1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
|
/*
* Copyright 2018 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "si_pipe.h"
#include "tgsi/tgsi_text.h"
#include "tgsi/tgsi_ureg.h"
void *si_get_blitter_vs(struct si_context *sctx, enum blitter_attrib_type type,
unsigned num_layers)
{
unsigned vs_blit_property;
void **vs;
switch (type) {
case UTIL_BLITTER_ATTRIB_NONE:
vs = num_layers > 1 ? &sctx->vs_blit_pos_layered :
&sctx->vs_blit_pos;
vs_blit_property = SI_VS_BLIT_SGPRS_POS;
break;
case UTIL_BLITTER_ATTRIB_COLOR:
vs = num_layers > 1 ? &sctx->vs_blit_color_layered :
&sctx->vs_blit_color;
vs_blit_property = SI_VS_BLIT_SGPRS_POS_COLOR;
break;
case UTIL_BLITTER_ATTRIB_TEXCOORD_XY:
case UTIL_BLITTER_ATTRIB_TEXCOORD_XYZW:
assert(num_layers == 1);
vs = &sctx->vs_blit_texcoord;
vs_blit_property = SI_VS_BLIT_SGPRS_POS_TEXCOORD;
break;
default:
assert(0);
return NULL;
}
if (*vs)
return *vs;
struct ureg_program *ureg = ureg_create(PIPE_SHADER_VERTEX);
if (!ureg)
return NULL;
/* Tell the shader to load VS inputs from SGPRs: */
ureg_property(ureg, TGSI_PROPERTY_VS_BLIT_SGPRS, vs_blit_property);
ureg_property(ureg, TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION, true);
/* This is just a pass-through shader with 1-3 MOV instructions. */
ureg_MOV(ureg,
ureg_DECL_output(ureg, TGSI_SEMANTIC_POSITION, 0),
ureg_DECL_vs_input(ureg, 0));
if (type != UTIL_BLITTER_ATTRIB_NONE) {
ureg_MOV(ureg,
ureg_DECL_output(ureg, TGSI_SEMANTIC_GENERIC, 0),
ureg_DECL_vs_input(ureg, 1));
}
if (num_layers > 1) {
struct ureg_src instance_id =
ureg_DECL_system_value(ureg, TGSI_SEMANTIC_INSTANCEID, 0);
struct ureg_dst layer =
ureg_DECL_output(ureg, TGSI_SEMANTIC_LAYER, 0);
ureg_MOV(ureg, ureg_writemask(layer, TGSI_WRITEMASK_X),
ureg_scalar(instance_id, TGSI_SWIZZLE_X));
}
ureg_END(ureg);
*vs = ureg_create_shader_and_destroy(ureg, &sctx->b);
return *vs;
}
/**
* This is used when TCS is NULL in the VS->TCS->TES chain. In this case,
* VS passes its outputs to TES directly, so the fixed-function shader only
* has to write TESSOUTER and TESSINNER.
*/
void *si_create_fixed_func_tcs(struct si_context *sctx)
{
struct ureg_src outer, inner;
struct ureg_dst tessouter, tessinner;
struct ureg_program *ureg = ureg_create(PIPE_SHADER_TESS_CTRL);
if (!ureg)
return NULL;
outer = ureg_DECL_system_value(ureg,
TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI, 0);
inner = ureg_DECL_system_value(ureg,
TGSI_SEMANTIC_DEFAULT_TESSINNER_SI, 0);
tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0);
tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0);
ureg_MOV(ureg, tessouter, outer);
ureg_MOV(ureg, tessinner, inner);
ureg_END(ureg);
return ureg_create_shader_and_destroy(ureg, &sctx->b);
}
/* Create a compute shader implementing clear_buffer or copy_buffer. */
void *si_create_dma_compute_shader(struct pipe_context *ctx,
unsigned num_dwords_per_thread,
bool dst_stream_cache_policy, bool is_copy)
{
assert(util_is_power_of_two_nonzero(num_dwords_per_thread));
unsigned store_qualifier = TGSI_MEMORY_COHERENT | TGSI_MEMORY_RESTRICT;
if (dst_stream_cache_policy)
store_qualifier |= TGSI_MEMORY_STREAM_CACHE_POLICY;
/* Don't cache loads, because there is no reuse. */
unsigned load_qualifier = store_qualifier | TGSI_MEMORY_STREAM_CACHE_POLICY;
unsigned num_mem_ops = MAX2(1, num_dwords_per_thread / 4);
