPackedOutput)
{
switch(info.bpp / info.numComps)
{
case 16:
{
Value* vGatherResult[2];
Value *vMask;
// TODO: vGatherMaskedVal
Value* vGatherMaskedVal = VIMMED1((float)0);
// always have at least one component out of x or y to fetch
// save mask as it is zero'd out after each gather
vMask = mask;
vGatherResult[0] = GATHERPS(vGatherMaskedVal, pSrcBase, byteOffsets, vMask, C((char)1));
// e.g. result of first 8x32bit integer gather for 16bit components
// 256i - 0 1 2 3 4 5 6 7
// xyxy xyxy xyxy xyxy xyxy xyxy xyxy xyxy
//
// if we have at least one component out of x or y to fetch
if(info.numComps > 2)
{
// offset base to the next components(zw) in the vertex to gather
pSrcBase = GEP(pSrcBase, C((char)4));
vMask = mask;
vGatherResult[1] = GATHERPS(vGatherMaskedVal, pSrcBase, byteOffsets, vMask, C((char)1));
// e.g. result of second 8x32bit integer gather for 16bit components
// 256i - 0 1 2 3 4 5 6 7
// zwzw zwzw zwzw zwzw zwzw zwzw zwzw zwzw
//
}
else
{
vGatherResult[1] = vGatherMaskedVal;
}
// Shuffle gathered components into place, each row is a component
Shuffle16bpcGather4(info, vGatherResult, vGatherComponents, bPackedOutput);
}
break;
case 32:
{
// apply defaults
for (uint32_t i = 0; i < 4; ++i)
{
vGatherComponents[i] = VIMMED1(*(float*)&info.defaults[i]);
}
for(uint32_t i = 0; i < info.numComps; i++)
{
uint32_t swizzleIndex = info.swizzle[i];
// save mask as it is zero'd out after each gather
Value *vMask = mask;
// Gather a SIMD of components
vGatherComponents[swizzleIndex] = GATHERPS(vGatherComponents[swizzleIndex], pSrcBase, byteOffsets, vMask, C((char)1));
// offset base to the next component to gather
pSrcBase = GEP(pSrcBase, C((char)4));
}
}
break;
default:
SWR_INVALID("Invalid float format");
break;
}
}
void Builder::GATHER4DD(const SWR_FORMAT_INFO &info, Value* pSrcBase, Value* byteOffsets,
Value* mask, Value* vGatherComponents[], bool bPackedOutput)
{
switch (info.bpp / info.numComps)
{
case 8:
{
Value* vGatherMaskedVal = VIMMED1((int32_t)0);
Value* vGatherResult = GATHERDD(vGatherMaskedVal, pSrcBase, byteOffsets, mask, C((char)1));
// e.g. result of an 8x32bit integer gather for 8bit components
// 256i - 0 1 2 3 4 5 6 7
// xyzw xyzw xyzw xyzw xyzw xyzw xyzw xyzw
Shuffle8bpcGather4(info, vGatherResult, vGatherComponents, bPackedOutput);
}
break;
case 16:
{
Value* vGatherResult[2];
Value *vMask;
// TODO: vGatherMaskedVal
Value* vGatherMaskedVal = VIMMED1((int32_t)0);
// always have at least one component out of x or y to fetch
// save mask as it is zero'd out after each gather
vMask = mask;
vGatherResult[0] = GATHERDD(vGatherMaskedVal, pSrcBase, byteOffsets, vMask, C((char)1));
// e.g. result of first 8x32bit integer gather for 16bit components
// 256i - 0 1 2 3 4 5 6 7
// xyxy xyxy xyxy xyxy xyxy xyxy xyxy xyxy
//
// if we have at least one component out of x or y to fetch
if(info.numComps > 2)
{
// offset base to the next components(zw) in the vertex to gather
pSrcBase = GEP(pSrcBase, C((char)4));
