aboutsummaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/swr/rasterizer/common/simdlib_256_avx.inl
blob: 16eb5217cba86e1325ed7c1c9b676814dab36217 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
/****************************************************************************
* Copyright (C) 2017 Intel Corporation.   All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
****************************************************************************/
#if !defined(__SIMD_LIB_AVX_HPP__)
#error Do not include this file directly, use "simdlib.hpp" instead.
#endif

using SIMD128T = SIMD128Impl::AVXImpl;

//============================================================================
// SIMD256 AVX (1) implementation
//============================================================================

#define SIMD_WRAPPER_1(op)  \
    static SIMDINLINE Float SIMDCALL op(Float a)   \
    {\
        return _mm256_##op(a);\
    }

#define SIMD_WRAPPER_2(op)  \
    static SIMDINLINE Float SIMDCALL op(Float a, Float b)   \
    {\
        return _mm256_##op(a, b);\
    }

#define SIMD_DWRAPPER_2(op)  \
    static SIMDINLINE Double SIMDCALL op(Double a, Double b)   \
    {\
        return _mm256_##op(a, b);\
    }

#define SIMD_WRAPPER_2I(op)  \
    template<int ImmT>\
    static SIMDINLINE Float SIMDCALL op(Float a, Float b)   \
    {\
        return  _mm256_##op(a, b, ImmT);\
    }

#define SIMD_DWRAPPER_2I(op)  \
    template<int ImmT>\
    static SIMDINLINE Double SIMDCALL op(Double a, Double b)   \
    {\
        return _mm256_##op(a, b, ImmT);\
    }

#define SIMD_WRAPPER_3(op)  \
    static SIMDINLINE Float SIMDCALL op(Float a, Float b, Float c)   \
    {\
        return _mm256_##op(a, b, c);\
    }

#define SIMD_IWRAPPER_1(op)  \
    static SIMDINLINE Integer SIMDCALL op(Integer a)   \
    {\
        return _mm256_##op(a);\
    }

#define SIMD_IWRAPPER_2(op)  \
    static SIMDINLINE Integer SIMDCALL op(Integer a, Integer b)   \
    {\
        return _mm256_##op(a, b);\
    }

#define SIMD_IFWRAPPER_2(op, intrin)  \
    static SIMDINLINE Integer SIMDCALL op(Integer a, Integer b)   \
    {\
        return castps_si( intrin(castsi_ps(a), castsi_ps(b)) );\
    }

#define SIMD_IFWRAPPER_2I(op, intrin)  \
    template<int ImmT> \
    static SIMDINLINE Integer SIMDCALL op(Integer a, Integer b)   \
    {\
        return castps_si( intrin(castsi_ps(a), castsi_ps(b), ImmT) );\
    }

#define SIMD_IWRAPPER_2I_(op, intrin)  \
    template<int ImmT>\
    static SIMDINLINE Integer SIMDCALL op(Integer a, Integer b)   \
    {\
        return _mm256_##intrin(a, b, ImmT);\
    }
#define SIMD_IWRAPPER_2I(op)  SIMD_IWRAPPER_2I_(op, op)

#define SIMD_IWRAPPER_3(op)  \
    static SIMDINLINE Integer SIMDCALL op(Integer a, Integer b, Integer c)   \
    {\
        return _mm256_##op(a, b, c);\
    }

// emulated integer simd
#define SIMD_EMU_IWRAPPER_1(op) \
    static SIMDINLINE \
    Integer SIMDCALL op(Integer a)\
    {\
        return Integer\
        {\
            SIMD128T::op(a.v4[0]),\
            SIMD128T::op(a.v4[1]),\
        };\
    }
#define SIMD_EMU_IWRAPPER_1L(op, shift) \
    static SIMDINLINE \
    Integer SIMDCALL op(Integer a)\
    {\
        return Integer \
        {\
            SIMD128T::op(a.v4[0]), \
            SIMD128T::op(SIMD128T::template srli_si<shift>(a.v4[0])), \
        };\
    }\
    static SIMDINLINE \
    Integer SIMDCALL op(SIMD128Impl::Integer a)\
    {\
        return Integer \
        {\
            SIMD128T::op(a), \
            SIMD128T::op(SIMD128T::template srli_si<shift>(a)), \
        };\
    }

