aboutsummaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/radeonsi/si_shader.c
blob: e54b9fb97ba4567c4ea2feab45a541cf8fe7695a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
/*
 * Copyright 2012 Advanced Micro Devices, Inc.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * on the rights to use, copy, modify, merge, publish, distribute, sub
 * license, and/or sell copies of the Software, and to permit persons to whom
 * the Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#include "util/u_memory.h"
#include "tgsi/tgsi_strings.h"
#include "tgsi/tgsi_from_mesa.h"

#include "ac_exp_param.h"
#include "ac_rtld.h"
#include "si_shader_internal.h"
#include "si_pipe.h"
#include "sid.h"

#include "compiler/nir/nir.h"
#include "compiler/nir/nir_serialize.h"

static const char scratch_rsrc_dword0_symbol[] =
	"SCRATCH_RSRC_DWORD0";

static const char scratch_rsrc_dword1_symbol[] =
	"SCRATCH_RSRC_DWORD1";

static void si_dump_shader_key(const struct si_shader *shader, FILE *f);

static void si_build_vs_prolog_function(struct si_shader_context *ctx,
					union si_shader_part_key *key);

/** Whether the shader runs as a combination of multiple API shaders */
static bool is_multi_part_shader(struct si_shader_context *ctx)
{
	if (ctx->screen->info.chip_class <= GFX8)
		return false;

	return ctx->shader->key.as_ls ||
	       ctx->shader->key.as_es ||
	       ctx->type == PIPE_SHADER_TESS_CTRL ||
	       ctx->type == PIPE_SHADER_GEOMETRY;
}

/** Whether the shader runs on a merged HW stage (LSHS or ESGS) */
bool si_is_merged_shader(struct si_shader_context *ctx)
{
	return ctx->shader->key.as_ngg || is_multi_part_shader(ctx);
}

/**
 * Returns a unique index for a per-patch semantic name and index. The index
 * must be less than 32, so that a 32-bit bitmask of used inputs or outputs
 * can be calculated.
 */
unsigned si_shader_io_get_unique_index_patch(unsigned semantic_name, unsigned index)
{
	switch (semantic_name) {
	case TGSI_SEMANTIC_TESSOUTER:
		return 0;
	case TGSI_SEMANTIC_TESSINNER:
		return 1;
	case TGSI_SEMANTIC_PATCH:
		assert(index < 30);
		return 2 + index;

	default:
		assert(!"invalid semantic name");
		return 0;
	}
}

/**
 * Returns a unique index for a semantic name and index. The index must be
 * less than 64, so that a 64-bit bitmask of used inputs or outputs can be
 * calculated.
 */
unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index,
				       unsigned is_varying)
{
	switch (semantic_name) {
	case TGSI_SEMANTIC_POSITION:
		return 0;
	case TGSI_SEMANTIC_GENERIC:
		/* Since some shader stages use the the highest used IO index
		 * to determine the size to allocate for inputs/outputs
		 * (in LDS, tess and GS rings). GENERIC should be placed right
		 * after POSITION to make that size as small as possible.
		 */
		if (index < SI_MAX_IO_GENERIC)
			return 1 + index;

		assert(!"invalid generic index");
		return 0;
	case TGSI_SEMANTIC_FOG:
		return SI_MAX_IO_GENERIC + 1;
	case TGSI_SEMANTIC_COLOR:
		assert(index < 2);
		return SI_MAX_IO_GENERIC + 2 + index;
	case TGSI_SEMANTIC_BCOLOR:
		assert(index < 2);
		/* If it's a varying, COLOR and BCOLOR alias. */
		if (is_varying)
			return SI_MAX_IO_GENERIC + 2 + index;
		else
			return SI_MAX_IO_GENERIC + 4 + index;
	case TGSI_SEMANTIC_TEXCOORD:
		assert(index < 8);
		return SI_MAX_IO_GENERIC + 6 + index;

	/* These are rarely used between LS and HS or ES and GS. */
	case TGSI_SEMANTIC_CLIPDIST:
		assert(index < 2);
		return SI_MAX_IO_GENERIC + 6 + 8 + index;
	case TGSI_SEMANTIC_CLIPVERTEX:
		return SI_MAX_IO_GENERIC + 6 + 8 + 2;
	case TGSI_SEMANTIC_PSIZE:
		return SI_MAX_IO_GENERIC + 6 + 8 + 3;