vMask = mask;
vGatherResult[1] = GATHERDD(vGatherMaskedVal, pSrcBase, byteOffsets, vMask, C((char)1));
// e.g. result of second 8x32bit integer gather for 16bit components
// 256i - 0 1 2 3 4 5 6 7
// zwzw zwzw zwzw zwzw zwzw zwzw zwzw zwzw
//
}
else
{
vGatherResult[1] = vGatherMaskedVal;
}
// Shuffle gathered components into place, each row is a component
Shuffle16bpcGather4(info, vGatherResult, vGatherComponents, bPackedOutput);
}
break;
case 32:
{
// apply defaults
for (uint32_t i = 0; i < 4; ++i)
{
vGatherComponents[i] = VIMMED1((int)info.defaults[i]);
}
for(uint32_t i = 0; i < info.numComps; i++)
{
uint32_t swizzleIndex = info.swizzle[i];
// save mask as it is zero'd out after each gather
Value *vMask = mask;
// Gather a SIMD of components
vGatherComponents[swizzleIndex] = GATHERDD(vGatherComponents[swizzleIndex], pSrcBase, byteOffsets, vMask, C((char)1));
// offset base to the next component to gather
pSrcBase = GEP(pSrcBase, C((char)4));
}
}
break;
default:
SWR_INVALID("unsupported format");
break;
}
}
void Builder::Shuffle16bpcGather4(const SWR_FORMAT_INFO &info, Value* vGatherInput[2], Value* vGatherOutput[4], bool bPackedOutput)
{
// cast types
Type* vGatherTy = VectorType::get(IntegerType::getInt32Ty(JM()->mContext), mVWidth);
Type* v32x8Ty = VectorType::get(mInt8Ty, mVWidth * 4); // vwidth is units of 32 bits
// input could either be float or int vector; do shuffle work in int
vGatherInput[0] = BITCAST(vGatherInput[0], mSimdInt32Ty);
vGatherInput[1] = BITCAST(vGatherInput[1], mSimdInt32Ty);
if(bPackedOutput)
{
Type* v128bitTy = VectorType::get(IntegerType::getIntNTy(JM()->mContext, 128), mVWidth / 4); // vwidth is units of 32 bits
// shuffle mask
Value* vConstMask = C<char>({0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15,
0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15});
Value* vShufResult = BITCAST(PSHUFB(BITCAST(vGatherInput[0], v32x8Ty), vConstMask), vGatherTy);
// after pshufb: group components together in each 128bit lane
// 256i - 0 1 2 3 4 5 6 7
// xxxx xxxx yyyy yyyy xxxx xxxx yyyy yyyy
Value* vi128XY = BITCAST(PERMD(vShufResult, C<int32_t>({0, 1, 4, 5, 2, 3, 6, 7})), v128bitTy);
// after PERMD: move and pack xy components into each 128bit lane
// 256i - 0 1 2 3 4 5 6 7
// xxxx xxxx xxxx xxxx yyyy yyyy yyyy yyyy
// do the same for zw components
Value* vi128ZW = nullptr;
if(info.numComps > 2)
{
Value* vShufResult = BITCAST(PSHUFB(BITCAST(vGatherInput[1], v32x8Ty), vConstMask), vGatherTy);
vi128ZW = BITCAST(PERMD(vShufResult, C<int32_t>({0, 1, 4, 5, 2, 3, 6, 7})), v128bitTy);
}
for(uint32_t i = 0; i < 4; i++)
{
uint32_t swizzleIndex = info.swizzle[i];
// todo: fixed for packed
Value* vGatherMaskedVal = VIMMED1((int32_t)(info.defaults[i]));
if(i >= info.numComps)
{
// set the default component val
vGatherOutput[swizzleIndex] = vGatherMaskedVal;
continue;
}
// if x or z, extract 128bits from lane 0, else for y or w, extract from lane 1
uint32_t lane = ((i == 0) || (i == 2)) ? 0 : 1;