#define SIMD_EMU_IWRAPPER_1I(op) \
    template <int ImmT> static SIMDINLINE \
    Integer SIMDCALL op(Integer a)\
    {\
        return Integer\
        {\
            SIMD128T::template op<ImmT>(a.v4[0]),\
            SIMD128T::template op<ImmT>(a.v4[1]),\
        };\
    }

#define SIMD_EMU_IWRAPPER_2(op) \
    static SIMDINLINE \
    Integer SIMDCALL op(Integer a, Integer b)\
    {\
        return Integer\
        {\
            SIMD128T::op(a.v4[0], b.v4[0]),\
            SIMD128T::op(a.v4[1], b.v4[1]),\
        };\
    }

#define SIMD_EMU_IWRAPPER_2I(op) \
    template <int ImmT> static SIMDINLINE \
    Integer SIMDCALL op(Integer a, Integer b)\
    {\
        return Integer\
        {\
            SIMD128T::template op<ImmT>(a.v4[0], b.v[0]),\
            SIMD128T::template op<ImmT>(a.v4[1], b.v[1]),\
        };\
    }

//-----------------------------------------------------------------------
// Single precision floating point arithmetic operations
//-----------------------------------------------------------------------
SIMD_WRAPPER_2(add_ps);     // return a + b
SIMD_WRAPPER_2(div_ps);     // return a / b

static SIMDINLINE Float SIMDCALL fmadd_ps(Float a, Float b, Float c) // return (a * b) + c
{
    return add_ps(mul_ps(a, b), c);
}

static SIMDINLINE Float SIMDCALL fmsub_ps(Float a, Float b, Float c) // return (a * b) - c
{
    return sub_ps(mul_ps(a, b), c);
}

SIMD_WRAPPER_2(max_ps);     // return (a > b) ? a : b
SIMD_WRAPPER_2(min_ps);     // return (a < b) ? a : b
SIMD_WRAPPER_2(mul_ps);     // return a * b
SIMD_WRAPPER_1(rcp_ps);     // return 1.0f / a
SIMD_WRAPPER_1(rsqrt_ps);   // return 1.0f / sqrt(a)
SIMD_WRAPPER_2(sub_ps);     // return a - b

template <RoundMode RMT>
static SIMDINLINE Float SIMDCALL round_ps(Float a)
{
    return _mm256_round_ps(a, static_cast<int>(RMT));
}

static SIMDINLINE Float SIMDCALL ceil_ps(Float a) { return round_ps<RoundMode::CEIL_NOEXC>(a); }
static SIMDINLINE Float SIMDCALL floor_ps(Float a) { return round_ps<RoundMode::FLOOR_NOEXC>(a); }

//-----------------------------------------------------------------------
// Integer (various width) arithmetic operations
//-----------------------------------------------------------------------
SIMD_EMU_IWRAPPER_1(abs_epi32); // return absolute_value(a) (int32)
SIMD_EMU_IWRAPPER_2(add_epi32); // return a + b (int32)
SIMD_EMU_IWRAPPER_2(add_epi8);  // return a + b (int8)
SIMD_EMU_IWRAPPER_2(adds_epu8); // return ((a + b) > 0xff) ? 0xff : (a + b) (uint8) 
SIMD_EMU_IWRAPPER_2(max_epi32); // return (a > b) ? a : b (int32)
SIMD_EMU_IWRAPPER_2(max_epu32); // return (a > b) ? a : b (uint32)
SIMD_EMU_IWRAPPER_2(min_epi32); // return (a < b) ? a : b (int32)
SIMD_EMU_IWRAPPER_2(min_epu32); // return (a < b) ? a : b (uint32)
SIMD_EMU_IWRAPPER_2(mul_epi32); // return a * b (int32)

