1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
|
/****************************************************************************
* Copyright (C) 2017 Intel Corporation. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
****************************************************************************/
#if !defined(__SIMD_LIB_AVX_HPP__)
#error Do not include this file directly, use "simdlib.hpp" instead.
#endif
//============================================================================
// SIMD16 AVX (1) implementation
//============================================================================
static const int TARGET_SIMD_WIDTH = 8;
using SIMD128T = SIMD128Impl::AVXImpl;
#define SIMD_WRAPPER_1(op) \
static SIMDINLINE Float SIMDCALL op(Float const &a) \
{\
return Float\
{\
SIMD256T::op(a.v8[0]),\
SIMD256T::op(a.v8[1]),\
};\
}
#define SIMD_WRAPPER_2(op) \
static SIMDINLINE Float SIMDCALL op(Float const &a, Float const &b) \
{\
return Float\
{\
SIMD256T::op(a.v8[0], b.v8[0]),\
SIMD256T::op(a.v8[1], b.v8[1]),\
};\
}
#define SIMD_WRAPPER_2I(op) \
template<int ImmT>\
static SIMDINLINE Float SIMDCALL op(Float const &a, Float const &b) \
{\
return Float\
{\
SIMD256T::template op<0xFF & ImmT>(a.v8[0], b.v8[0]),\
SIMD256T::template op<0xFF & (ImmT >> TARGET_SIMD_WIDTH)>(a.v8[1], b.v8[1]),\
};\
}
#define SIMD_WRAPPER_2I_1(op) \
template<int ImmT>\
static SIMDINLINE Float SIMDCALL op(Float const &a, Float const &b) \
{\
return Float\
{\
SIMD256T::template op<ImmT>(a.v8[0], b.v8[0]),\
SIMD256T::template op<ImmT>(a.v8[1], b.v8[1]),\
};\
}
#define SIMD_WRAPPER_3(op) \
static SIMDINLINE Float SIMDCALL op(Float const &a, Float const &b, Float const &c) \
{\
return Float\
{\
SIMD256T::op(a.v8[0], b.v8[0], c.v8[0]),\
SIMD256T::op(a.v8[1], b.v8[1], c.v8[1]),\
};\
}
#define SIMD_IWRAPPER_1(op) \
static SIMDINLINE Integer SIMDCALL op(Integer const &a) \
{\
return Integer\
{\
SIMD256T::op(a.v8[0]),\
SIMD256T::op(a.v8[1]),\
};\
}
#define SIMD_IWRAPPER_2(op) \
static SIMDINLINE Integer SIMDCALL op(Integer const &a, Integer const &b) \
{\
return Integer\
{\
SIMD256T::op(a.v8[0], b.v8[0]),\
SIMD256T::op(a.v8[1], b.v8[1]),\
};\
}
#define SIMD_IWRAPPER_2I(op) \
template<int ImmT>\
static SIMDINLINE Integer SIMDCALL op(Integer const &a, Integer const &b) \
{\
return Integer\
{\
SIMD256T::template op<0xFF & ImmT>(a.v8[0], b.v8[0]),\
SIMD256T::template op<0xFF & (ImmT >> TARGET_SIMD_WIDTH)>(a.v8[1], b.v8[1]),\
};\
}
#define SIMD_IWRAPPER_2I_1(op) \
template<int ImmT>\
static SIMDINLINE Integer SIMDCALL op(Integer const &a, Integer const &b) \
{\
return Integer\
{\
SIMD256T::template op<ImmT>(a.v8[0], b.v8[0]),\
SIMD256T::template op<ImmT>(a.v8[1], b.v8[1]),\
};\
}
#define SIMD_IWRAPPER_2I_2(op) \
template<int ImmT>\
static SIMDINLINE Integer SIMDCALL op(Integer const &a, Integer const &b) \
{\
return Integer\
{\
SIMD256T::template op<0xF & ImmT>(a.v8[0], b.v8[0]),\
SIMD256T::template op<0xF & (ImmT >> 4)>(a.v8[1], b.v8[1]),\
};\
}
#define SIMD_IWRAPPER_3(op) \
