aboutsummaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/radeonsi/si_shader_llvm_ps.c
blob: 6e4d5d429c7bd5f6fdd8f1c66d4b3a0a570f4b80 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
/*
 * Copyright 2020 Advanced Micro Devices, Inc.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * on the rights to use, copy, modify, merge, publish, distribute, sub
 * license, and/or sell copies of the Software, and to permit persons to whom
 * the Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#include "si_pipe.h"
#include "si_shader_internal.h"
#include "sid.h"

LLVMValueRef si_get_sample_id(struct si_shader_context *ctx)
{
   return si_unpack_param(ctx, ctx->args.ancillary, 8, 4);
}

static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
{
   struct si_shader_context *ctx = si_shader_context_from_abi(abi);
   return ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args.sample_coverage));
}

static LLVMValueRef load_sample_position(struct ac_shader_abi *abi, LLVMValueRef sample_id)
{
   struct si_shader_context *ctx = si_shader_context_from_abi(abi);
   LLVMValueRef desc = ac_get_arg(&ctx->ac, ctx->rw_buffers);
   LLVMValueRef buf_index = LLVMConstInt(ctx->ac.i32, SI_PS_CONST_SAMPLE_POSITIONS, 0);
   LLVMValueRef resource = ac_build_load_to_sgpr(&ctx->ac, desc, buf_index);

   /* offset = sample_id * 8  (8 = 2 floats containing samplepos.xy) */
   LLVMValueRef offset0 =
      LLVMBuildMul(ctx->ac.builder, sample_id, LLVMConstInt(ctx->ac.i32, 8, 0), "");
   LLVMValueRef offset1 =
      LLVMBuildAdd(ctx->ac.builder, offset0, LLVMConstInt(ctx->ac.i32, 4, 0), "");

   LLVMValueRef pos[4] = {si_buffer_load_const(ctx, resource, offset0),
                          si_buffer_load_const(ctx, resource, offset1),
                          LLVMConstReal(ctx->ac.f32, 0), LLVMConstReal(ctx->ac.f32, 0)};

   return ac_build_gather_values(&ctx->ac, pos, 4);
}

static LLVMValueRef si_nir_emit_fbfetch(struct ac_shader_abi *abi)
{
   struct si_shader_context *ctx = si_shader_context_from_abi(abi);
   struct ac_image_args args = {};
   LLVMValueRef ptr, image, fmask;

   /* Ignore src0, because KHR_blend_func_extended disallows multiple render
    * targets.
    */

   /* Load the image descriptor. */
   STATIC_ASSERT(SI_PS_IMAGE_COLORBUF0 % 2 == 0);
   ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
   ptr =
      LLVMBuildPointerCast(ctx->ac.builder, ptr, ac_array_in_const32_addr_space(ctx->ac.v8i32), "");
   image =
      ac_build_load_to_sgpr(&ctx->ac, ptr, LLVMConstInt(ctx->ac.i32, SI_PS_IMAGE_COLORBUF0 / 2, 0));

   unsigned chan = 0;

   args.coords[chan++] = si_unpack_param(ctx, ctx->pos_fixed_pt, 0, 16);

   if (!ctx->shader->key.mono.u.ps.fbfetch_is_1D)
      args.coords[chan++] = si_unpack_param(ctx, ctx->pos_fixed_pt, 16, 16);

   /* Get the current render target layer index. */
   if (ctx->shader->key.mono.u.ps.fbfetch_layered)
      args.coords[chan++] = si_unpack_param(ctx, ctx->args.ancillary, 16, 11);

   if (ctx->shader->key.mono.u.ps.fbfetch_msaa)
      args.coords[chan++] = si_get_sample_id(ctx);

   if (ctx->shader->key.mono.u.ps.fbfetch_msaa && !(ctx->screen->debug_flags & DBG(NO_FMASK))) {
      fmask = ac_build_load_to_sgpr(&ctx->ac, ptr,
                                    LLVMConstInt(ctx->ac.i32, SI_PS_IMAGE_COLORBUF0_FMASK / 2, 0));

      ac_apply_fmask_to_sample(&ctx->ac, fmask, args.coords,
                               ctx->shader->key.mono.u.ps.fbfetch_layered);
   }

   args.opcode = ac_image_load;
   args.resource = image;
   args.dmask = 0xf;
   args.attributes = AC_FUNC_ATTR_READNONE;

   if (ctx->shader->key.mono.u.ps.fbfetch_msaa)
      args.dim =
         ctx->shader->key.mono.u.ps.fbfetch_layered ? ac_image_2darraymsaa : ac_image_2dmsaa;
   else if (ctx->shader->key.mono.u.ps.fbfetch_is_1D)
      args.dim = ctx->shader->key.mono.u.ps.fbfetch_layered ? ac_image_1darray : ac_image_1d;
   else
      args.dim = ctx->shader->key.mono.u.ps.fbfetch_layered ? ac_image_2darray : ac_image_2d;