// return (a * b) & 0xFFFFFFFF
//
// Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers,
// and store the low 32 bits of the intermediate integers in dst.
SIMD_EMU_IWRAPPER_2(mullo_epi32);
SIMD_EMU_IWRAPPER_2(sub_epi32); // return a - b (int32)
SIMD_EMU_IWRAPPER_2(sub_epi64); // return a - b (int64)
SIMD_EMU_IWRAPPER_2(subs_epu8); // return (b > a) ? 0 : (a - b) (uint8)

//-----------------------------------------------------------------------
// Logical operations
//-----------------------------------------------------------------------
SIMD_WRAPPER_2(and_ps);         // return a & b       (float treated as int)
SIMD_EMU_IWRAPPER_2(and_si);    // return a & b       (int)
SIMD_WRAPPER_2(andnot_ps);      // return (~a) & b    (float treated as int)
SIMD_EMU_IWRAPPER_2(andnot_si); // return (~a) & b    (int)
SIMD_WRAPPER_2(or_ps);          // return a | b       (float treated as int)
SIMD_EMU_IWRAPPER_2(or_si);     // return a | b       (int)
SIMD_WRAPPER_2(xor_ps);         // return a ^ b       (float treated as int)
SIMD_EMU_IWRAPPER_2(xor_si);    // return a ^ b       (int)


//-----------------------------------------------------------------------
// Shift operations
//-----------------------------------------------------------------------
SIMD_EMU_IWRAPPER_1I(slli_epi32);               // return a << ImmT

static SIMDINLINE Integer SIMDCALL sllv_epi32(Integer vA, Integer vCount) // return a << b      (uint32)
{
    int32_t aHi, aLow, countHi, countLow;
    __m128i vAHi = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vA), 1));
    __m128i vALow = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vA), 0));
    __m128i vCountHi = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vCount), 1));
    __m128i vCountLow = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vCount), 0));

    aHi = _mm_extract_epi32(vAHi, 0);
    countHi = _mm_extract_epi32(vCountHi, 0);
    aHi <<= countHi;
    vAHi = _mm_insert_epi32(vAHi, aHi, 0);

    aLow = _mm_extract_epi32(vALow, 0);
    countLow = _mm_extract_epi32(vCountLow, 0);
    aLow <<= countLow;
    vALow = _mm_insert_epi32(vALow, aLow, 0);

    aHi = _mm_extract_epi32(vAHi, 1);
    countHi = _mm_extract_epi32(vCountHi, 1);
    aHi <<= countHi;
    vAHi = _mm_insert_epi32(vAHi, aHi, 1);

    aLow = _mm_extract_epi32(vALow, 1);
    countLow = _mm_extract_epi32(vCountLow, 1);
    aLow <<= countLow;
    vALow = _mm_insert_epi32(vALow, aLow, 1);

    aHi = _mm_extract_epi32(vAHi, 2);
    countHi = _mm_extract_epi32(vCountHi, 2);
    aHi <<= countHi;
    vAHi = _mm_insert_epi32(vAHi, aHi, 2);

    aLow = _mm_extract_epi32(vALow, 2);
    countLow = _mm_extract_epi32(vCountLow, 2);
    aLow <<= countLow;
    vALow = _mm_insert_epi32(vALow, aLow, 2);

    aHi = _mm_extract_epi32(vAHi, 3);
    countHi = _mm_extract_epi32(vCountHi, 3);
    aHi <<= countHi;
    vAHi = _mm_insert_epi32(vAHi, aHi, 3);

    aLow = _mm_extract_epi32(vALow, 3);
    countLow = _mm_extract_epi32(vCountLow, 3);
    aLow <<= countLow;
    vALow = _mm_insert_epi32(vALow, aLow, 3);

    __m256i ret = _mm256_set1_epi32(0);
    ret = _mm256_insertf128_si256(ret, vAHi, 1);
    ret = _mm256_insertf128_si256(ret, vALow, 0);
    return ret;
}