	/* These can't be written by LS, HS, and ES. */
	case TGSI_SEMANTIC_LAYER:
		return SI_MAX_IO_GENERIC + 6 + 8 + 4;
	case TGSI_SEMANTIC_VIEWPORT_INDEX:
		return SI_MAX_IO_GENERIC + 6 + 8 + 5;
	case TGSI_SEMANTIC_PRIMID:
		STATIC_ASSERT(SI_MAX_IO_GENERIC + 6 + 8 + 6 <= 63);
		return SI_MAX_IO_GENERIC + 6 + 8 + 6;
	default:
		fprintf(stderr, "invalid semantic name = %u\n", semantic_name);
		assert(!"invalid semantic name");
		return 0;
	}
}

/**
 * Get the value of a shader input parameter and extract a bitfield.
 */
static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx,
				      LLVMValueRef value, unsigned rshift,
				      unsigned bitwidth)
{
	if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
		value = ac_to_integer(&ctx->ac, value);

	if (rshift)
		value = LLVMBuildLShr(ctx->ac.builder, value,
				      LLVMConstInt(ctx->i32, rshift, 0), "");

	if (rshift + bitwidth < 32) {
		unsigned mask = (1 << bitwidth) - 1;
		value = LLVMBuildAnd(ctx->ac.builder, value,
				     LLVMConstInt(ctx->i32, mask, 0), "");
	}

	return value;
}

LLVMValueRef si_unpack_param(struct si_shader_context *ctx,
			     struct ac_arg param, unsigned rshift,
			     unsigned bitwidth)
{
	LLVMValueRef value = ac_get_arg(&ctx->ac, param);

	return unpack_llvm_param(ctx, value, rshift, bitwidth);
}

static LLVMValueRef unpack_sint16(struct si_shader_context *ctx,
				 LLVMValueRef i32, unsigned index)
{
	assert(index <= 1);

	if (index == 1)
		return LLVMBuildAShr(ctx->ac.builder, i32,
				     LLVMConstInt(ctx->i32, 16, 0), "");

	return LLVMBuildSExt(ctx->ac.builder,
			     LLVMBuildTrunc(ctx->ac.builder, i32,
					    ctx->ac.i16, ""),
			     ctx->i32, "");
}

void si_llvm_load_input_vs(
	struct si_shader_context *ctx,
	unsigned input_index,
	LLVMValueRef out[4])
{
	const struct si_shader_info *info = &ctx->shader->selector->info;
	unsigned vs_blit_property = info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD];

	if (vs_blit_property) {
		LLVMValueRef vertex_id = ctx->abi.vertex_id;
		LLVMValueRef sel_x1 = LLVMBuildICmp(ctx->ac.builder,
						    LLVMIntULE, vertex_id,
						    ctx->i32_1, "");
		/* Use LLVMIntNE, because we have 3 vertices and only
		 * the middle one should use y2.
		 */
		LLVMValueRef sel_y1 = LLVMBuildICmp(ctx->ac.builder,
						    LLVMIntNE, vertex_id,
						    ctx->i32_1, "");

		unsigned param_vs_blit_inputs = ctx->vs_blit_inputs.arg_index;
		if (input_index == 0) {
			/* Position: */
			LLVMValueRef x1y1 = LLVMGetParam(ctx->main_fn,
							 param_vs_blit_inputs);
			LLVMValueRef x2y2 = LLVMGetParam(ctx->main_fn,
							 param_vs_blit_inputs + 1);

			LLVMValueRef x1 = unpack_sint16(ctx, x1y1, 0);
			LLVMValueRef y1 = unpack_sint16(ctx, x1y1, 1);
			LLVMValueRef x2 = unpack_sint16(ctx, x2y2, 0);
			LLVMValueRef y2 = unpack_sint16(ctx, x2y2, 1);

			LLVMValueRef x = LLVMBuildSelect(ctx->ac.builder, sel_x1,
							 x1, x2, "");
			LLVMValueRef y = LLVMBuildSelect(ctx->ac.builder, sel_y1,
							 y1, y2, "");

			out[0] = LLVMBuildSIToFP(ctx->ac.builder, x, ctx->f32, "");
			out[1] = LLVMBuildSIToFP(ctx->ac.builder, y, ctx->f32, "");
			out[2] = LLVMGetParam(ctx->main_fn,
					      param_vs_blit_inputs + 2);
			out[3] = ctx->ac.f32_1;
			return;
		}