static SIMDINLINE Integer SIMDCALL op(Integer const &a, Integer const &b, Integer const &c) \
{\
return Integer\
{\
SIMD256T::op(a.v8[0], b.v8[0], c.v8[0]),\
SIMD256T::op(a.v8[1], b.v8[1], c.v8[1]),\
};\
}
//-----------------------------------------------------------------------
// Single precision floating point arithmetic operations
//-----------------------------------------------------------------------
SIMD_WRAPPER_2(add_ps); // return a + b
SIMD_WRAPPER_2(div_ps); // return a / b
SIMD_WRAPPER_3(fmadd_ps); // return (a * b) + c
SIMD_WRAPPER_3(fmsub_ps); // return (a * b) - c
SIMD_WRAPPER_2(max_ps); // return (a > b) ? a : b
SIMD_WRAPPER_2(min_ps); // return (a < b) ? a : b
SIMD_WRAPPER_2(mul_ps); // return a * b
SIMD_WRAPPER_1(rcp_ps); // return 1.0f / a
SIMD_WRAPPER_1(rsqrt_ps); // return 1.0f / sqrt(a)
SIMD_WRAPPER_2(sub_ps); // return a - b
template <RoundMode RMT>
static SIMDINLINE Float SIMDCALL round_ps(Float const &a)
{
return Float
{
SIMD256T::template round_ps<RMT>(a.v8[0]),
SIMD256T::template round_ps<RMT>(a.v8[1]),
};
}
static SIMDINLINE Float SIMDCALL ceil_ps(Float const &a) { return round_ps<RoundMode::CEIL_NOEXC>(a); }
static SIMDINLINE Float SIMDCALL floor_ps(Float const &a) { return round_ps<RoundMode::FLOOR_NOEXC>(a); }
//-----------------------------------------------------------------------
// Integer (various width) arithmetic operations
//-----------------------------------------------------------------------
SIMD_IWRAPPER_1(abs_epi32); // return absolute_value(a) (int32)
SIMD_IWRAPPER_2(add_epi32); // return a + b (int32)
SIMD_IWRAPPER_2(add_epi8); // return a + b (int8)
SIMD_IWRAPPER_2(adds_epu8); // return ((a + b) > 0xff) ? 0xff : (a + b) (uint8)
SIMD_IWRAPPER_2(max_epi32); // return (a > b) ? a : b (int32)
SIMD_IWRAPPER_2(max_epu32); // return (a > b) ? a : b (uint32)
SIMD_IWRAPPER_2(min_epi32); // return (a < b) ? a : b (int32)
SIMD_IWRAPPER_2(min_epu32); // return (a < b) ? a : b (uint32)
SIMD_IWRAPPER_2(mul_epi32); // return a * b (int32)
// return (a * b) & 0xFFFFFFFF
//
// Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers,
// and store the low 32 bits of the intermediate integers in dst.
SIMD_IWRAPPER_2(mullo_epi32);
SIMD_IWRAPPER_2(sub_epi32); // return a - b (int32)
SIMD_IWRAPPER_2(sub_epi64); // return a - b (int64)
SIMD_IWRAPPER_2(subs_epu8); // return (b > a) ? 0 : (a - b) (uint8)
//-----------------------------------------------------------------------
// Logical operations
//-----------------------------------------------------------------------
SIMD_WRAPPER_2(and_ps); // return a & b (float treated as int)
SIMD_IWRAPPER_2(and_si); // return a & b (int)
SIMD_WRAPPER_2(andnot_ps); // return (~a) & b (float treated as int)
SIMD_IWRAPPER_2(andnot_si); // return (~a) & b (int)
SIMD_WRAPPER_2(or_ps); // return a | b (float treated as int)
SIMD_IWRAPPER_2(or_si); // return a | b (int)
SIMD_WRAPPER_2(xor_ps); // return a ^ b (float treated as int)
SIMD_IWRAPPER_2(xor_si); // return a ^ b (int)