   return ac_build_image_opcode(&ctx->ac, &args);
}

static LLVMValueRef si_build_fs_interp(struct si_shader_context *ctx, unsigned attr_index,
                                       unsigned chan, LLVMValueRef prim_mask, LLVMValueRef i,
                                       LLVMValueRef j)
{
   if (i || j) {
      return ac_build_fs_interp(&ctx->ac, LLVMConstInt(ctx->ac.i32, chan, 0),
                                LLVMConstInt(ctx->ac.i32, attr_index, 0), prim_mask, i, j);
   }
   return ac_build_fs_interp_mov(&ctx->ac, LLVMConstInt(ctx->ac.i32, 2, 0), /* P0 */
                                 LLVMConstInt(ctx->ac.i32, chan, 0),
                                 LLVMConstInt(ctx->ac.i32, attr_index, 0), prim_mask);
}

/**
 * Interpolate a fragment shader input.
 *
 * @param ctx		context
 * @param input_index		index of the input in hardware
 * @param semantic_name		TGSI_SEMANTIC_*
 * @param semantic_index	semantic index
 * @param num_interp_inputs	number of all interpolated inputs (= BCOLOR offset)
 * @param colors_read_mask	color components read (4 bits for each color, 8 bits in total)
 * @param interp_param		interpolation weights (i,j)
 * @param prim_mask		SI_PARAM_PRIM_MASK
 * @param face			SI_PARAM_FRONT_FACE
 * @param result		the return value (4 components)
 */
static void interp_fs_color(struct si_shader_context *ctx, unsigned input_index,
                            unsigned semantic_index, unsigned num_interp_inputs,
                            unsigned colors_read_mask, LLVMValueRef interp_param,
                            LLVMValueRef prim_mask, LLVMValueRef face, LLVMValueRef result[4])
{
   LLVMValueRef i = NULL, j = NULL;
   unsigned chan;

   /* fs.constant returns the param from the middle vertex, so it's not
    * really useful for flat shading. It's meant to be used for custom
    * interpolation (but the intrinsic can't fetch from the other two
    * vertices).
    *
    * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
    * to do the right thing. The only reason we use fs.constant is that
    * fs.interp cannot be used on integers, because they can be equal
    * to NaN.
    *
    * When interp is false we will use fs.constant or for newer llvm,
    * amdgcn.interp.mov.
    */
   bool interp = interp_param != NULL;

   if (interp) {
      interp_param =
         LLVMBuildBitCast(ctx->ac.builder, interp_param, LLVMVectorType(ctx->ac.f32, 2), "");

      i = LLVMBuildExtractElement(ctx->ac.builder, interp_param, ctx->ac.i32_0, "");
      j = LLVMBuildExtractElement(ctx->ac.builder, interp_param, ctx->ac.i32_1, "");
   }

   if (ctx->shader->key.part.ps.prolog.color_two_side) {
      LLVMValueRef is_face_positive;

      /* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
       * otherwise it's at offset "num_inputs".
       */
      unsigned back_attr_offset = num_interp_inputs;
      if (semantic_index == 1 && colors_read_mask & 0xf)
         back_attr_offset += 1;

      is_face_positive = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE, face, ctx->ac.i32_0, "");

      for (chan = 0; chan < 4; chan++) {
         LLVMValueRef front, back;

         front = si_build_fs_interp(ctx, input_index, chan, prim_mask, i, j);
         back = si_build_fs_interp(ctx, back_attr_offset, chan, prim_mask, i, j);

         result[chan] = LLVMBuildSelect(ctx->ac.builder, is_face_positive, front, back, "");
      }
   } else {
      for (chan = 0; chan < 4; chan++) {
         result[chan] = si_build_fs_interp(ctx, input_index, chan, prim_mask, i, j);
      }
   }
}

static void si_alpha_test(struct si_shader_context *ctx, LLVMValueRef alpha)
{
   if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
      static LLVMRealPredicate cond_map[PIPE_FUNC_ALWAYS + 1] = {
         [PIPE_FUNC_LESS] = LLVMRealOLT,     [PIPE_FUNC_EQUAL] = LLVMRealOEQ,
         [PIPE_FUNC_LEQUAL] = LLVMRealOLE,   [PIPE_FUNC_GREATER] = LLVMRealOGT,
         [PIPE_FUNC_NOTEQUAL] = LLVMRealONE, [PIPE_FUNC_GEQUAL] = LLVMRealOGE,
      };
      LLVMRealPredicate cond = cond_map[ctx->shader->key.part.ps.epilog.alpha_func];
      assert(cond);

      LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn, SI_PARAM_ALPHA_REF);
      LLVMValueRef alpha_pass = LLVMBuildFCmp(ctx->ac.builder, cond, alpha, alpha_ref, "");
      ac_build_kill_if_false(&ctx->ac, alpha_pass);
   } else {
      ac_build_kill_if_false(&ctx->ac, ctx->ac.i1false);
   }
}

static LLVMValueRef si_scale_alpha_by_sample_mask(struct si_shader_context *ctx, LLVMValueRef alpha,
                                                  unsigned samplemask_param)
{
   LLVMValueRef coverage;

   /* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
   coverage = LLVMGetParam(ctx->main_fn, samplemask_param);
   coverage = ac_to_integer(&ctx->ac, coverage);

   coverage = ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i32", ctx->ac.i32, &coverage, 1,
                                 AC_FUNC_ATTR_READNONE);

   coverage = LLVMBuildUIToFP(ctx->ac.builder, coverage, ctx->ac.f32, "");

   coverage = LLVMBuildFMul(ctx->ac.builder, coverage,
                            LLVMConstReal(ctx->ac.f32, 1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");

   return LLVMBuildFMul(ctx->ac.builder, alpha, coverage, "");
}

struct si_ps_exports {
   unsigned num;
   struct ac_export_args args[10];
};

static void si_export_mrt_z(struct si_shader_context *ctx, LLVMValueRef depth, LLVMValueRef stencil,
                            LLVMValueRef samplemask, struct si_ps_exports *exp)
{
   struct ac_export_args args;

   ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);

   memcpy(&exp->args[exp->num++], &args, sizeof(args));
}

/* Initialize arguments for the shader export intrinsic */
static void si_llvm_init_ps_export_args(struct si_shader_context *ctx, LLVMValueRef *values,
                                        unsigned target, struct ac_export_args *args)
{
   const struct si_shader_key *key = &ctx->shader->key;
   unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
   LLVMValueRef f32undef = LLVMGetUndef(ctx->ac.f32);
   unsigned spi_shader_col_format;
   unsigned chan;
   bool is_int8, is_int10;
   int cbuf = target - V_008DFC_SQ_EXP_MRT;

   assert(cbuf >= 0 && cbuf < 8);

   spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
   is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
   is_int10 = (key->part.ps.epilog.color_is_int10 >> cbuf) & 0x1;

   /* Default is 0xf. Adjusted below depending on the format. */
   args->enabled_channels = 0xf; /* writemask */

   /* Specify whether the EXEC mask represents the valid mask */
   args->valid_mask = 0;

   /* Specify whether this is the last export */
   args->done = 0;

   /* Specify the target we are exporting */
   args->target = target;

   args->compr = false;
   args->out[0] = f32undef;
   args->out[1] = f32undef;
   args->out[2] = f32undef;
   args->out[3] = f32undef;

   LLVMValueRef (*packf)(struct ac_llvm_context * ctx, LLVMValueRef args[2]) = NULL;
   LLVMValueRef (*packi)(struct ac_llvm_context * ctx, LLVMValueRef args[2], unsigned bits,
                         bool hi) = NULL;

   switch (spi_shader_col_format) {
   case V_028714_SPI_SHADER_ZERO:
      args->enabled_channels = 0; /* writemask */
      args->target = V_008DFC_SQ_EXP_NULL;
      break;

   case V_028714_SPI_SHADER_32_R:
      args->enabled_channels = 1; /* writemask */
      args->out[0] = values[0];
      break;

   case V_028714_SPI_SHADER_32_GR:
      args->enabled_channels = 0x3; /* writemask */
      args->out[0] = values[0];
      args->out[1] = values[1];
      break;

   case V_028714_SPI_SHADER_32_AR:
      if (ctx->screen->info.chip_class >= GFX10) {
         args->enabled_channels = 0x3; /* writemask */
         args->out[0] = values[0];
         args->out[1] = values[3];
      } else {
         args->enabled_channels = 0x9; /* writemask */
         args->out[0] = values[0];
         args->out[3] = values[3];
      }
      break;

   case V_028714_SPI_SHADER_FP16_ABGR:
      packf = ac_build_cvt_pkrtz_f16;
      break;

   case V_028714_SPI_SHADER_UNORM16_ABGR:
      packf = ac_build_cvt_pknorm_u16;
      break;

   case V_028714_SPI_SHADER_SNORM16_ABGR:
      packf = ac_build_cvt_pknorm_i16;
      break;

   case V_028714_SPI_SHADER_UINT16_ABGR:
      packi = ac_build_cvt_pk_u16;
      break;

   case V_028714_SPI_SHADER_SINT16_ABGR:
      packi = ac_build_cvt_pk_i16;
      break;

   case V_028714_SPI_SHADER_32_ABGR:
      memcpy(&args->out[0], values, sizeof(values[0]) * 4);
      break;
   }