SIMD_EMU_IWRAPPER_1I(srai_epi32);   // return a >> ImmT   (int32)
SIMD_EMU_IWRAPPER_1I(srli_epi32);   // return a >> ImmT   (uint32)
SIMD_EMU_IWRAPPER_1I(srli_si);      // return a >> (ImmT*8) (uint)

template<int ImmT>                              // same as srli_si, but with Float cast to int
static SIMDINLINE Float SIMDCALL srlisi_ps(Float a)
{
    return castsi_ps(srli_si<ImmT>(castps_si(a)));
}

static SIMDINLINE Integer SIMDCALL srlv_epi32(Integer vA, Integer vCount) // return a >> b      (uint32)
{
    int32_t aHi, aLow, countHi, countLow;
    __m128i vAHi = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vA), 1));
    __m128i vALow = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vA), 0));
    __m128i vCountHi = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vCount), 1));
    __m128i vCountLow = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vCount), 0));

    aHi = _mm_extract_epi32(vAHi, 0);
    countHi = _mm_extract_epi32(vCountHi, 0);
    aHi >>= countHi;
    vAHi = _mm_insert_epi32(vAHi, aHi, 0);

    aLow = _mm_extract_epi32(vALow, 0);
    countLow = _mm_extract_epi32(vCountLow, 0);
    aLow >>= countLow;
    vALow = _mm_insert_epi32(vALow, aLow, 0);

    aHi = _mm_extract_epi32(vAHi, 1);
    countHi = _mm_extract_epi32(vCountHi, 1);
    aHi >>= countHi;
    vAHi = _mm_insert_epi32(vAHi, aHi, 1);

    aLow = _mm_extract_epi32(vALow, 1);
    countLow = _mm_extract_epi32(vCountLow, 1);
    aLow >>= countLow;
    vALow = _mm_insert_epi32(vALow, aLow, 1);

    aHi = _mm_extract_epi32(vAHi, 2);
    countHi = _mm_extract_epi32(vCountHi, 2);
    aHi >>= countHi;
    vAHi = _mm_insert_epi32(vAHi, aHi, 2);

    aLow = _mm_extract_epi32(vALow, 2);
    countLow = _mm_extract_epi32(vCountLow, 2);
    aLow >>= countLow;
    vALow = _mm_insert_epi32(vALow, aLow, 2);

    aHi = _mm_extract_epi32(vAHi, 3);
    countHi = _mm_extract_epi32(vCountHi, 3);
    aHi >>= countHi;
    vAHi = _mm_insert_epi32(vAHi, aHi, 3);

    aLow = _mm_extract_epi32(vALow, 3);
    countLow = _mm_extract_epi32(vCountLow, 3);
    aLow >>= countLow;
    vALow = _mm_insert_epi32(vALow, aLow, 3);

    __m256i ret = _mm256_set1_epi32(0);
    ret = _mm256_insertf128_si256(ret, vAHi, 1);
    ret = _mm256_insertf128_si256(ret, vALow, 0);
    return ret;
}



//-----------------------------------------------------------------------
// Conversion operations
//-----------------------------------------------------------------------
static SIMDINLINE Float SIMDCALL castpd_ps(Double a)   // return *(Float*)(&a)
{
    return _mm256_castpd_ps(a);
}

static SIMDINLINE Integer SIMDCALL castps_si(Float a)   // return *(Integer*)(&a)
{
    return _mm256_castps_si256(a);
}

static SIMDINLINE Double SIMDCALL castsi_pd(Integer a)   // return *(Double*)(&a)
{
    return _mm256_castsi256_pd(a);
}

static SIMDINLINE Double SIMDCALL castps_pd(Float a)   // return *(Double*)(&a)
{
    return _mm256_castps_pd(a);
}

static SIMDINLINE Integer SIMDCALL castpd_si(Double a)   // return *(Integer*)(&a)
{
    return _mm256_castpd_si256(a);
}

static SIMDINLINE Float SIMDCALL castsi_ps(Integer a)   // return *(Float*)(&a)
{
    return _mm256_castsi256_ps(a);
}

static SIMDINLINE Float SIMDCALL cvtepi32_ps(Integer a) // return (float)a    (int32 --> float)
{
    return _mm256_cvtepi32_ps(a);
}