		/* Color or texture coordinates: */
		assert(input_index == 1);

		if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
			for (int i = 0; i < 4; i++) {
				out[i] = LLVMGetParam(ctx->main_fn,
						      param_vs_blit_inputs + 3 + i);
			}
		} else {
			assert(vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD);
			LLVMValueRef x1 = LLVMGetParam(ctx->main_fn,
						       param_vs_blit_inputs + 3);
			LLVMValueRef y1 = LLVMGetParam(ctx->main_fn,
						       param_vs_blit_inputs + 4);
			LLVMValueRef x2 = LLVMGetParam(ctx->main_fn,
						       param_vs_blit_inputs + 5);
			LLVMValueRef y2 = LLVMGetParam(ctx->main_fn,
						       param_vs_blit_inputs + 6);

			out[0] = LLVMBuildSelect(ctx->ac.builder, sel_x1,
						 x1, x2, "");
			out[1] = LLVMBuildSelect(ctx->ac.builder, sel_y1,
						 y1, y2, "");
			out[2] = LLVMGetParam(ctx->main_fn,
					      param_vs_blit_inputs + 7);
			out[3] = LLVMGetParam(ctx->main_fn,
					      param_vs_blit_inputs + 8);
		}
		return;
	}

	unsigned num_vbos_in_user_sgprs = ctx->shader->selector->num_vbos_in_user_sgprs;
	union si_vs_fix_fetch fix_fetch;
	LLVMValueRef vb_desc;
	LLVMValueRef vertex_index;
	LLVMValueRef tmp;

	if (input_index < num_vbos_in_user_sgprs) {
		vb_desc = ac_get_arg(&ctx->ac, ctx->vb_descriptors[input_index]);
	} else {
		unsigned index= input_index - num_vbos_in_user_sgprs;
		vb_desc = ac_build_load_to_sgpr(&ctx->ac,
						ac_get_arg(&ctx->ac, ctx->vertex_buffers),
						LLVMConstInt(ctx->i32, index, 0));
	}

	vertex_index = LLVMGetParam(ctx->main_fn,
				    ctx->vertex_index0.arg_index +
				    input_index);

	/* Use the open-coded implementation for all loads of doubles and
	 * of dword-sized data that needs fixups. We need to insert conversion
	 * code anyway, and the amd/common code does it for us.
	 *
	 * Note: On LLVM <= 8, we can only open-code formats with
	 * channel size >= 4 bytes.
	 */
	bool opencode = ctx->shader->key.mono.vs_fetch_opencode & (1 << input_index);
	fix_fetch.bits = ctx->shader->key.mono.vs_fix_fetch[input_index].bits;
	if (opencode ||
	    (fix_fetch.u.log_size == 3 && fix_fetch.u.format == AC_FETCH_FORMAT_FLOAT) ||
	    (fix_fetch.u.log_size == 2)) {
		tmp = ac_build_opencoded_load_format(
				&ctx->ac, fix_fetch.u.log_size, fix_fetch.u.num_channels_m1 + 1,
				fix_fetch.u.format, fix_fetch.u.reverse, !opencode,
				vb_desc, vertex_index, ctx->ac.i32_0, ctx->ac.i32_0, 0, true);
		for (unsigned i = 0; i < 4; ++i)
			out[i] = LLVMBuildExtractElement(ctx->ac.builder, tmp, LLVMConstInt(ctx->i32, i, false), "");
		return;
	}