   /* Pack f16 or norm_i16/u16. */
   if (packf) {
      for (chan = 0; chan < 2; chan++) {
         LLVMValueRef pack_args[2] = {values[2 * chan], values[2 * chan + 1]};
         LLVMValueRef packed;

         packed = packf(&ctx->ac, pack_args);
         args->out[chan] = ac_to_float(&ctx->ac, packed);
      }
      args->compr = 1; /* COMPR flag */
   }
   /* Pack i16/u16. */
   if (packi) {
      for (chan = 0; chan < 2; chan++) {
         LLVMValueRef pack_args[2] = {ac_to_integer(&ctx->ac, values[2 * chan]),
                                      ac_to_integer(&ctx->ac, values[2 * chan + 1])};
         LLVMValueRef packed;

         packed = packi(&ctx->ac, pack_args, is_int8 ? 8 : is_int10 ? 10 : 16, chan == 1);
         args->out[chan] = ac_to_float(&ctx->ac, packed);
      }
      args->compr = 1; /* COMPR flag */
   }
}

static void si_export_mrt_color(struct si_shader_context *ctx, LLVMValueRef *color, unsigned index,
                                unsigned samplemask_param, bool is_last, struct si_ps_exports *exp)
{
   int i;

   /* Clamp color */
   if (ctx->shader->key.part.ps.epilog.clamp_color)
      for (i = 0; i < 4; i++)
         color[i] = ac_build_clamp(&ctx->ac, color[i]);

   /* Alpha to one */
   if (ctx->shader->key.part.ps.epilog.alpha_to_one)
      color[3] = ctx->ac.f32_1;

   /* Alpha test */
   if (index == 0 && ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
      si_alpha_test(ctx, color[3]);

   /* Line & polygon smoothing */
   if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
      color[3] = si_scale_alpha_by_sample_mask(ctx, color[3], samplemask_param);

   /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
   if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
      struct ac_export_args args[8];
      int c, last = -1;

      /* Get the export arguments, also find out what the last one is. */
      for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
         si_llvm_init_ps_export_args(ctx, color, V_008DFC_SQ_EXP_MRT + c, &args[c]);
         if (args[c].enabled_channels)
            last = c;
      }

      /* Emit all exports. */
      for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
         if (is_last && last == c) {
            args[c].valid_mask = 1; /* whether the EXEC mask is valid */
            args[c].done = 1;       /* DONE bit */
         } else if (!args[c].enabled_channels)
            continue; /* unnecessary NULL export */

         memcpy(&exp->args[exp->num++], &args[c], sizeof(args[c]));
      }
   } else {
      struct ac_export_args args;

      /* Export */
      si_llvm_init_ps_export_args(ctx, color, V_008DFC_SQ_EXP_MRT + index, &args);
      if (is_last) {
         args.valid_mask = 1; /* whether the EXEC mask is valid */
         args.done = 1;       /* DONE bit */
      } else if (!args.enabled_channels)
         return; /* unnecessary NULL export */

      memcpy(&exp->args[exp->num++], &args, sizeof(args));
   }
}

static void si_emit_ps_exports(struct si_shader_context *ctx, struct si_ps_exports *exp)
{
   for (unsigned i = 0; i < exp->num; i++)
      ac_build_export(&ctx->ac, &exp->args[i]);
}

/**
 * Return PS outputs in this order:
 *
 * v[0:3] = color0.xyzw
 * v[4:7] = color1.xyzw
 * ...
 * vN+0 = Depth
 * vN+1 = Stencil
 * vN+2 = SampleMask
 * vN+3 = SampleMaskIn (used for OpenGL smoothing)
 *
 * The alpha-ref SGPR is returned via its original location.
 */
static void si_llvm_return_fs_outputs(struct ac_shader_abi *abi, unsigned max_outputs,
                                      LLVMValueRef *addrs)
{
   struct si_shader_context *ctx = si_shader_context_from_abi(abi);
   struct si_shader *shader = ctx->shader;
   struct si_shader_info *info = &shader->selector->info;
   LLVMBuilderRef builder = ctx->ac.builder;
   unsigned i, j, first_vgpr, vgpr;

   LLVMValueRef color[8][4] = {};
   LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
   LLVMValueRef ret;

   if (ctx->postponed_kill)
      ac_build_kill_if_false(&ctx->ac, LLVMBuildLoad(builder, ctx->postponed_kill, ""));