//-----------------------------------------------------------------------
// Shift operations
//-----------------------------------------------------------------------
template<int ImmT>
static SIMDINLINE Integer SIMDCALL slli_epi32(Integer const &a) // return a << ImmT
{
return Integer
{
SIMD256T::template slli_epi32<ImmT>(a.v8[0]),
SIMD256T::template slli_epi32<ImmT>(a.v8[1]),
};
}
SIMD_IWRAPPER_2(sllv_epi32); // return a << b (uint32)
template<int ImmT>
static SIMDINLINE Integer SIMDCALL srai_epi32(Integer const &a) // return a >> ImmT (int32)
{
return Integer
{
SIMD256T::template srai_epi32<ImmT>(a.v8[0]),
SIMD256T::template srai_epi32<ImmT>(a.v8[1]),
};
}
template<int ImmT>
static SIMDINLINE Integer SIMDCALL srli_epi32(Integer const &a) // return a >> ImmT (uint32)
{
return Integer
{
SIMD256T::template srli_epi32<ImmT>(a.v8[0]),
SIMD256T::template srli_epi32<ImmT>(a.v8[1]),
};
}
template<int ImmT> // for each 128-bit lane:
static SIMDINLINE Integer SIMDCALL srli_si(Integer const &a) // return a >> (ImmT*8) (uint)
{
return Integer
{
SIMD256T::template srli_si<ImmT>(a.v8[0]),
SIMD256T::template srli_si<ImmT>(a.v8[1]),
};
}
template<int ImmT>
static SIMDINLINE Float SIMDCALL srlisi_ps(Float const &a) // same as srli_si, but with Float cast to int
{
return Float
{
SIMD256T::template srlisi_ps<ImmT>(a.v8[0]),
SIMD256T::template srlisi_ps<ImmT>(a.v8[1]),
};
}
SIMD_IWRAPPER_2(srlv_epi32); // return a >> b (uint32)
//-----------------------------------------------------------------------
// Conversion operations
//-----------------------------------------------------------------------
static SIMDINLINE Float SIMDCALL castpd_ps(Double const &a) // return *(Float*)(&a)
{
return Float
{
SIMD256T::castpd_ps(a.v8[0]),
SIMD256T::castpd_ps(a.v8[1]),
};
}
static SIMDINLINE Integer SIMDCALL castps_si(Float const &a) // return *(Integer*)(&a)
{
return Integer
{
SIMD256T::castps_si(a.v8[0]),
SIMD256T::castps_si(a.v8[1]),
};
}
static SIMDINLINE Double SIMDCALL castsi_pd(Integer const &a) // return *(Double*)(&a)
{
return Double
{
SIMD256T::castsi_pd(a.v8[0]),
SIMD256T::castsi_pd(a.v8[1]),
};
}
static SIMDINLINE Double SIMDCALL castps_pd(Float const &a) // return *(Double*)(&a)
{
return Double
{
SIMD256T::castps_pd(a.v8[0]),
SIMD256T::castps_pd(a.v8[1]),
};
}
static SIMDINLINE Float SIMDCALL castsi_ps(Integer const &a) // return *(Float*)(&a)
{
return Float
{
SIMD256T::castsi_ps(a.v8[0]),
SIMD256T::castsi_ps(a.v8[1]),
};
}
static SIMDINLINE Float SIMDCALL cvtepi32_ps(Integer const &a) // return (float)a (int32 --> float)
{
return Float
{
SIMD256T::cvtepi32_ps(a.v8[0]),
SIMD256T::cvtepi32_ps(a.v8[1]),
};
}
static SIMDINLINE Integer SIMDCALL cvtepu8_epi16(SIMD256Impl::Integer const &a) // return (int16)a (uint8 --> int16)
{
return Integer
{
SIMD256T::cvtepu8_epi16(a.v4[0]),
SIMD256T::cvtepu8_epi16(a.v4[1]),
};
}
static SIMDINLINE Integer SIMDCALL cvtepu8_epi32(SIMD256Impl::Integer const &a) // return (int32)a (uint8 --> int32)
{
return Integer