// if x or y, use vi128XY permute result, else use vi128ZW
Value* selectedPermute = (i < 2) ? vi128XY : vi128ZW;
// extract packed component 128 bit lanes
vGatherOutput[swizzleIndex] = VEXTRACT(selectedPermute, C(lane));
}
}
else
{
// pshufb masks for each component
Value* vConstMask[2];
// x/z shuffle mask
vConstMask[0] = C<char>({0, 1, -1, -1, 4, 5, -1, -1, 8, 9, -1, -1, 12, 13, -1, -1,
0, 1, -1, -1, 4, 5, -1, -1, 8, 9, -1, -1, 12, 13, -1, -1, });
// y/w shuffle mask
vConstMask[1] = C<char>({2, 3, -1, -1, 6, 7, -1, -1, 10, 11, -1, -1, 14, 15, -1, -1,
2, 3, -1, -1, 6, 7, -1, -1, 10, 11, -1, -1, 14, 15, -1, -1});
// shuffle enabled components into lower word of each 32bit lane, 0 extending to 32 bits
// apply defaults
for (uint32_t i = 0; i < 4; ++i)
{
vGatherOutput[i] = VIMMED1((int32_t)info.defaults[i]);
}
for(uint32_t i = 0; i < info.numComps; i++)
{
uint32_t swizzleIndex = info.swizzle[i];
// select correct constMask for x/z or y/w pshufb
uint32_t selectedMask = ((i == 0) || (i == 2)) ? 0 : 1;
// if x or y, use vi128XY permute result, else use vi128ZW
uint32_t selectedGather = (i < 2) ? 0 : 1;
vGatherOutput[swizzleIndex] = BITCAST(PSHUFB(BITCAST(vGatherInput[selectedGather], v32x8Ty), vConstMask[selectedMask]), vGatherTy);
// after pshufb mask for x channel; z uses the same shuffle from the second gather
// 256i - 0 1 2 3 4 5 6 7
// xx00 xx00 xx00 xx00 xx00 xx00 xx00 xx00
}
}
}
void Builder::Shuffle8bpcGather4(const SWR_FORMAT_INFO &info, Value* vGatherInput, Value* vGatherOutput[], bool bPackedOutput)
{
// cast types
Type* vGatherTy = VectorType::get(IntegerType::getInt32Ty(JM()->mContext), mVWidth);
Type* v32x8Ty = VectorType::get(mInt8Ty, mVWidth * 4 ); // vwidth is units of 32 bits
if(bPackedOutput)
{
Type* v128Ty = VectorType::get(IntegerType::getIntNTy(JM()->mContext, 128), mVWidth / 4); // vwidth is units of 32 bits
// shuffle mask
Value* vConstMask = C<char>({0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15,
0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15});
Value* vShufResult = BITCAST(PSHUFB(BITCAST(vGatherInput, v32x8Ty), vConstMask), vGatherTy);
// after pshufb: group components together in each 128bit lane
// 256i - 0 1 2 3 4 5 6 7
// xxxx yyyy zzzz wwww xxxx yyyy zzzz wwww
Value* vi128XY = BITCAST(PERMD(vShufResult, C<int32_t>({0, 4, 0, 0, 1, 5, 0, 0})), v128Ty);
// after PERMD: move and pack xy and zw components in low 64 bits of each 128bit lane
// 256i - 0 1 2 3 4 5 6 7
// xxxx xxxx dcdc dcdc yyyy yyyy dcdc dcdc (dc - don't care)
// do the same for zw components
Value* vi128ZW = nullptr;
if(info.numComps > 2)
{
vi128ZW = BITCAST(PERMD(vShufResult, C<int32_t>({2, 6, 0, 0, 3, 7, 0, 0})), v128Ty);
}
// sign extend all enabled components. If we have a fill vVertexElements, output to current simdvertex
for(uint32_t i = 0; i < 4; i++)
{
uint32_t swizzleIndex = info.swizzle[i];
// todo: fix for packed
Value* vGatherMaskedVal = VIMMED1((int32_t)(info.defaults[i]));
if(i >= info.numComps)
{