SIMD_EMU_IWRAPPER_1L(cvtepu8_epi16, 8);                  // return (int16)a    (uint8 --> int16)
SIMD_EMU_IWRAPPER_1L(cvtepu8_epi32, 4);                  // return (int32)a    (uint8 --> int32)
SIMD_EMU_IWRAPPER_1L(cvtepu16_epi32, 8);                 // return (int32)a    (uint16 --> int32)
SIMD_EMU_IWRAPPER_1L(cvtepu16_epi64, 4);                 // return (int64)a    (uint16 --> int64)
SIMD_EMU_IWRAPPER_1L(cvtepu32_epi64, 8);                 // return (int64)a    (uint32 --> int64)

static SIMDINLINE Integer SIMDCALL cvtps_epi32(Float a)            // return (int32)a    (float --> int32)
{
    return _mm256_cvtps_epi32(a);
}

static SIMDINLINE Integer SIMDCALL cvttps_epi32(Float a)           // return (int32)a    (rnd_to_zero(float) --> int32)
{
    return _mm256_cvttps_epi32(a);
}

//-----------------------------------------------------------------------
// Comparison operations
//-----------------------------------------------------------------------
template<CompareType CmpTypeT>
static SIMDINLINE Float SIMDCALL cmp_ps(Float a, Float b) // return a (CmpTypeT) b
{
    return _mm256_cmp_ps(a, b, static_cast<const int>(CmpTypeT));
}
static SIMDINLINE Float SIMDCALL cmplt_ps(Float a, Float b) { return cmp_ps<CompareType::LT_OQ>(a, b); }
static SIMDINLINE Float SIMDCALL cmpgt_ps(Float a, Float b) { return cmp_ps<CompareType::GT_OQ>(a, b); }
static SIMDINLINE Float SIMDCALL cmpneq_ps(Float a, Float b) { return cmp_ps<CompareType::NEQ_OQ>(a, b); }
static SIMDINLINE Float SIMDCALL cmpeq_ps(Float a, Float b) { return cmp_ps<CompareType::EQ_OQ>(a, b); }
static SIMDINLINE Float SIMDCALL cmpge_ps(Float a, Float b) { return cmp_ps<CompareType::GE_OQ>(a, b); }
static SIMDINLINE Float SIMDCALL cmple_ps(Float a, Float b) { return cmp_ps<CompareType::LE_OQ>(a, b); }

SIMD_EMU_IWRAPPER_2(cmpeq_epi8);    // return a == b (int8)
SIMD_EMU_IWRAPPER_2(cmpeq_epi16);   // return a == b (int16)
SIMD_EMU_IWRAPPER_2(cmpeq_epi32);   // return a == b (int32)
SIMD_EMU_IWRAPPER_2(cmpeq_epi64);   // return a == b (int64)
SIMD_EMU_IWRAPPER_2(cmpgt_epi8);    // return a > b (int8)
SIMD_EMU_IWRAPPER_2(cmpgt_epi16);   // return a > b (int16)
SIMD_EMU_IWRAPPER_2(cmpgt_epi32);   // return a > b (int32)
SIMD_EMU_IWRAPPER_2(cmpgt_epi64);   // return a > b (int64)
SIMD_EMU_IWRAPPER_2(cmplt_epi32);   // return a < b (int32)

static SIMDINLINE bool SIMDCALL testz_ps(Float a, Float b)  // return all_lanes_zero(a & b) ? 1 : 0 (float)
{
    return  0 != _mm256_testz_ps(a, b);
}

static SIMDINLINE bool SIMDCALL testz_si(Integer a, Integer b)  // return all_lanes_zero(a & b) ? 1 : 0 (int)
{
    return  0 != _mm256_testz_si256(a, b);
}

//-----------------------------------------------------------------------
// Blend / shuffle / permute operations
//-----------------------------------------------------------------------
SIMD_WRAPPER_2I(blend_ps);  // return ImmT ? b : a  (float)
SIMD_IFWRAPPER_2I(blend_epi32, _mm256_blend_ps);  // return ImmT ? b : a  (int32)
SIMD_WRAPPER_3(blendv_ps);  // return mask ? b : a  (float)

static SIMDINLINE Integer SIMDCALL blendv_epi32(Integer a, Integer b, Float mask) // return mask ? b : a (int)
{
    return castps_si(blendv_ps(castsi_ps(a), castsi_ps(b), mask));
}

static SIMDINLINE Integer SIMDCALL blendv_epi32(Integer a, Integer b, Integer mask) // return mask ? b : a (int)
{
    return castps_si(blendv_ps(castsi_ps(a), castsi_ps(b), castsi_ps(mask)));
}

static SIMDINLINE Float SIMDCALL broadcast_ss(float const *p)  // return *p (all elements in vector get same value)
{
    return _mm256_broadcast_ss(p);
}