{
SIMD256T::cvtepu8_epi32(a.v4[0]),
SIMD256T::cvtepu8_epi32(SIMD128T::template srli_si<8>(a.v4[0])),
};
}
static SIMDINLINE Integer SIMDCALL cvtepu16_epi32(SIMD256Impl::Integer const &a) // return (int32)a (uint16 --> int32)
{
return Integer
{
SIMD256T::cvtepu16_epi32(a.v4[0]),
SIMD256T::cvtepu16_epi32(a.v4[1]),
};
}
static SIMDINLINE Integer SIMDCALL cvtepu16_epi64(SIMD256Impl::Integer const &a) // return (int64)a (uint16 --> int64)
{
return Integer
{
SIMD256T::cvtepu16_epi64(a.v4[0]),
SIMD256T::cvtepu16_epi64(SIMD128T::template srli_si<8>(a.v4[0])),
};
}
static SIMDINLINE Integer SIMDCALL cvtepu32_epi64(SIMD256Impl::Integer const &a) // return (int64)a (uint32 --> int64)
{
return Integer
{
SIMD256T::cvtepu32_epi64(a.v4[0]),
SIMD256T::cvtepu32_epi64(a.v4[1]),
};
}
static SIMDINLINE Integer SIMDCALL cvtps_epi32(Float const &a) // return (int32)a (float --> int32)
{
return Integer
{
SIMD256T::cvtps_epi32(a.v8[0]),
SIMD256T::cvtps_epi32(a.v8[1]),
};
}
static SIMDINLINE Integer SIMDCALL cvttps_epi32(Float const &a) // return (int32)a (rnd_to_zero(float) --> int32)
{
return Integer
{
SIMD256T::cvtps_epi32(a.v8[0]),
SIMD256T::cvtps_epi32(a.v8[1]),
};
}
//-----------------------------------------------------------------------
// Comparison operations
//-----------------------------------------------------------------------
template<CompareType CmpTypeT>
static SIMDINLINE Float SIMDCALL cmp_ps(Float const &a, Float const &b) // return a (CmpTypeT) b
{
return Float
{
SIMD256T::template cmp_ps<CmpTypeT>(a.v8[0], b.v8[0]),
SIMD256T::template cmp_ps<CmpTypeT>(a.v8[1], b.v8[1]),
};
}
static SIMDINLINE Float SIMDCALL cmplt_ps(Float const &a, Float const &b) { return cmp_ps<CompareType::LT_OQ>(a, b); }
static SIMDINLINE Float SIMDCALL cmpgt_ps(Float const &a, Float const &b) { return cmp_ps<CompareType::GT_OQ>(a, b); }
static SIMDINLINE Float SIMDCALL cmpneq_ps(Float const &a, Float const &b) { return cmp_ps<CompareType::NEQ_OQ>(a, b); }
static SIMDINLINE Float SIMDCALL cmpeq_ps(Float const &a, Float const &b) { return cmp_ps<CompareType::EQ_OQ>(a, b); }
static SIMDINLINE Float SIMDCALL cmpge_ps(Float const &a, Float const &b) { return cmp_ps<CompareType::GE_OQ>(a, b); }
static SIMDINLINE Float SIMDCALL cmple_ps(Float const &a, Float const &b) { return cmp_ps<CompareType::LE_OQ>(a, b); }
template<CompareType CmpTypeT>
static SIMDINLINE Mask SIMDCALL cmp_ps_mask(Float const &a, Float const &b)
{
return static_cast<Mask>(movemask_ps(cmp_ps<CmpTypeT>(a, b)));
}
SIMD_IWRAPPER_2(cmpeq_epi8); // return a == b (int8)
SIMD_IWRAPPER_2(cmpeq_epi16); // return a == b (int16)
SIMD_IWRAPPER_2(cmpeq_epi32); // return a == b (int32)
SIMD_IWRAPPER_2(cmpeq_epi64); // return a == b (int64)
SIMD_IWRAPPER_2(cmpgt_epi8); // return a > b (int8)
SIMD_IWRAPPER_2(cmpgt_epi16); // return a > b (int16)
SIMD_IWRAPPER_2(cmpgt_epi32); // return a > b (int32)
SIMD_IWRAPPER_2(cmpgt_epi64); // return a > b (int64)
SIMD_IWRAPPER_2(cmplt_epi32); // return a < b (int32)