	/* Do multiple loads for special formats. */
	unsigned required_channels = util_last_bit(info->input_usage_mask[input_index]);
	LLVMValueRef fetches[4];
	unsigned num_fetches;
	unsigned fetch_stride;
	unsigned channels_per_fetch;

	if (fix_fetch.u.log_size <= 1 && fix_fetch.u.num_channels_m1 == 2) {
		num_fetches = MIN2(required_channels, 3);
		fetch_stride = 1 << fix_fetch.u.log_size;
		channels_per_fetch = 1;
	} else {
		num_fetches = 1;
		fetch_stride = 0;
		channels_per_fetch = required_channels;
	}

	for (unsigned i = 0; i < num_fetches; ++i) {
		LLVMValueRef voffset = LLVMConstInt(ctx->i32, fetch_stride * i, 0);
		fetches[i] = ac_build_buffer_load_format(&ctx->ac, vb_desc, vertex_index, voffset,
							 channels_per_fetch, 0, true);
	}

	if (num_fetches == 1 && channels_per_fetch > 1) {
		LLVMValueRef fetch = fetches[0];
		for (unsigned i = 0; i < channels_per_fetch; ++i) {
			tmp = LLVMConstInt(ctx->i32, i, false);
			fetches[i] = LLVMBuildExtractElement(
				ctx->ac.builder, fetch, tmp, "");
		}
		num_fetches = channels_per_fetch;
		channels_per_fetch = 1;
	}

	for (unsigned i = num_fetches; i < 4; ++i)
		fetches[i] = LLVMGetUndef(ctx->f32);

	if (fix_fetch.u.log_size <= 1 && fix_fetch.u.num_channels_m1 == 2 &&
	    required_channels == 4) {
		if (fix_fetch.u.format == AC_FETCH_FORMAT_UINT || fix_fetch.u.format == AC_FETCH_FORMAT_SINT)
			fetches[3] = ctx->ac.i32_1;
		else
			fetches[3] = ctx->ac.f32_1;
	} else if (fix_fetch.u.log_size == 3 &&
		   (fix_fetch.u.format == AC_FETCH_FORMAT_SNORM ||
		    fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED ||
		    fix_fetch.u.format == AC_FETCH_FORMAT_SINT) &&
		   required_channels == 4) {
		/* For 2_10_10_10, the hardware returns an unsigned value;
		 * convert it to a signed one.
		 */
		LLVMValueRef tmp = fetches[3];
		LLVMValueRef c30 = LLVMConstInt(ctx->i32, 30, 0);

		/* First, recover the sign-extended signed integer value. */
		if (fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED)
			tmp = LLVMBuildFPToUI(ctx->ac.builder, tmp, ctx->i32, "");
		else
			tmp = ac_to_integer(&ctx->ac, tmp);

		/* For the integer-like cases, do a natural sign extension.
		 *
		 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
		 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
		 * exponent.
		 */
		tmp = LLVMBuildShl(ctx->ac.builder, tmp,
				   fix_fetch.u.format == AC_FETCH_FORMAT_SNORM ?
				   LLVMConstInt(ctx->i32, 7, 0) : c30, "");
		tmp = LLVMBuildAShr(ctx->ac.builder, tmp, c30, "");

		/* Convert back to the right type. */
		if (fix_fetch.u.format == AC_FETCH_FORMAT_SNORM) {
			LLVMValueRef clamp;
			LLVMValueRef neg_one = LLVMConstReal(ctx->f32, -1.0);
			tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
			clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, tmp, neg_one, "");
			tmp = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, tmp, "");
		} else if (fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED) {
			tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
		}

		fetches[3] = tmp;
	}

	for (unsigned i = 0; i < 4; ++i)
		out[i] = ac_to_float(&ctx->ac, fetches[i]);
}

LLVMValueRef si_get_primitive_id(struct si_shader_context *ctx,
				 unsigned swizzle)
{
	if (swizzle > 0)
		return ctx->i32_0;

	switch (ctx->type) {
	case PIPE_SHADER_VERTEX:
		return ac_get_arg(&ctx->ac, ctx->vs_prim_id);
	case PIPE_SHADER_TESS_CTRL:
		return ac_get_arg(&ctx->ac, ctx->args.tcs_patch_id);
	case PIPE_SHADER_TESS_EVAL:
		return ac_get_arg(&ctx->ac, ctx->args.tes_patch_id);
	case PIPE_SHADER_GEOMETRY:
		return ac_get_arg(&ctx->ac, ctx->args.gs_prim_id);
	default:
		assert(0);
		return ctx->i32_0;
	}
}

static LLVMValueRef get_base_vertex(struct ac_shader_abi *abi)
{
	struct si_shader_context *ctx = si_shader_context_from_abi(abi);