   /* Read the output values. */
   for (i = 0; i < info->num_outputs; i++) {
      unsigned semantic_name = info->output_semantic_name[i];
      unsigned semantic_index = info->output_semantic_index[i];

      switch (semantic_name) {
      case TGSI_SEMANTIC_COLOR:
         assert(semantic_index < 8);
         for (j = 0; j < 4; j++) {
            LLVMValueRef ptr = addrs[4 * i + j];
            LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
            color[semantic_index][j] = result;
         }
         break;
      case TGSI_SEMANTIC_POSITION:
         depth = LLVMBuildLoad(builder, addrs[4 * i + 0], "");
         break;
      case TGSI_SEMANTIC_STENCIL:
         stencil = LLVMBuildLoad(builder, addrs[4 * i + 0], "");
         break;
      case TGSI_SEMANTIC_SAMPLEMASK:
         samplemask = LLVMBuildLoad(builder, addrs[4 * i + 0], "");
         break;
      default:
         fprintf(stderr, "Warning: GFX6 unhandled fs output type:%d\n", semantic_name);
      }
   }

   /* Fill the return structure. */
   ret = ctx->return_value;

   /* Set SGPRs. */
   ret = LLVMBuildInsertValue(
      builder, ret, ac_to_integer(&ctx->ac, LLVMGetParam(ctx->main_fn, SI_PARAM_ALPHA_REF)),
      SI_SGPR_ALPHA_REF, "");

   /* Set VGPRs */
   first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
   for (i = 0; i < ARRAY_SIZE(color); i++) {
      if (!color[i][0])
         continue;

      for (j = 0; j < 4; j++)
         ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
   }
   if (depth)
      ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
   if (stencil)
      ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
   if (samplemask)
      ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");

   /* Add the input sample mask for smoothing at the end. */
   if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
      vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
   ret = LLVMBuildInsertValue(builder, ret, LLVMGetParam(ctx->main_fn, SI_PARAM_SAMPLE_COVERAGE),
                              vgpr++, "");

   ctx->return_value = ret;
}

static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
                                         LLVMValueRef param_rw_buffers,
                                         struct ac_arg param_pos_fixed_pt)
{
   LLVMBuilderRef builder = ctx->ac.builder;
   LLVMValueRef slot, desc, offset, row, bit, address[2];

   /* Use the fixed-point gl_FragCoord input.
    * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
    * per coordinate to get the repeating effect.
    */
   address[0] = si_unpack_param(ctx, param_pos_fixed_pt, 0, 5);
   address[1] = si_unpack_param(ctx, param_pos_fixed_pt, 16, 5);

   /* Load the buffer descriptor. */
   slot = LLVMConstInt(ctx->ac.i32, SI_PS_CONST_POLY_STIPPLE, 0);
   desc = ac_build_load_to_sgpr(&ctx->ac, param_rw_buffers, slot);

   /* The stipple pattern is 32x32, each row has 32 bits. */
   offset = LLVMBuildMul(builder, address[1], LLVMConstInt(ctx->ac.i32, 4, 0), "");
   row = si_buffer_load_const(ctx, desc, offset);
   row = ac_to_integer(&ctx->ac, row);
   bit = LLVMBuildLShr(builder, row, address[0], "");
   bit = LLVMBuildTrunc(builder, bit, ctx->ac.i1, "");
   ac_build_kill_if_false(&ctx->ac, bit);
}

/**
 * Build the pixel shader prolog function. This handles:
 * - two-side color selection and interpolation
 * - overriding interpolation parameters for the API PS
 * - polygon stippling
 *
 * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
 * overriden by other states. (e.g. per-sample interpolation)
 * Interpolated colors are stored after the preloaded VGPRs.
 */
void si_llvm_build_ps_prolog(struct si_shader_context *ctx, union si_shader_part_key *key)
{
   LLVMValueRef ret, func;
   int num_returns, i, num_color_channels;

   memset(&ctx->args, 0, sizeof(ctx->args));

   /* Declare inputs. */
   LLVMTypeRef return_types[AC_MAX_ARGS];
   num_returns = 0;
   num_color_channels = util_bitcount(key->ps_prolog.colors_read);
   assert(key->ps_prolog.num_input_sgprs + key->ps_prolog.num_input_vgprs + num_color_channels <=
          AC_MAX_ARGS);
   for (i = 0; i < key->ps_prolog.num_input_sgprs; i++) {
      ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
      return_types[num_returns++] = ctx->ac.i32;
   }

   struct ac_arg pos_fixed_pt;
   struct ac_arg ancillary;
   struct ac_arg param_sample_mask;
   for (i = 0; i < key->ps_prolog.num_input_vgprs; i++) {
      struct ac_arg *arg = NULL;
      if (i == key->ps_prolog.ancillary_vgpr_index) {
         arg = &ancillary;
      } else if (i == key->ps_prolog.ancillary_vgpr_index + 1) {
         arg = &param_sample_mask;
      } else if (i == key->ps_prolog.num_input_vgprs - 1) {
         /* POS_FIXED_PT is always last. */
         arg = &pos_fixed_pt;
      }
      ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, arg);
      return_types[num_returns++] = ctx->ac.f32;
   }

   /* Declare outputs (same as inputs + add colors if needed) */
   for (i = 0; i < num_color_channels; i++)
      return_types[num_returns++] = ctx->ac.f32;