SIMD_EMU_IWRAPPER_2(packs_epi16);   // See documentation for _mm256_packs_epi16 and _mm512_packs_epi16
SIMD_EMU_IWRAPPER_2(packs_epi32);   // See documentation for _mm256_packs_epi32 and _mm512_packs_epi32
SIMD_EMU_IWRAPPER_2(packus_epi16);  // See documentation for _mm256_packus_epi16 and _mm512_packus_epi16
SIMD_EMU_IWRAPPER_2(packus_epi32);  // See documentation for _mm256_packus_epi32 and _mm512_packus_epi32

static SIMDINLINE Integer SIMDCALL permute_epi32(Integer a, Integer swiz) // return a[swiz[i]] for each 32-bit lane i (int32)
{
    Integer result;

    // Ugly slow implementation
    uint32_t const *pA = reinterpret_cast<uint32_t const*>(&a);
    uint32_t const *pSwiz = reinterpret_cast<uint32_t const*>(&swiz);
    uint32_t *pResult = reinterpret_cast<uint32_t *>(&result);

    for (uint32_t i = 0; i < SIMD_WIDTH; ++i)
    {
        pResult[i] = pA[0xF & pSwiz[i]];
    }

    return result;
}

static SIMDINLINE Float SIMDCALL permute_ps(Float a, Integer swiz)    // return a[swiz[i]] for each 32-bit lane i (float)
{
    Float result;

    // Ugly slow implementation
    float const *pA = reinterpret_cast<float const*>(&a);
    uint32_t const *pSwiz = reinterpret_cast<uint32_t const*>(&swiz);
    float *pResult = reinterpret_cast<float *>(&result);

    for (uint32_t i = 0; i < SIMD_WIDTH; ++i)
    {
        pResult[i] = pA[0xF & pSwiz[i]];
    }

    return result;
}

SIMD_WRAPPER_2I(permute2f128_ps);
SIMD_DWRAPPER_2I(permute2f128_pd);
SIMD_IWRAPPER_2I_(permute2f128_si, permute2f128_si256);


SIMD_EMU_IWRAPPER_1I(shuffle_epi32);

template<int ImmT>
static SIMDINLINE Integer SIMDCALL shuffle_epi64(Integer a, Integer b)
{
    return castpd_si(shuffle_pd<ImmT>(castsi_pd(a), castsi_pd(b)));
}
SIMD_EMU_IWRAPPER_2(shuffle_epi8);
SIMD_DWRAPPER_2I(shuffle_pd);
SIMD_WRAPPER_2I(shuffle_ps);
SIMD_EMU_IWRAPPER_2(unpackhi_epi16);
SIMD_IFWRAPPER_2(unpackhi_epi32, _mm256_unpackhi_ps);
SIMD_EMU_IWRAPPER_2(unpackhi_epi64);
SIMD_EMU_IWRAPPER_2(unpackhi_epi8);
SIMD_DWRAPPER_2(unpackhi_pd);
SIMD_WRAPPER_2(unpackhi_ps);
SIMD_EMU_IWRAPPER_2(unpacklo_epi16);
SIMD_IFWRAPPER_2(unpacklo_epi32, _mm256_unpacklo_ps);
SIMD_EMU_IWRAPPER_2(unpacklo_epi64);
SIMD_EMU_IWRAPPER_2(unpacklo_epi8);
SIMD_DWRAPPER_2(unpacklo_pd);
SIMD_WRAPPER_2(unpacklo_ps);