unsigned *inst_dwords = alloca(num_mem_ops * sizeof(unsigned));
for (unsigned i = 0; i < num_mem_ops; i++) {
if (i*4 < num_dwords_per_thread)
inst_dwords[i] = MIN2(4, num_dwords_per_thread - i*4);
}
struct ureg_program *ureg = ureg_create(PIPE_SHADER_COMPUTE);
if (!ureg)
return NULL;
ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH, 64);
ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT, 1);
ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH, 1);
struct ureg_src value;
if (!is_copy) {
ureg_property(ureg, TGSI_PROPERTY_CS_USER_DATA_DWORDS, inst_dwords[0]);
value = ureg_DECL_system_value(ureg, TGSI_SEMANTIC_CS_USER_DATA, 0);
}
struct ureg_src tid = ureg_DECL_system_value(ureg, TGSI_SEMANTIC_THREAD_ID, 0);
struct ureg_src blk = ureg_DECL_system_value(ureg, TGSI_SEMANTIC_BLOCK_ID, 0);
struct ureg_dst store_addr = ureg_writemask(ureg_DECL_temporary(ureg), TGSI_WRITEMASK_X);
struct ureg_dst load_addr = ureg_writemask(ureg_DECL_temporary(ureg), TGSI_WRITEMASK_X);
struct ureg_dst dstbuf = ureg_dst(ureg_DECL_buffer(ureg, 0, false));
struct ureg_src srcbuf;
struct ureg_src *values = NULL;
if (is_copy) {
srcbuf = ureg_DECL_buffer(ureg, 1, false);
values = malloc(num_mem_ops * sizeof(struct ureg_src));
}
/* If there are multiple stores, the first store writes into 0+tid,
* the 2nd store writes into 64+tid, the 3rd store writes into 128+tid, etc.
*/
ureg_UMAD(ureg, store_addr, blk, ureg_imm1u(ureg, 64 * num_mem_ops), tid);
/* Convert from a "store size unit" into bytes. */
ureg_UMUL(ureg, store_addr, ureg_src(store_addr),
ureg_imm1u(ureg, 4 * inst_dwords[0]));
ureg_MOV(ureg, load_addr, ureg_src(store_addr));
/* Distance between a load and a store for latency hiding. */
unsigned load_store_distance = is_copy ? 8 : 0;
for (unsigned i = 0; i < num_mem_ops + load_store_distance; i++) {
int d = i - load_store_distance;
if (is_copy && i < num_mem_ops) {
if (i) {
ureg_UADD(ureg, load_addr, ureg_src(load_addr),
ureg_imm1u(ureg, 4 * inst_dwords[i] * 64));
}
values[i] = ureg_src(ureg_DECL_temporary(ureg));
struct ureg_dst dst =
ureg_writemask(ureg_dst(values[i]),
u_bit_consecutive(0, inst_dwords[i]));
struct ureg_src srcs[] = {srcbuf, ureg_src(load_addr)};
ureg_memory_insn(ureg, TGSI_OPCODE_LOAD, &dst, 1, srcs, 2,
load_qualifier, TGSI_TEXTURE_BUFFER, 0);
}
if (d >= 0) {
if (d) {
ureg_UADD(ureg, store_addr, ureg_src(store_addr),
ureg_imm1u(ureg, 4 * inst_dwords[d] * 64));
}
struct ureg_dst dst =
ureg_writemask(dstbuf, u_bit_consecutive(0, inst_dwords[d]));
struct ureg_src srcs[] =
{ureg_src(store_addr), is_copy ? values[d] : value};
ureg_memory_insn(ureg, TGSI_OPCODE_STORE, &dst, 1, srcs, 2,
store_qualifier, TGSI_TEXTURE_BUFFER, 0);
}
}
ureg_END(ureg);
struct pipe_compute_state state = {};
state.ir_type = PIPE_SHADER_IR_TGSI;
state.prog = ureg_get_tokens(ureg, NULL);
void *cs = ctx->create_compute_state(ctx, &state);
ureg_destroy(ureg);
free(values);
return cs;
}
/* Create the compute shader that is used to collect the results.
*
* One compute grid with a single thread is launched for every query result
* buffer. The thread (optionally) reads a previous summary buffer, then
* accumulates data from the query result buffer, and writes the result either
* to a summary buffer to be consumed by the next grid invocation or to the
* user-supplied buffer.