	/* For non-indexed draws, the base vertex set by the driver
	 * (for direct draws) or the CP (for indirect draws) is the
	 * first vertex ID, but GLSL expects 0 to be returned.
	 */
	LLVMValueRef vs_state = ac_get_arg(&ctx->ac,
					   ctx->vs_state_bits);
	LLVMValueRef indexed;

	indexed = LLVMBuildLShr(ctx->ac.builder, vs_state, ctx->i32_1, "");
	indexed = LLVMBuildTrunc(ctx->ac.builder, indexed, ctx->i1, "");

	return LLVMBuildSelect(ctx->ac.builder, indexed,
			       ac_get_arg(&ctx->ac, ctx->args.base_vertex),
			       ctx->i32_0, "");
}

static LLVMValueRef get_block_size(struct ac_shader_abi *abi)
{
	struct si_shader_context *ctx = si_shader_context_from_abi(abi);

	LLVMValueRef values[3];
	LLVMValueRef result;
	unsigned i;
	unsigned *properties = ctx->shader->selector->info.properties;

	if (properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] != 0) {
		unsigned sizes[3] = {
			properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH],
			properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT],
			properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH]
		};

		for (i = 0; i < 3; ++i)
			values[i] = LLVMConstInt(ctx->i32, sizes[i], 0);

		result = ac_build_gather_values(&ctx->ac, values, 3);
	} else {
		result = ac_get_arg(&ctx->ac, ctx->block_size);
	}

	return result;
}

void si_declare_compute_memory(struct si_shader_context *ctx)
{
	struct si_shader_selector *sel = ctx->shader->selector;
	unsigned lds_size = sel->info.properties[TGSI_PROPERTY_CS_LOCAL_SIZE];

	LLVMTypeRef i8p = LLVMPointerType(ctx->i8, AC_ADDR_SPACE_LDS);
	LLVMValueRef var;

	assert(!ctx->ac.lds);

	var = LLVMAddGlobalInAddressSpace(ctx->ac.module,
	                                  LLVMArrayType(ctx->i8, lds_size),
	                                  "compute_lds",
	                                  AC_ADDR_SPACE_LDS);
	LLVMSetAlignment(var, 64 * 1024);

	ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, var, i8p, "");
}

/* Initialize arguments for the shader export intrinsic */
static void si_llvm_init_vs_export_args(struct si_shader_context *ctx,
					LLVMValueRef *values,
					unsigned target,
					struct ac_export_args *args)
{
	args->enabled_channels = 0xf; /* writemask - default is 0xf */
	args->valid_mask = 0; /* Specify whether the EXEC mask represents the valid mask */
	args->done = 0; /* Specify whether this is the last export */
	args->target = target; /* Specify the target we are exporting */
	args->compr = false;

	memcpy(&args->out[0], values, sizeof(values[0]) * 4);
}

static void si_llvm_emit_clipvertex(struct si_shader_context *ctx,
				    struct ac_export_args *pos, LLVMValueRef *out_elts)
{
	unsigned reg_index;
	unsigned chan;
	unsigned const_chan;
	LLVMValueRef base_elt;
	LLVMValueRef ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
	LLVMValueRef constbuf_index = LLVMConstInt(ctx->i32,
						   SI_VS_CONST_CLIP_PLANES, 0);
	LLVMValueRef const_resource = ac_build_load_to_sgpr(&ctx->ac, ptr, constbuf_index);

	for (reg_index = 0; reg_index < 2; reg_index ++) {
		struct ac_export_args *args = &pos[2 + reg_index];

		args->out[0] =
		args->out[1] =
		args->out[2] =
		args->out[3] = LLVMConstReal(ctx->f32, 0.0f);