//-----------------------------------------------------------------------
// Load / store operations
//-----------------------------------------------------------------------
template<ScaleFactor ScaleT>
static SIMDINLINE Float SIMDCALL i32gather_ps(float const* p, Integer idx) // return *(float*)(((int8*)p) + (idx * ScaleT))
{
    uint32_t *pOffsets = (uint32_t*)&idx;
    Float vResult;
    float* pResult = (float*)&vResult;
    for (uint32_t i = 0; i < SIMD_WIDTH; ++i)
    {
        uint32_t offset = pOffsets[i];
        offset = offset * static_cast<uint32_t>(ScaleT);
        pResult[i] = *(float const*)(((uint8_t const*)p + offset));
    }

    return vResult;
}

static SIMDINLINE Float SIMDCALL load1_ps(float const *p)  // return *p    (broadcast 1 value to all elements)
{
    return broadcast_ss(p);
}

static SIMDINLINE Float SIMDCALL load_ps(float const *p)   // return *p    (loads SIMD width elements from memory)
{
    return _mm256_load_ps(p);
}

static SIMDINLINE Integer SIMDCALL load_si(Integer const *p)  // return *p
{
    return _mm256_load_si256(&p->v);
}

static SIMDINLINE Float SIMDCALL loadu_ps(float const *p)  // return *p    (same as load_ps but allows for unaligned mem)
{
    return _mm256_loadu_ps(p);
}

static SIMDINLINE Integer SIMDCALL loadu_si(Integer const *p) // return *p    (same as load_si but allows for unaligned mem)
{
    return _mm256_lddqu_si256(&p->v);
}

// for each element: (mask & (1 << 31)) ? (i32gather_ps<ScaleT>(p, idx), mask = 0) : old
template<ScaleFactor ScaleT>
static SIMDINLINE Float SIMDCALL mask_i32gather_ps(Float old, float const* p, Integer idx, Float mask)
{
    uint32_t *pOffsets = (uint32_t*)&idx;
    Float vResult = old;
    float* pResult = (float*)&vResult;
    DWORD index;
    uint32_t umask = movemask_ps(mask);
    while (_BitScanForward(&index, umask))
    {
        umask &= ~(1 << index);
        uint32_t offset = pOffsets[index];
        offset = offset * static_cast<uint32_t>(ScaleT);
        pResult[index] = *(float const *)(((uint8_t const *)p + offset));
    }

    return vResult;
}

static SIMDINLINE void SIMDCALL maskstore_ps(float *p, Integer mask, Float src)
{
    _mm256_maskstore_ps(p, mask, src);
}

static SIMDINLINE uint32_t SIMDCALL movemask_epi8(Integer a)
{
    return SIMD128T::movemask_epi8(a.v4[0]) |
           (SIMD128T::movemask_epi8(a.v4[1]) << 16);
}

static SIMDINLINE uint32_t SIMDCALL movemask_pd(Double a)
{
    return static_cast<uint32_t>(_mm256_movemask_pd(a));
}
static SIMDINLINE uint32_t SIMDCALL movemask_ps(Float a)
{
    return static_cast<uint32_t>(_mm256_movemask_ps(a));
}

static SIMDINLINE Integer SIMDCALL set1_epi32(int i) // return i (all elements are same value)
{
    return _mm256_set1_epi32(i);
}

static SIMDINLINE Integer SIMDCALL set1_epi8(char i) // return i (all elements are same value)
{
    return _mm256_set1_epi8(i);
}

static SIMDINLINE Float SIMDCALL set1_ps(float f)  // return f (all elements are same value)
{
    return _mm256_set1_ps(f);
}

static SIMDINLINE Float SIMDCALL setzero_ps()      // return 0 (float)
{
    return _mm256_setzero_ps();
}

static SIMDINLINE Integer SIMDCALL setzero_si()      // return 0 (integer)
{
    return _mm256_setzero_si256();
}

static SIMDINLINE void SIMDCALL store_ps(float *p, Float a)    // *p = a   (stores all elements contiguously in memory)
{
    _mm256_store_ps(p, a);
}

static SIMDINLINE void SIMDCALL store_si(Integer *p, Integer a)   // *p = a
{
    _mm256_store_si256(&p->v, a);
}

static SIMDINLINE void SIMDCALL stream_ps(float *p, Float a)   // *p = a   (same as store_ps, but doesn't keep memory in cache)
{
    _mm256_stream_ps(p, a);
}