*
* Data layout:
*
* CONST
* 0.x = end_offset
* 0.y = result_stride
* 0.z = result_count
* 0.w = bit field:
* 1: read previously accumulated values
* 2: write accumulated values for chaining
* 4: write result available
* 8: convert result to boolean (0/1)
* 16: only read one dword and use that as result
* 32: apply timestamp conversion
* 64: store full 64 bits result
* 128: store signed 32 bits result
* 256: SO_OVERFLOW mode: take the difference of two successive half-pairs
* 1.x = fence_offset
* 1.y = pair_stride
* 1.z = pair_count
*
* BUFFER[0] = query result buffer
* BUFFER[1] = previous summary buffer
* BUFFER[2] = next summary buffer or user-supplied buffer
*/
void *si_create_query_result_cs(struct si_context *sctx)
{
/* TEMP[0].xy = accumulated result so far
* TEMP[0].z = result not available
*
* TEMP[1].x = current result index
* TEMP[1].y = current pair index
*/
static const char text_tmpl[] =
"COMP\n"
"PROPERTY CS_FIXED_BLOCK_WIDTH 1\n"
"PROPERTY CS_FIXED_BLOCK_HEIGHT 1\n"
"PROPERTY CS_FIXED_BLOCK_DEPTH 1\n"
"DCL BUFFER[0]\n"
"DCL BUFFER[1]\n"
"DCL BUFFER[2]\n"
"DCL CONST[0][0..1]\n"
"DCL TEMP[0..5]\n"
"IMM[0] UINT32 {0, 31, 2147483647, 4294967295}\n"
"IMM[1] UINT32 {1, 2, 4, 8}\n"
"IMM[2] UINT32 {16, 32, 64, 128}\n"
"IMM[3] UINT32 {1000000, 0, %u, 0}\n" /* for timestamp conversion */
"IMM[4] UINT32 {256, 0, 0, 0}\n"
"AND TEMP[5], CONST[0][0].wwww, IMM[2].xxxx\n"
"UIF TEMP[5]\n"
/* Check result availability. */
"LOAD TEMP[1].x, BUFFER[0], CONST[0][1].xxxx\n"
"ISHR TEMP[0].z, TEMP[1].xxxx, IMM[0].yyyy\n"
"MOV TEMP[1], TEMP[0].zzzz\n"
"NOT TEMP[0].z, TEMP[0].zzzz\n"
/* Load result if available. */
"UIF TEMP[1]\n"
"LOAD TEMP[0].xy, BUFFER[0], IMM[0].xxxx\n"
"ENDIF\n"
"ELSE\n"
/* Load previously accumulated result if requested. */
"MOV TEMP[0], IMM[0].xxxx\n"
"AND TEMP[4], CONST[0][0].wwww, IMM[1].xxxx\n"
"UIF TEMP[4]\n"
"LOAD TEMP[0].xyz, BUFFER[1], IMM[0].xxxx\n"
"ENDIF\n"
"MOV TEMP[1].x, IMM[0].xxxx\n"
"BGNLOOP\n"
/* Break if accumulated result so far is not available. */
"UIF TEMP[0].zzzz\n"
"BRK\n"
"ENDIF\n"
/* Break if result_index >= result_count. */
"USGE TEMP[5], TEMP[1].xxxx, CONST[0][0].zzzz\n"
"UIF TEMP[5]\n"
"BRK\n"
"ENDIF\n"
/* Load fence and check result availability */
"UMAD TEMP[5].x, TEMP[1].xxxx, CONST[0][0].yyyy, CONST[0][1].xxxx\n"
"LOAD TEMP[5].x, BUFFER[0], TEMP[5].xxxx\n"
"ISHR TEMP[0].z, TEMP[5].xxxx, IMM[0].yyyy\n"
"NOT TEMP[0].z, TEMP[0].zzzz\n"
"UIF TEMP[0].zzzz\n"
"BRK\n"
"ENDIF\n"
"MOV TEMP[1].y, IMM[0].xxxx\n"
"BGNLOOP\n"
/* Load start and end. */
"UMUL TEMP[5].x, TEMP[1].xxxx, CONST[0][0].yyyy\n"
"UMAD TEMP[5].x, TEMP[1].yyyy, CONST[0][1].yyyy, TEMP[5].xxxx\n"
"LOAD TEMP[2].xy, BUFFER[0], TEMP[5].xxxx\n"
"UADD TEMP[5].y, TEMP[5].xxxx, CONST[0][0].xxxx\n"