		/* Compute dot products of position and user clip plane vectors */
		for (chan = 0; chan < 4; chan++) {
			for (const_chan = 0; const_chan < 4; const_chan++) {
				LLVMValueRef addr =
					LLVMConstInt(ctx->i32, ((reg_index * 4 + chan) * 4 +
								const_chan) * 4, 0);
				base_elt = si_buffer_load_const(ctx, const_resource,
								addr);
				args->out[chan] = ac_build_fmad(&ctx->ac, base_elt,
								out_elts[const_chan], args->out[chan]);
			}
		}

		args->enabled_channels = 0xf;
		args->valid_mask = 0;
		args->done = 0;
		args->target = V_008DFC_SQ_EXP_POS + 2 + reg_index;
		args->compr = 0;
	}
}

static void si_dump_streamout(struct pipe_stream_output_info *so)
{
	unsigned i;

	if (so->num_outputs)
		fprintf(stderr, "STREAMOUT\n");

	for (i = 0; i < so->num_outputs; i++) {
		unsigned mask = ((1 << so->output[i].num_components) - 1) <<
				so->output[i].start_component;
		fprintf(stderr, "  %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n",
			i, so->output[i].output_buffer,
			so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
			so->output[i].register_index,
			mask & 1 ? "x" : "",
		        mask & 2 ? "y" : "",
		        mask & 4 ? "z" : "",
		        mask & 8 ? "w" : "");
	}
}

void si_emit_streamout_output(struct si_shader_context *ctx,
			      LLVMValueRef const *so_buffers,
			      LLVMValueRef const *so_write_offsets,
			      struct pipe_stream_output *stream_out,
			      struct si_shader_output_values *shader_out)
{
	unsigned buf_idx = stream_out->output_buffer;
	unsigned start = stream_out->start_component;
	unsigned num_comps = stream_out->num_components;
	LLVMValueRef out[4];

	assert(num_comps && num_comps <= 4);
	if (!num_comps || num_comps > 4)
		return;

	/* Load the output as int. */
	for (int j = 0; j < num_comps; j++) {
		assert(stream_out->stream == shader_out->vertex_stream[start + j]);

		out[j] = ac_to_integer(&ctx->ac, shader_out->values[start + j]);
	}

	/* Pack the output. */
	LLVMValueRef vdata = NULL;

	switch (num_comps) {
	case 1: /* as i32 */
		vdata = out[0];
		break;
	case 2: /* as v2i32 */
	case 3: /* as v3i32 */
		if (ac_has_vec3_support(ctx->screen->info.chip_class, false)) {
			vdata = ac_build_gather_values(&ctx->ac, out, num_comps);
			break;
		}
		/* as v4i32 (aligned to 4) */
		out[3] = LLVMGetUndef(ctx->i32);
		/* fall through */
	case 4: /* as v4i32 */
		vdata = ac_build_gather_values(&ctx->ac, out, util_next_power_of_two(num_comps));
		break;
	}

	ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf_idx],
				    vdata, num_comps,
				    so_write_offsets[buf_idx],
				    ctx->i32_0,
				    stream_out->dst_offset * 4, ac_glc | ac_slc);
}

/**
 * Write streamout data to buffers for vertex stream @p stream (different
 * vertex streams can occur for GS copy shaders).
 */
void si_llvm_emit_streamout(struct si_shader_context *ctx,
			    struct si_shader_output_values *outputs,
			    unsigned noutput, unsigned stream)
{
	struct si_shader_selector *sel = ctx->shader->selector;
	struct pipe_stream_output_info *so = &sel->so;
	LLVMBuilderRef builder = ctx->ac.builder;
	int i;

	/* Get bits [22:16], i.e. (so_param >> 16) & 127; */
	LLVMValueRef so_vtx_count =
		si_unpack_param(ctx, ctx->streamout_config, 16, 7);

	LLVMValueRef tid = ac_get_thread_id(&ctx->ac);

	/* can_emit = tid < so_vtx_count; */
	LLVMValueRef can_emit =
		LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");

	/* Emit the streamout code conditionally. This actually avoids
	 * out-of-bounds buffer access. The hw tells us via the SGPR
	 * (so_vtx_count) which threads are allowed to emit streamout data. */
	ac_build_ifcc(&ctx->ac, can_emit, 6501);
	{
		/* The buffer offset is computed as follows:
		 *   ByteOffset = streamout_offset[buffer_id]*4 +
		 *                (streamout_write_index + thread_id)*stride[buffer_id] +
		 *                attrib_offset
                 */

		LLVMValueRef so_write_index =
			ac_get_arg(&ctx->ac,
				   ctx->streamout_write_index);

		/* Compute (streamout_write_index + thread_id). */
		so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");