// set the default component val
vGatherOutput[swizzleIndex] = vGatherMaskedVal;
continue;
}
// if x or z, extract 128bits from lane 0, else for y or w, extract from lane 1
uint32_t lane = ((i == 0) || (i == 2)) ? 0 : 1;
// if x or y, use vi128XY permute result, else use vi128ZW
Value* selectedPermute = (i < 2) ? vi128XY : vi128ZW;
// sign extend
vGatherOutput[swizzleIndex] = VEXTRACT(selectedPermute, C(lane));
}
}
// else zero extend
else{
// shuffle enabled components into lower byte of each 32bit lane, 0 extending to 32 bits
// apply defaults
for (uint32_t i = 0; i < 4; ++i)
{
vGatherOutput[i] = VIMMED1((int32_t)info.defaults[i]);
}
for(uint32_t i = 0; i < info.numComps; i++){
uint32_t swizzleIndex = info.swizzle[i];
// pshufb masks for each component
Value* vConstMask;
switch(i)
{
case 0:
// x shuffle mask
vConstMask = C<char>({0, -1, -1, -1, 4, -1, -1, -1, 8, -1, -1, -1, 12, -1, -1, -1,
0, -1, -1, -1, 4, -1, -1, -1, 8, -1, -1, -1, 12, -1, -1, -1});
break;
case 1:
// y shuffle mask
vConstMask = C<char>({1, -1, -1, -1, 5, -1, -1, -1, 9, -1, -1, -1, 13, -1, -1, -1,
1, -1, -1, -1, 5, -1, -1, -1, 9, -1, -1, -1, 13, -1, -1, -1});
break;
case 2:
// z shuffle mask
vConstMask = C<char>({2, -1, -1, -1, 6, -1, -1, -1, 10, -1, -1, -1, 14, -1, -1, -1,
2, -1, -1, -1, 6, -1, -1, -1, 10, -1, -1, -1, 14, -1, -1, -1});
break;
case 3:
// w shuffle mask
vConstMask = C<char>({3, -1, -1, -1, 7, -1, -1, -1, 11, -1, -1, -1, 15, -1, -1, -1,
3, -1, -1, -1, 7, -1, -1, -1, 11, -1, -1, -1, 15, -1, -1, -1});
break;
default:
vConstMask = nullptr;
break;
}
vGatherOutput[swizzleIndex] = BITCAST(PSHUFB(BITCAST(vGatherInput, v32x8Ty), vConstMask), vGatherTy);
// after pshufb for x channel
// 256i - 0 1 2 3 4 5 6 7
// x000 x000 x000 x000 x000 x000 x000 x000
}
}
}
// Helper function to create alloca in entry block of function
Value* Builder::CreateEntryAlloca(Function* pFunc, Type* pType)
{
auto saveIP = IRB()->saveIP();
IRB()->SetInsertPoint(&pFunc->getEntryBlock(),
pFunc->getEntryBlock().begin());
Value* pAlloca = ALLOCA(pType);
IRB()->restoreIP(saveIP);
return pAlloca;
}
//////////////////////////////////////////////////////////////////////////
/// @brief emulates a scatter operation.
/// @param pDst - pointer to destination
/// @param vSrc - vector of src data to scatter
/// @param vOffsets - vector of byte offsets from pDst
/// @param vMask - mask of valid lanes
void Builder::SCATTERPS(Value* pDst, Value* vSrc, Value* vOffsets, Value* vMask)
{
/* Scatter algorithm
while(Index = BitScanForward(mask))
srcElem = srcVector[Index]
offsetElem = offsetVector[Index]
*(pDst + offsetElem) = srcElem
Update mask (&= ~(1<<Index)
*/
BasicBlock* pCurBB = IRB()->GetInsertBlock();
Function* pFunc = pCurBB->getParent();
Type* pSrcTy = vSrc->getType()->getVectorElementType();
// Store vectors on stack
if (pScatterStackSrc == nullptr)
{
// Save off stack allocations and reuse per scatter. Significantly reduces stack
// requirements for shaders with a lot of scatters.