static SIMDINLINE bool SIMDCALL testz_ps(Float const &a, Float const &b) // return all_lanes_zero(a & b) ? 1 : 0 (float)
{
return 0 != (SIMD256T::testz_ps(a.v8[0], b.v8[0]) &
SIMD256T::testz_ps(a.v8[1], b.v8[1]));
}
static SIMDINLINE int SIMDCALL testz_si(Integer const &a, Integer const &b) // return all_lanes_zero(a & b) ? 1 : 0 (int)
{
return 0 != (SIMD256T::testz_si(a.v8[0], b.v8[0]) &
SIMD256T::testz_si(a.v8[1], b.v8[1]));
}
//-----------------------------------------------------------------------
// Blend / shuffle / permute operations
//-----------------------------------------------------------------------
SIMD_WRAPPER_2I(blend_ps); // return ImmT ? b : a (float)
SIMD_IWRAPPER_2I(blend_epi32); // return ImmT ? b : a (int32)
SIMD_WRAPPER_3(blendv_ps); // return mask ? b : a (float)
static SIMDINLINE Integer SIMDCALL blendv_epi32(Integer const &a, Integer const &b, Float const &mask) // return mask ? b : a (int)
{
return Integer
{
SIMD256T::blendv_epi32(a.v8[0], b.v8[0], mask.v8[0]),
SIMD256T::blendv_epi32(a.v8[1], b.v8[1], mask.v8[1]),
};
}
static SIMDINLINE Integer SIMDCALL blendv_epi32(Integer const &a, Integer const &b, Integer const &mask) // return mask ? b : a (int)
{
return Integer
{
SIMD256T::blendv_epi32(a.v8[0], b.v8[0], mask.v8[0]),
SIMD256T::blendv_epi32(a.v8[1], b.v8[1], mask.v8[1]),
};
}
static SIMDINLINE Float SIMDCALL broadcast_ss(float const *p) // return *p (all elements in vector get same value)
{
float f = *p;
return Float
{
SIMD256T::set1_ps(f),
SIMD256T::set1_ps(f),
};
}
template<int imm>
static SIMDINLINE SIMD256Impl::Float SIMDCALL extract_ps(Float const &a)
{
SWR_ASSERT(imm == 0 || imm == 1, "Invalid control code: %d", imm);
return a.v8[imm];
}
template<int imm>
static SIMDINLINE SIMD256Impl::Double SIMDCALL extract_pd(Double const &a)
{
SWR_ASSERT(imm == 0 || imm == 1, "Invalid control code: %d", imm);
return a.v8[imm];
}
template<int imm>
static SIMDINLINE SIMD256Impl::Integer SIMDCALL extract_si(Integer const &a)
{
SWR_ASSERT(imm == 0 || imm == 1, "Invalid control code: %d", imm);
return a.v8[imm];
}
template<int imm>
static SIMDINLINE Float SIMDCALL insert_ps(Float const &a, SIMD256Impl::Float const &b)
{
SWR_ASSERT(imm == 0 || imm == 1, "Invalid control code: %d", imm);
Float r = a;
r.v8[imm] = b;
return r;
}
template<int imm>
static SIMDINLINE Double SIMDCALL insert_pd(Double const &a, SIMD256Impl::Double const &b)
{
SWR_ASSERT(imm == 0 || imm == 1, "Invalid control code: %d", imm);
Double r = a;
r.v8[imm] = b;
return r;
}
template<int imm>
static SIMDINLINE Integer SIMDCALL insert_si(Integer const &a, SIMD256Impl::Integer const &b)
{
SWR_ASSERT(imm == 0 || imm == 1, "Invalid control code: %d", imm);
Integer r = a;
r.v8[imm] = b;
return r;
}
SIMD_IWRAPPER_2(packs_epi16); // See documentation for _mm256_packs_epi16 and _mm512_packs_epi16
SIMD_IWRAPPER_2(packs_epi32); // See documentation for _mm256_packs_epi32 and _mm512_packs_epi32
SIMD_IWRAPPER_2(packus_epi16); // See documentation for _mm256_packus_epi16 and _mm512_packus_epi16