   /* Create the function. */
   si_llvm_create_func(ctx, "ps_prolog", return_types, num_returns, 0);
   func = ctx->main_fn;

   /* Copy inputs to outputs. This should be no-op, as the registers match,
    * but it will prevent the compiler from overwriting them unintentionally.
    */
   ret = ctx->return_value;
   for (i = 0; i < ctx->args.arg_count; i++) {
      LLVMValueRef p = LLVMGetParam(func, i);
      ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
   }

   /* Polygon stippling. */
   if (key->ps_prolog.states.poly_stipple) {
      LLVMValueRef list = si_prolog_get_rw_buffers(ctx);

      si_llvm_emit_polygon_stipple(ctx, list, pos_fixed_pt);
   }

   if (key->ps_prolog.states.bc_optimize_for_persp ||
       key->ps_prolog.states.bc_optimize_for_linear) {
      unsigned i, base = key->ps_prolog.num_input_sgprs;
      LLVMValueRef center[2], centroid[2], tmp, bc_optimize;

      /* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
       * The hw doesn't compute CENTROID if the whole wave only
       * contains fully-covered quads.
       *
       * PRIM_MASK is after user SGPRs.
       */
      bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
      bc_optimize =
         LLVMBuildLShr(ctx->ac.builder, bc_optimize, LLVMConstInt(ctx->ac.i32, 31, 0), "");
      bc_optimize = LLVMBuildTrunc(ctx->ac.builder, bc_optimize, ctx->ac.i1, "");

      if (key->ps_prolog.states.bc_optimize_for_persp) {
         /* Read PERSP_CENTER. */
         for (i = 0; i < 2; i++)
            center[i] = LLVMGetParam(func, base + 2 + i);
         /* Read PERSP_CENTROID. */
         for (i = 0; i < 2; i++)
            centroid[i] = LLVMGetParam(func, base + 4 + i);
         /* Select PERSP_CENTROID. */
         for (i = 0; i < 2; i++) {
            tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize, center[i], centroid[i], "");
            ret = LLVMBuildInsertValue(ctx->ac.builder, ret, tmp, base + 4 + i, "");
         }
      }
      if (key->ps_prolog.states.bc_optimize_for_linear) {
         /* Read LINEAR_CENTER. */
         for (i = 0; i < 2; i++)
            center[i] = LLVMGetParam(func, base + 8 + i);
         /* Read LINEAR_CENTROID. */
         for (i = 0; i < 2; i++)
            centroid[i] = LLVMGetParam(func, base + 10 + i);
         /* Select LINEAR_CENTROID. */
         for (i = 0; i < 2; i++) {
            tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize, center[i], centroid[i], "");
            ret = LLVMBuildInsertValue(ctx->ac.builder, ret, tmp, base + 10 + i, "");
         }
      }
   }

   /* Force per-sample interpolation. */
   if (key->ps_prolog.states.force_persp_sample_interp) {
      unsigned i, base = key->ps_prolog.num_input_sgprs;
      LLVMValueRef persp_sample[2];

      /* Read PERSP_SAMPLE. */
      for (i = 0; i < 2; i++)
         persp_sample[i] = LLVMGetParam(func, base + i);
      /* Overwrite PERSP_CENTER. */
      for (i = 0; i < 2; i++)
         ret = LLVMBuildInsertValue(ctx->ac.builder, ret, persp_sample[i], base + 2 + i, "");
      /* Overwrite PERSP_CENTROID. */
      for (i = 0; i < 2; i++)
         ret = LLVMBuildInsertValue(ctx->ac.builder, ret, persp_sample[i], base + 4 + i, "");
   }
   if (key->ps_prolog.states.force_linear_sample_interp) {
      unsigned i, base = key->ps_prolog.num_input_sgprs;
      LLVMValueRef linear_sample[2];

      /* Read LINEAR_SAMPLE. */
      for (i = 0; i < 2; i++)
         linear_sample[i] = LLVMGetParam(func, base + 6 + i);
      /* Overwrite LINEAR_CENTER. */
      for (i = 0; i < 2; i++)
         ret = LLVMBuildInsertValue(ctx->ac.builder, ret, linear_sample[i], base + 8 + i, "");
      /* Overwrite LINEAR_CENTROID. */
      for (i = 0; i < 2; i++)
         ret = LLVMBuildInsertValue(ctx->ac.builder, ret, linear_sample[i], base + 10 + i, "");
   }

   /* Force center interpolation. */
   if (key->ps_prolog.states.force_persp_center_interp) {
      unsigned i, base = key->ps_prolog.num_input_sgprs;
      LLVMValueRef persp_center[2];