//=======================================================================
// Legacy interface (available only in SIMD256 width)
//=======================================================================

static SIMDINLINE Float SIMDCALL broadcast_ps(SIMD128Impl::Float const *p)
{
    return _mm256_broadcast_ps(&p->v);
}

template<int ImmT>
static SIMDINLINE SIMD128Impl::Double SIMDCALL extractf128_pd(Double a)
{
    return _mm256_extractf128_pd(a, ImmT);
}

template<int ImmT>
static SIMDINLINE SIMD128Impl::Float  SIMDCALL extractf128_ps(Float a)
{
    return _mm256_extractf128_ps(a, ImmT);
}

template<int ImmT>
static SIMDINLINE SIMD128Impl::Integer SIMDCALL extractf128_si(Integer a)
{
    return _mm256_extractf128_si256(a, ImmT);
}

template<int ImmT>
static SIMDINLINE Double SIMDCALL insertf128_pd(Double a, SIMD128Impl::Double b)
{
    return _mm256_insertf128_pd(a, b, ImmT);
}

template<int ImmT>
static SIMDINLINE Float SIMDCALL insertf128_ps(Float a, SIMD128Impl::Float b)
{
    return _mm256_insertf128_ps(a, b, ImmT);
}

template<int ImmT>
static SIMDINLINE Integer SIMDCALL insertf128_si(Integer a, SIMD128Impl::Integer b)
{
    return _mm256_insertf128_si256(a, b, ImmT);
}

#ifndef _mm256_set_m128i
#define _mm256_set_m128i(/* SIMD128Impl::Integer */ hi, /* SIMD128Impl::Integer */ lo) \
    _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 0x1)
#endif

#ifndef _mm256_loadu2_m128i
#define _mm256_loadu2_m128i(/* SIMD128Impl::Integer const* */ hiaddr, \
                            /* SIMD128Impl::Integer const* */ loaddr) \
    _mm256_set_m128i(_mm_loadu_si128(hiaddr), _mm_loadu_si128(loaddr))
#endif

static SIMDINLINE Integer SIMDCALL loadu2_si(SIMD128Impl::Integer const* phi, SIMD128Impl::Integer const* plo)
{
    return _mm256_loadu2_m128i(&phi->v, &plo->v);
}

static SIMDINLINE Integer SIMDCALL set_epi32(int i7, int i6, int i5, int i4, int i3, int i2, int i1, int i0)
{
    return _mm256_set_epi32(i7, i6, i5, i4, i3, i2, i1, i0);
}

static SIMDINLINE Float SIMDCALL set_ps(float i7, float i6, float i5, float i4, float i3, float i2, float i1, float i0)
{
    return _mm256_set_ps(i7, i6, i5, i4, i3, i2, i1, i0);
}

static SIMDINLINE void SIMDCALL storeu2_si(SIMD128Impl::Integer *phi, SIMD128Impl::Integer *plo, Integer src)
{
    _mm256_storeu2_m128i(&phi->v, &plo->v, src);
}

#undef SIMD_WRAPPER_1
#undef SIMD_WRAPPER_2
#undef SIMD_DWRAPPER_2
#undef SIMD_DWRAPPER_2I
#undef SIMD_WRAPPER_2I
#undef SIMD_WRAPPER_3
#undef SIMD_IWRAPPER_1
#undef SIMD_IWRAPPER_2
#undef SIMD_IFWRAPPER_2
#undef SIMD_IFWRAPPER_2I
#undef SIMD_IWRAPPER_2I
#undef SIMD_IWRAPPER_2I_
#undef SIMD_IWRAPPER_2_
#undef SIMD_IWRAPPER_3
#undef SIMD_EMU_IWRAPPER_1
#undef SIMD_EMU_IWRAPPER_1I
#undef SIMD_EMU_IWRAPPER_2
#undef SIMD_EMU_IWRAPPER_2I