pScatterStackSrc = CreateEntryAlloca(pFunc, mSimdInt64Ty);
pScatterStackOffsets = CreateEntryAlloca(pFunc, mSimdInt32Ty);
}
Value* pSrcArrayPtr = BITCAST(pScatterStackSrc, PointerType::get(vSrc->getType(), 0));
Value* pOffsetsArrayPtr = pScatterStackOffsets;
STORE(vSrc, pSrcArrayPtr);
STORE(vOffsets, pOffsetsArrayPtr);
// Cast to pointers for random access
pSrcArrayPtr = POINTER_CAST(pSrcArrayPtr, PointerType::get(pSrcTy, 0));
pOffsetsArrayPtr = POINTER_CAST(pOffsetsArrayPtr, PointerType::get(mInt32Ty, 0));
Value* pMask = VMOVMSKPS(BITCAST(vMask, mSimdFP32Ty));
// Get cttz function
Function* pfnCttz = Intrinsic::getDeclaration(mpJitMgr->mpCurrentModule, Intrinsic::cttz, { mInt32Ty });
// Setup loop basic block
BasicBlock* pLoop = BasicBlock::Create(mpJitMgr->mContext, "Scatter Loop", pFunc);
// compute first set bit
Value* pIndex = CALL(pfnCttz, { pMask, C(false) });
Value* pIsUndef = ICMP_EQ(pIndex, C(32));
// Split current block
BasicBlock* pPostLoop = pCurBB->splitBasicBlock(cast<Instruction>(pIsUndef)->getNextNode());
// Remove unconditional jump created by splitBasicBlock
pCurBB->getTerminator()->eraseFromParent();
// Add terminator to end of original block
IRB()->SetInsertPoint(pCurBB);
// Add conditional branch
COND_BR(pIsUndef, pPostLoop, pLoop);
// Add loop basic block contents
IRB()->SetInsertPoint(pLoop);
PHINode* pIndexPhi = PHI(mInt32Ty, 2);
PHINode* pMaskPhi = PHI(mInt32Ty, 2);
pIndexPhi->addIncoming(pIndex, pCurBB);
pMaskPhi->addIncoming(pMask, pCurBB);
// Extract elements for this index
Value* pSrcElem = LOADV(pSrcArrayPtr, { pIndexPhi });
Value* pOffsetElem = LOADV(pOffsetsArrayPtr, { pIndexPhi });
// GEP to this offset in dst
Value* pCurDst = GEP(pDst, pOffsetElem);
pCurDst = POINTER_CAST(pCurDst, PointerType::get(pSrcTy, 0));
STORE(pSrcElem, pCurDst);
// Update the mask
Value* pNewMask = AND(pMaskPhi, NOT(SHL(C(1), pIndexPhi)));
// Terminator
Value* pNewIndex = CALL(pfnCttz, { pNewMask, C(false) });
pIsUndef = ICMP_EQ(pNewIndex, C(32));
COND_BR(pIsUndef, pPostLoop, pLoop);
// Update phi edges
pIndexPhi->addIncoming(pNewIndex, pLoop);
pMaskPhi->addIncoming(pNewMask, pLoop);
// Move builder to beginning of post loop
IRB()->SetInsertPoint(pPostLoop, pPostLoop->begin());
}
Value* Builder::VABSPS(Value* a)
{
Value* asInt = BITCAST(a, mSimdInt32Ty);
Value* result = BITCAST(AND(asInt, VIMMED1(0x7fffffff)), mSimdFP32Ty);
return result;
}
Value *Builder::ICLAMP(Value* src, Value* low, Value* high)
{
Value *lowCmp = ICMP_SLT(src, low);
Value *ret = SELECT(lowCmp, low, src);
Value *highCmp = ICMP_SGT(ret, high);
ret = SELECT(highCmp, high, ret);
return ret;
}
Value *Builder::FCLAMP(Value* src, Value* low, Value* high)
{
Value *lowCmp = FCMP_OLT(src, low);
Value *ret = SELECT(lowCmp, low, src);
Value *highCmp = FCMP_OGT(ret, high);
ret = SELECT(highCmp, high, ret);
return ret;
}
Value *Builder::FCLAMP(Value* src, float low, float high)
{
Value* result = VMAXPS(src, VIMMED1(low));
result = VMINPS(result, VIMMED1(high));
return result;
}
//////////////////////////////////////////////////////////////////////////
/// @brief save/restore stack, providing ability to push/pop the stack and
/// reduce overall stack requirements for temporary stack use
Value* Builder::STACKSAVE()
{
Function* pfnStackSave = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::stacksave);
return CALLA(pfnStackSave);
}
void Builder::STACKRESTORE(Value* pSaved)
{
Function* pfnStackRestore = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::stackrestore);
CALL(pfnStackRestore, std::initializer_list<Value*>{pSaved});
}
Value *Builder::FMADDPS(Value* a, Value* b, Value* c)
{
Value* vOut;
// use FMADs if available
if(JM()->mArch.AVX2())
{
vOut = VFMADDPS(a, b, c);
}
else
{
vOut = FADD(FMUL(a, b), c);
}
return vOut;
}
Value* Builder::POPCNT(Value* a)
{
Function* pCtPop = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::ctpop, { a->getType() });
return CALL(pCtPop, std::initializer_list<Value*>{a});
}
//////////////////////////////////////////////////////////////////////////
/// @brief C functions called by LLVM IR
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
/// @brief called in JIT code, inserted by PRINT
/// output to both stdout and visual studio debug console
void __cdecl CallPrint(const char* fmt, ...)