SIMD_IWRAPPER_2(packus_epi32); // See documentation for _mm256_packus_epi32 and _mm512_packus_epi32
template<int ImmT>
static SIMDINLINE Float SIMDCALL permute_ps(Float const &a)
{
return Float
{
SIMD256T::template permute_ps<ImmT>(a.v8[0]),
SIMD256T::template permute_ps<ImmT>(a.v8[1]),
};
}
static SIMDINLINE Integer SIMDCALL permute_epi32(Integer const &a, Integer const &swiz) // return a[swiz[i]] for each 32-bit lane i (int32)
{
return castps_si(permute_ps(castsi_ps(a), swiz));
}
static SIMDINLINE Float SIMDCALL permute_ps(Float const &a, Integer const &swiz) // return a[swiz[i]] for each 32-bit lane i (float)
{
const auto mask = SIMD256T::set1_epi32(7);
auto lolo = SIMD256T::permute_ps(a.v8[0], SIMD256T::and_si(swiz.v8[0], mask));
auto lohi = SIMD256T::permute_ps(a.v8[1], SIMD256T::and_si(swiz.v8[0], mask));
auto hilo = SIMD256T::permute_ps(a.v8[0], SIMD256T::and_si(swiz.v8[1], mask));
auto hihi = SIMD256T::permute_ps(a.v8[1], SIMD256T::and_si(swiz.v8[1], mask));
return Float
{
SIMD256T::blendv_ps(lolo, lohi, SIMD256T::castsi_ps(SIMD256T::cmpgt_epi32(swiz.v8[0], mask))),
SIMD256T::blendv_ps(hilo, hihi, SIMD256T::castsi_ps(SIMD256T::cmpgt_epi32(swiz.v8[1], mask))),
};
}
// All of the 512-bit permute2f128_XX intrinsics do the following:
//
// SELECT4(src, control) {
// CASE(control[1:0])
// 0: tmp[127:0] : = src[127:0]
// 1 : tmp[127:0] : = src[255:128]
// 2 : tmp[127:0] : = src[383:256]
// 3 : tmp[127:0] : = src[511:384]
// ESAC
// RETURN tmp[127:0]
// }
//
// dst[127:0] : = SELECT4(a[511:0], imm8[1:0])
// dst[255:128] : = SELECT4(a[511:0], imm8[3:2])
// dst[383:256] : = SELECT4(b[511:0], imm8[5:4])
// dst[511:384] : = SELECT4(b[511:0], imm8[7:6])
// dst[MAX:512] : = 0
//
// Since the 256-bit AVX instructions use a 4-bit control field (instead
// of 2-bit for AVX512), we need to expand the control bits sent to the
// AVX instructions for emulation.
//
template <int shuf>
static SIMDINLINE Float SIMDCALL permute2f128_ps(Float const &a, Float const &b)
{
return Float
{
SIMD256T::template permute2f128_ps<((shuf & 0x03) << 0) | ((shuf & 0x0C) << 2)>(a.v8[0], a.v8[1]),
SIMD256T::template permute2f128_ps<((shuf & 0x30) >> 4) | ((shuf & 0xC0) >> 2)>(b.v8[0], b.v8[1]),
};
}
template <int shuf>
static SIMDINLINE Double SIMDCALL permute2f128_pd(Double const &a, Double const &b)
{
return Double
{
SIMD256T::template permute2f128_pd<((shuf & 0x03) << 0) | ((shuf & 0x0C) << 2)>(a.v8[0], a.v8[1]),
SIMD256T::template permute2f128_pd<((shuf & 0x30) >> 4) | ((shuf & 0xC0) >> 2)>(b.v8[0], b.v8[1]),
};
}
template <int shuf>
static SIMDINLINE Integer SIMDCALL permute2f128_si(Integer const &a, Integer const &b)
{
return Integer
{
SIMD256T::template permute2f128_si<((shuf & 0x03) << 0) | ((shuf & 0x0C) << 2)>(a.v8[0], a.v8[1]),
SIMD256T::template permute2f128_si<((shuf & 0x30) >> 4) | ((shuf & 0xC0) >> 2)>(b.v8[0], b.v8[1]),
};
}
SIMD_IWRAPPER_2I_1(shuffle_epi32);
SIMD_IWRAPPER_2I_2(shuffle_epi64);
SIMD_IWRAPPER_2(shuffle_epi8);