      /* Read PERSP_CENTER. */
      for (i = 0; i < 2; i++)
         persp_center[i] = LLVMGetParam(func, base + 2 + i);
      /* Overwrite PERSP_SAMPLE. */
      for (i = 0; i < 2; i++)
         ret = LLVMBuildInsertValue(ctx->ac.builder, ret, persp_center[i], base + i, "");
      /* Overwrite PERSP_CENTROID. */
      for (i = 0; i < 2; i++)
         ret = LLVMBuildInsertValue(ctx->ac.builder, ret, persp_center[i], base + 4 + i, "");
   }
   if (key->ps_prolog.states.force_linear_center_interp) {
      unsigned i, base = key->ps_prolog.num_input_sgprs;
      LLVMValueRef linear_center[2];

      /* Read LINEAR_CENTER. */
      for (i = 0; i < 2; i++)
         linear_center[i] = LLVMGetParam(func, base + 8 + i);
      /* Overwrite LINEAR_SAMPLE. */
      for (i = 0; i < 2; i++)
         ret = LLVMBuildInsertValue(ctx->ac.builder, ret, linear_center[i], base + 6 + i, "");
      /* Overwrite LINEAR_CENTROID. */
      for (i = 0; i < 2; i++)
         ret = LLVMBuildInsertValue(ctx->ac.builder, ret, linear_center[i], base + 10 + i, "");
   }

   /* Interpolate colors. */
   unsigned color_out_idx = 0;
   for (i = 0; i < 2; i++) {
      unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
      unsigned face_vgpr = key->ps_prolog.num_input_sgprs + key->ps_prolog.face_vgpr_index;
      LLVMValueRef interp[2], color[4];
      LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;

      if (!writemask)
         continue;

      /* If the interpolation qualifier is not CONSTANT (-1). */
      if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
         unsigned interp_vgpr =
            key->ps_prolog.num_input_sgprs + key->ps_prolog.color_interp_vgpr_index[i];

         /* Get the (i,j) updated by bc_optimize handling. */
         interp[0] = LLVMBuildExtractValue(ctx->ac.builder, ret, interp_vgpr, "");
         interp[1] = LLVMBuildExtractValue(ctx->ac.builder, ret, interp_vgpr + 1, "");
         interp_ij = ac_build_gather_values(&ctx->ac, interp, 2);
      }

      /* Use the absolute location of the input. */
      prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);

      if (key->ps_prolog.states.color_two_side) {
         face = LLVMGetParam(func, face_vgpr);
         face = ac_to_integer(&ctx->ac, face);
      }

      interp_fs_color(ctx, key->ps_prolog.color_attr_index[i], i, key->ps_prolog.num_interp_inputs,
                      key->ps_prolog.colors_read, interp_ij, prim_mask, face, color);

      while (writemask) {
         unsigned chan = u_bit_scan(&writemask);
         ret = LLVMBuildInsertValue(ctx->ac.builder, ret, color[chan],
                                    ctx->args.arg_count + color_out_idx++, "");
      }
   }

   /* Section 15.2.2 (Shader Inputs) of the OpenGL 4.5 (Core Profile) spec
    * says:
    *
    *    "When per-sample shading is active due to the use of a fragment
    *     input qualified by sample or due to the use of the gl_SampleID
    *     or gl_SamplePosition variables, only the bit for the current
    *     sample is set in gl_SampleMaskIn. When state specifies multiple
    *     fragment shader invocations for a given fragment, the sample
    *     mask for any single fragment shader invocation may specify a
    *     subset of the covered samples for the fragment. In this case,
    *     the bit corresponding to each covered sample will be set in
    *     exactly one fragment shader invocation."
    *
    * The samplemask loaded by hardware is always the coverage of the
    * entire pixel/fragment, so mask bits out based on the sample ID.
    */
   if (key->ps_prolog.states.samplemask_log_ps_iter) {
      /* The bit pattern matches that used by fixed function fragment
       * processing. */
      static const uint16_t ps_iter_masks[] = {
         0xffff, /* not used */
         0x5555, 0x1111, 0x0101, 0x0001,
      };
      assert(key->ps_prolog.states.samplemask_log_ps_iter < ARRAY_SIZE(ps_iter_masks));

      uint32_t ps_iter_mask = ps_iter_masks[key->ps_prolog.states.samplemask_log_ps_iter];
      LLVMValueRef sampleid = si_unpack_param(ctx, ancillary, 8, 4);
      LLVMValueRef samplemask = ac_get_arg(&ctx->ac, param_sample_mask);

      samplemask = ac_to_integer(&ctx->ac, samplemask);
      samplemask =
         LLVMBuildAnd(ctx->ac.builder, samplemask,
                      LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, ps_iter_mask, false),
                                   sampleid, ""),
                      "");
      samplemask = ac_to_float(&ctx->ac, samplemask);

      ret = LLVMBuildInsertValue(ctx->ac.builder, ret, samplemask, param_sample_mask.arg_index, "");
   }