{
va_list args;
va_start(args, fmt);
vprintf(fmt, args);
#if defined( _WIN32 )
char strBuf[1024];
vsnprintf_s(strBuf, _TRUNCATE, fmt, args);
OutputDebugString(strBuf);
#endif
va_end(args);
}
Value *Builder::VEXTRACTI128(Value* a, Constant* imm8)
{
bool flag = !imm8->isZeroValue();
SmallVector<Constant*,8> idx;
for (unsigned i = 0; i < mVWidth / 2; i++) {
idx.push_back(C(flag ? i + mVWidth / 2 : i));
}
return VSHUFFLE(a, VUNDEF_I(), ConstantVector::get(idx));
}
Value *Builder::VINSERTI128(Value* a, Value* b, Constant* imm8)
{
bool flag = !imm8->isZeroValue();
SmallVector<Constant*,8> idx;
for (unsigned i = 0; i < mVWidth; i++) {
idx.push_back(C(i));
}
Value *inter = VSHUFFLE(b, VUNDEF_I(), ConstantVector::get(idx));
SmallVector<Constant*,8> idx2;
for (unsigned i = 0; i < mVWidth / 2; i++) {
idx2.push_back(C(flag ? i : i + mVWidth));
}
for (unsigned i = mVWidth / 2; i < mVWidth; i++) {
idx2.push_back(C(flag ? i + mVWidth / 2 : i));
}
return VSHUFFLE(a, inter, ConstantVector::get(idx2));
}
// rdtsc buckets macros
void Builder::RDTSC_START(Value* pBucketMgr, Value* pId)
{
// @todo due to an issue with thread local storage propagation in llvm, we can only safely call into
// buckets framework when single threaded
if (KNOB_SINGLE_THREADED)
{
std::vector<Type*> args{
PointerType::get(mInt32Ty, 0), // pBucketMgr
mInt32Ty // id
};
FunctionType* pFuncTy = FunctionType::get(Type::getVoidTy(JM()->mContext), args, false);
Function* pFunc = cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("BucketManager_StartBucket", pFuncTy));
if (sys::DynamicLibrary::SearchForAddressOfSymbol("BucketManager_StartBucket") == nullptr)
{
sys::DynamicLibrary::AddSymbol("BucketManager_StartBucket", (void*)&BucketManager_StartBucket);
}
CALL(pFunc, { pBucketMgr, pId });
}
}
void Builder::RDTSC_STOP(Value* pBucketMgr, Value* pId)
{
// @todo due to an issue with thread local storage propagation in llvm, we can only safely call into
// buckets framework when single threaded
if (KNOB_SINGLE_THREADED)
{
std::vector<Type*> args{
PointerType::get(mInt32Ty, 0), // pBucketMgr
mInt32Ty // id
};
FunctionType* pFuncTy = FunctionType::get(Type::getVoidTy(JM()->mContext), args, false);
Function* pFunc = cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("BucketManager_StopBucket", pFuncTy));
if (sys::DynamicLibrary::SearchForAddressOfSymbol("BucketManager_StopBucket") == nullptr)
{
sys::DynamicLibrary::AddSymbol("BucketManager_StopBucket", (void*)&BucketManager_StopBucket);
}
CALL(pFunc, { pBucketMgr, pId });
}
}
}
|