"LOAD TEMP[3].xy, BUFFER[0], TEMP[5].yyyy\n"
"U64ADD TEMP[4].xy, TEMP[3], -TEMP[2]\n"
"AND TEMP[5].z, CONST[0][0].wwww, IMM[4].xxxx\n"
"UIF TEMP[5].zzzz\n"
/* Load second start/end half-pair and
* take the difference
*/
"UADD TEMP[5].xy, TEMP[5], IMM[1].wwww\n"
"LOAD TEMP[2].xy, BUFFER[0], TEMP[5].xxxx\n"
"LOAD TEMP[3].xy, BUFFER[0], TEMP[5].yyyy\n"
"U64ADD TEMP[3].xy, TEMP[3], -TEMP[2]\n"
"U64ADD TEMP[4].xy, TEMP[4], -TEMP[3]\n"
"ENDIF\n"
"U64ADD TEMP[0].xy, TEMP[0], TEMP[4]\n"
/* Increment pair index */
"UADD TEMP[1].y, TEMP[1].yyyy, IMM[1].xxxx\n"
"USGE TEMP[5], TEMP[1].yyyy, CONST[0][1].zzzz\n"
"UIF TEMP[5]\n"
"BRK\n"
"ENDIF\n"
"ENDLOOP\n"
/* Increment result index */
"UADD TEMP[1].x, TEMP[1].xxxx, IMM[1].xxxx\n"
"ENDLOOP\n"
"ENDIF\n"
"AND TEMP[4], CONST[0][0].wwww, IMM[1].yyyy\n"
"UIF TEMP[4]\n"
/* Store accumulated data for chaining. */
"STORE BUFFER[2].xyz, IMM[0].xxxx, TEMP[0]\n"
"ELSE\n"
"AND TEMP[4], CONST[0][0].wwww, IMM[1].zzzz\n"
"UIF TEMP[4]\n"
/* Store result availability. */
"NOT TEMP[0].z, TEMP[0]\n"
"AND TEMP[0].z, TEMP[0].zzzz, IMM[1].xxxx\n"
"STORE BUFFER[2].x, IMM[0].xxxx, TEMP[0].zzzz\n"
"AND TEMP[4], CONST[0][0].wwww, IMM[2].zzzz\n"
"UIF TEMP[4]\n"
"STORE BUFFER[2].y, IMM[0].xxxx, IMM[0].xxxx\n"
"ENDIF\n"
"ELSE\n"
/* Store result if it is available. */
"NOT TEMP[4], TEMP[0].zzzz\n"
"UIF TEMP[4]\n"
/* Apply timestamp conversion */
"AND TEMP[4], CONST[0][0].wwww, IMM[2].yyyy\n"
"UIF TEMP[4]\n"
"U64MUL TEMP[0].xy, TEMP[0], IMM[3].xyxy\n"
"U64DIV TEMP[0].xy, TEMP[0], IMM[3].zwzw\n"
"ENDIF\n"
/* Convert to boolean */
"AND TEMP[4], CONST[0][0].wwww, IMM[1].wwww\n"
"UIF TEMP[4]\n"
"U64SNE TEMP[0].x, TEMP[0].xyxy, IMM[4].zwzw\n"
"AND TEMP[0].x, TEMP[0].xxxx, IMM[1].xxxx\n"
"MOV TEMP[0].y, IMM[0].xxxx\n"
"ENDIF\n"
"AND TEMP[4], CONST[0][0].wwww, IMM[2].zzzz\n"
"UIF TEMP[4]\n"
"STORE BUFFER[2].xy, IMM[0].xxxx, TEMP[0].xyxy\n"
"ELSE\n"
/* Clamping */
"UIF TEMP[0].yyyy\n"
"MOV TEMP[0].x, IMM[0].wwww\n"
"ENDIF\n"
"AND TEMP[4], CONST[0][0].wwww, IMM[2].wwww\n"
"UIF TEMP[4]\n"
"UMIN TEMP[0].x, TEMP[0].xxxx, IMM[0].zzzz\n"
"ENDIF\n"
"STORE BUFFER[2].x, IMM[0].xxxx, TEMP[0].xxxx\n"
"ENDIF\n"
"ENDIF\n"
"ENDIF\n"
"ENDIF\n"
"END\n";
char text[sizeof(text_tmpl) + 32];
struct tgsi_token tokens[1024];
struct pipe_compute_state state = {};
/* Hard code the frequency into the shader so that the backend can
* use the full range of optimizations for divide-by-constant.
*/
snprintf(text, sizeof(text), text_tmpl,
sctx->screen->info.clock_crystal_freq);
if (!tgsi_text_translate(text, tokens, ARRAY_SIZE(tokens))) {
assert(false);
return NULL;
}
state.ir_type = PIPE_SHADER_IR_TGSI;
state.prog = tokens;
return sctx->b.create_compute_state(&sctx->b, &state);
}
|