   /* Tell LLVM to insert WQM instruction sequence when needed. */
   if (key->ps_prolog.wqm) {
      LLVMAddTargetDependentFunctionAttr(func, "amdgpu-ps-wqm-outputs", "");
   }

   si_llvm_build_ret(ctx, ret);
}

/**
 * Build the pixel shader epilog function. This handles everything that must be
 * emulated for pixel shader exports. (alpha-test, format conversions, etc)
 */
void si_llvm_build_ps_epilog(struct si_shader_context *ctx, union si_shader_part_key *key)
{
   LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
   int i;
   struct si_ps_exports exp = {};

   memset(&ctx->args, 0, sizeof(ctx->args));

   /* Declare input SGPRs. */
   ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->rw_buffers);
   ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->bindless_samplers_and_images);
   ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->const_and_shader_buffers);
   ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->samplers_and_images);
   si_add_arg_checked(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL, SI_PARAM_ALPHA_REF);

   /* Declare input VGPRs. */
   unsigned required_num_params =
      ctx->args.num_sgprs_used + util_bitcount(key->ps_epilog.colors_written) * 4 +
      key->ps_epilog.writes_z + key->ps_epilog.writes_stencil + key->ps_epilog.writes_samplemask;

   required_num_params =
      MAX2(required_num_params, ctx->args.num_sgprs_used + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);

   while (ctx->args.arg_count < required_num_params)
      ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, NULL);

   /* Create the function. */
   si_llvm_create_func(ctx, "ps_epilog", NULL, 0, 0);
   /* Disable elimination of unused inputs. */
   ac_llvm_add_target_dep_function_attr(ctx->main_fn, "InitialPSInputAddr", 0xffffff);

   /* Process colors. */
   unsigned vgpr = ctx->args.num_sgprs_used;
   unsigned colors_written = key->ps_epilog.colors_written;
   int last_color_export = -1;

   /* Find the last color export. */
   if (!key->ps_epilog.writes_z && !key->ps_epilog.writes_stencil &&
       !key->ps_epilog.writes_samplemask) {
      unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;

      /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
      if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
         /* Just set this if any of the colorbuffers are enabled. */
         if (spi_format & ((1ull << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
            last_color_export = 0;
      } else {
         for (i = 0; i < 8; i++)
            if (colors_written & (1 << i) && (spi_format >> (i * 4)) & 0xf)
               last_color_export = i;
      }
   }

   while (colors_written) {
      LLVMValueRef color[4];
      int mrt = u_bit_scan(&colors_written);

      for (i = 0; i < 4; i++)
         color[i] = LLVMGetParam(ctx->main_fn, vgpr++);

      si_export_mrt_color(ctx, color, mrt, ctx->args.arg_count - 1, mrt == last_color_export, &exp);
   }

   /* Process depth, stencil, samplemask. */
   if (key->ps_epilog.writes_z)
      depth = LLVMGetParam(ctx->main_fn, vgpr++);
   if (key->ps_epilog.writes_stencil)
      stencil = LLVMGetParam(ctx->main_fn, vgpr++);
   if (key->ps_epilog.writes_samplemask)
      samplemask = LLVMGetParam(ctx->main_fn, vgpr++);

   if (depth || stencil || samplemask)
      si_export_mrt_z(ctx, depth, stencil, samplemask, &exp);
   else if (last_color_export == -1)
      ac_build_export_null(&ctx->ac);

   if (exp.num)
      si_emit_ps_exports(ctx, &exp);

   /* Compile. */
   LLVMBuildRetVoid(ctx->ac.builder);
}

void si_llvm_build_monolithic_ps(struct si_shader_context *ctx, struct si_shader *shader)
{
   LLVMValueRef parts[3];
   unsigned num_parts = 0, main_index;

   union si_shader_part_key prolog_key;
   si_get_ps_prolog_key(shader, &prolog_key, false);

   if (si_need_ps_prolog(&prolog_key)) {
      si_llvm_build_ps_prolog(ctx, &prolog_key);
      parts[num_parts++] = ctx->main_fn;
   }

   main_index = num_parts;
   parts[num_parts++] = ctx->main_fn;

   union si_shader_part_key epilog_key;
   si_get_ps_epilog_key(shader, &epilog_key);
   si_llvm_build_ps_epilog(ctx, &epilog_key);
   parts[num_parts++] = ctx->main_fn;

   si_build_wrapper_function(ctx, parts, num_parts, main_index, 0);
}

void si_llvm_init_ps_callbacks(struct si_shader_context *ctx)
{
   ctx->abi.emit_outputs = si_llvm_return_fs_outputs;
   ctx->abi.load_sample_position = load_sample_position;
   ctx->abi.load_sample_mask_in = load_sample_mask_in;
   ctx->abi.emit_fbfetch = si_nir_emit_fbfetch;
}