SIMD_WRAPPER_2I_1(shuffle_pd);
SIMD_WRAPPER_2I_1(shuffle_ps);
SIMD_IWRAPPER_2(unpackhi_epi16);
SIMD_IWRAPPER_2(unpackhi_epi32);
SIMD_IWRAPPER_2(unpackhi_epi64);
SIMD_IWRAPPER_2(unpackhi_epi8);
SIMD_WRAPPER_2(unpackhi_pd);
SIMD_WRAPPER_2(unpackhi_ps);
SIMD_IWRAPPER_2(unpacklo_epi16);
SIMD_IWRAPPER_2(unpacklo_epi32);
SIMD_IWRAPPER_2(unpacklo_epi64);
SIMD_IWRAPPER_2(unpacklo_epi8);
SIMD_WRAPPER_2(unpacklo_pd);
SIMD_WRAPPER_2(unpacklo_ps);
//-----------------------------------------------------------------------
// Load / store operations
//-----------------------------------------------------------------------
template<ScaleFactor ScaleT>
static SIMDINLINE Float SIMDCALL i32gather_ps(float const* p, Integer const &idx) // return *(float*)(((int8*)p) + (idx * ScaleT))
{
return Float
{
SIMD256T::template i32gather_ps<ScaleT>(p, idx.v8[0]),
SIMD256T::template i32gather_ps<ScaleT>(p, idx.v8[1]),
};
}
static SIMDINLINE Float SIMDCALL load1_ps(float const *p) // return *p (broadcast 1 value to all elements)
{
return broadcast_ss(p);
}
static SIMDINLINE Float SIMDCALL load_ps(float const *p) // return *p (loads SIMD width elements from memory)
{
return Float
{
SIMD256T::load_ps(p),
SIMD256T::load_ps(p + TARGET_SIMD_WIDTH)
};
}
static SIMDINLINE Integer SIMDCALL load_si(Integer const *p) // return *p
{
return Integer
{
SIMD256T::load_si(&p->v8[0]),
SIMD256T::load_si(&p->v8[1]),
};
}
static SIMDINLINE Float SIMDCALL loadu_ps(float const *p) // return *p (same as load_ps but allows for unaligned mem)
{
return Float
{
SIMD256T::loadu_ps(p),
SIMD256T::loadu_ps(p + TARGET_SIMD_WIDTH)
};
}
static SIMDINLINE Integer SIMDCALL loadu_si(Integer const *p) // return *p (same as load_si but allows for unaligned mem)
{
return Integer
{
SIMD256T::loadu_si(&p->v8[0]),
SIMD256T::loadu_si(&p->v8[1]),
};
}
// for each element: (mask & (1 << 31)) ? (i32gather_ps<ScaleT>(p, idx), mask = 0) : old
template<ScaleFactor ScaleT>
static SIMDINLINE Float SIMDCALL mask_i32gather_ps(Float const &old, float const* p, Integer const &idx, Float const &mask)
{
return Float
{
SIMD256T::template mask_i32gather_ps<ScaleT>(old.v8[0], p, idx.v8[0], mask.v8[0]),
SIMD256T::template mask_i32gather_ps<ScaleT>(old.v8[1], p, idx.v8[1], mask.v8[1]),
};
}
static SIMDINLINE void SIMDCALL maskstore_ps(float *p, Integer const &mask, Float const &src)
{
SIMD256T::maskstore_ps(p, mask.v8[0], src.v8[0]);
SIMD256T::maskstore_ps(p + TARGET_SIMD_WIDTH, mask.v8[1], src.v8[1]);
}
static SIMDINLINE uint64_t SIMDCALL movemask_epi8(Integer const &a)
{
uint64_t mask = static_cast<uint64_t>(SIMD256T::movemask_epi8(a.v8[0]));
mask |= static_cast<uint64_t>(SIMD256T::movemask_epi8(a.v8[1])) << (TARGET_SIMD_WIDTH * 4);
return mask;
}
static SIMDINLINE uint32_t SIMDCALL movemask_pd(Double const &a)
{
uint32_t mask = static_cast<uint32_t>(SIMD256T::movemask_pd(a.v8[0]));
mask |= static_cast<uint32_t>(SIMD256T::movemask_pd(a.v8[1])) << (TARGET_SIMD_WIDTH / 2);
return mask;
}
static SIMDINLINE uint32_t SIMDCALL movemask_ps(Float const &a)
{
uint32_t mask = static_cast<uint32_t>(SIMD256T::movemask_ps(a.v8[0]));
mask |= static_cast<uint32_t>(SIMD256T::movemask_ps(a.v8[1])) << TARGET_SIMD_WIDTH;
return mask;
}
static SIMDINLINE Integer SIMDCALL set1_epi32(int i) // return i (all elements are same value)
{
return Integer
{
SIMD256T::set1_epi32(i),
SIMD256T::set1_epi32(i)
};
}
static SIMDINLINE Integer SIMDCALL set1_epi8(char i) // return i (all elements are same value)
{
return Integer
{
SIMD256T::set1_epi8(i),
SIMD256T::set1_epi8(i)
};
}
static SIMDINLINE Float SIMDCALL set1_ps(float f) // return f (all elements are same value)
{
return Float
{
SIMD256T::set1_ps(f),
SIMD256T::set1_ps(f)
};
}
static SIMDINLINE Float SIMDCALL setzero_ps() // return 0 (float)
{
return Float
{
SIMD256T::setzero_ps(),
SIMD256T::setzero_ps()
};
}
static SIMDINLINE Integer SIMDCALL setzero_si() // return 0 (integer)
{
return Integer
{
SIMD256T::setzero_si(),
SIMD256T::setzero_si()
};
}
static SIMDINLINE void SIMDCALL store_ps(float *p, Float const &a) // *p = a (stores all elements contiguously in memory)
{
SIMD256T::store_ps(p, a.v8[0]);
SIMD256T::store_ps(p + TARGET_SIMD_WIDTH, a.v8[1]);
}
static SIMDINLINE void SIMDCALL store_si(Integer *p, Integer const &a) // *p = a
{
SIMD256T::store_si(&p->v8[0], a.v8[0]);
SIMD256T::store_si(&p->v8[1], a.v8[1]);
}
static SIMDINLINE void SIMDCALL stream_ps(float *p, Float const &a) // *p = a (same as store_ps, but doesn't keep memory in cache)
{
SIMD256T::stream_ps(p, a.v8[0]);
SIMD256T::stream_ps(p + TARGET_SIMD_WIDTH, a.v8[1]);
}
static SIMDINLINE Integer SIMDCALL set_epi32(
int i15, int i14, int i13, int i12, int i11, int i10, int i9, int i8,
int i7, int i6, int i5, int i4, int i3, int i2, int i1, int i0)
{
return Integer
{
SIMD256T::set_epi32(
i7, i6, i5, i4, i3, i2, i1, i0),
SIMD256T::set_epi32(
i15, i14, i13, i12, i11, i10, i9, i8)
};
}
static SIMDINLINE Integer SIMDCALL set_epi32(
int i7, int i6, int i5, int i4, int i3, int i2, int i1, int i0)
{
return set_epi32(
0, 0, 0, 0, 0, 0, 0, 0,
i7, i6, i5, i4, i3, i2, i1, i0);
}
static SIMDINLINE Float SIMDCALL set_ps(
float i15, float i14, float i13, float i12, float i11, float i10, float i9, float i8,
float i7, float i6, float i5, float i4, float i3, float i2, float i1, float i0)
{
return Float
{
SIMD256T::set_ps(
i7, i6, i5, i4, i3, i2, i1, i0),
SIMD256T::set_ps(
i15, i14, i13, i12, i11, i10, i9, i8)
};
}
static SIMDINLINE Float SIMDCALL set_ps(
float i7, float i6, float i5, float i4, float i3, float i2, float i1, float i0)
{
return set_ps(
0, 0, 0, 0, 0, 0, 0, 0,
i7, i6, i5, i4, i3, i2, i1, i0);
}
static SIMDINLINE Float SIMDCALL vmask_ps(int32_t mask)
{
return Float
{
SIMD256T::vmask_ps(mask),
SIMD256T::vmask_ps(mask >> TARGET_SIMD_WIDTH)
};
}
#undef SIMD_WRAPPER_1
#undef SIMD_WRAPPER_2
#undef SIMD_WRAPPER_2I
#undef SIMD_WRAPPER_2I_1
#undef SIMD_WRAPPER_3
#undef SIMD_IWRAPPER_1
#undef SIMD_IWRAPPER_2
#undef SIMD_IWRAPPER_2I
#undef SIMD_IWRAPPER_2I_1
#undef SIMD_IWRAPPER_3
|