		/* Load the descriptor and compute the write offset for each
		 * enabled buffer. */
		LLVMValueRef so_write_offset[4] = {};
		LLVMValueRef so_buffers[4];
		LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac,
						  ctx->rw_buffers);

		for (i = 0; i < 4; i++) {
			if (!so->stride[i])
				continue;

			LLVMValueRef offset = LLVMConstInt(ctx->i32,
							   SI_VS_STREAMOUT_BUF0 + i, 0);

			so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);

			LLVMValueRef so_offset = ac_get_arg(&ctx->ac,
							    ctx->streamout_offset[i]);
			so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->i32, 4, 0), "");

			so_write_offset[i] = ac_build_imad(&ctx->ac, so_write_index,
							   LLVMConstInt(ctx->i32, so->stride[i]*4, 0),
							   so_offset);
		}

		/* Write streamout data. */
		for (i = 0; i < so->num_outputs; i++) {
			unsigned reg = so->output[i].register_index;

			if (reg >= noutput)
				continue;

			if (stream != so->output[i].stream)
				continue;

			si_emit_streamout_output(ctx, so_buffers, so_write_offset,
						 &so->output[i], &outputs[reg]);
		}
	}
	ac_build_endif(&ctx->ac, 6501);
}

static void si_export_param(struct si_shader_context *ctx, unsigned index,
			    LLVMValueRef *values)
{
	struct ac_export_args args;

	si_llvm_init_vs_export_args(ctx, values,
				    V_008DFC_SQ_EXP_PARAM + index, &args);
	ac_build_export(&ctx->ac, &args);
}

static void si_build_param_exports(struct si_shader_context *ctx,
				   struct si_shader_output_values *outputs,
			           unsigned noutput)
{
	struct si_shader *shader = ctx->shader;
	unsigned param_count = 0;

	for (unsigned i = 0; i < noutput; i++) {
		unsigned semantic_name = outputs[i].semantic_name;
		unsigned semantic_index = outputs[i].semantic_index;

		if (outputs[i].vertex_stream[0] != 0 &&
		    outputs[i].vertex_stream[1] != 0 &&
		    outputs[i].vertex_stream[2] != 0 &&
		    outputs[i].vertex_stream[3] != 0)
			continue;

		switch (semantic_name) {
		case TGSI_SEMANTIC_LAYER:
		case TGSI_SEMANTIC_VIEWPORT_INDEX:
		case TGSI_SEMANTIC_CLIPDIST:
		case TGSI_SEMANTIC_COLOR:
		case TGSI_SEMANTIC_BCOLOR:
		case TGSI_SEMANTIC_PRIMID:
		case TGSI_SEMANTIC_FOG:
		case TGSI_SEMANTIC_TEXCOORD:
		case TGSI_SEMANTIC_GENERIC:
			break;
		default:
			continue;
		}

		if ((semantic_name != TGSI_SEMANTIC_GENERIC ||
		     semantic_index < SI_MAX_IO_GENERIC) &&
		    shader->key.opt.kill_outputs &
		    (1ull << si_shader_io_get_unique_index(semantic_name,
							   semantic_index, true)))
			continue;

		si_export_param(ctx, param_count, outputs[i].values);

		assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
		shader->info.vs_output_param_offset[i] = param_count++;
	}

	shader->info.nr_param_exports = param_count;
}

/**
 * Vertex color clamping.
 *
 * This uses a state constant loaded in a user data SGPR and
 * an IF statement is added that clamps all colors if the constant
 * is true.
 */
static void si_vertex_color_clamping(struct si_shader_context *ctx,
				     struct si_shader_output_values *outputs,
				     unsigned noutput)
{
	LLVMValueRef addr[SI_MAX_VS_OUTPUTS][4];
	bool has_colors = false;

	/* Store original colors to alloca variables. */
	for (unsigned i = 0; i < noutput; i++) {
		if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
		    outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
			continue;

		for (unsigned j = 0; j < 4; j++) {
			addr[i][j] = ac_build_alloca_undef(&ctx->ac, ctx->f32, "");
			LLVMBuildStore(ctx->ac.builder, outputs[i].values[j], addr[i][j]);
		}
		has_colors = true;
	}

	if (!has_colors)
		return;

	/* The state is in the first bit of the user SGPR. */
	LLVMValueRef cond = ac_get_arg(&ctx->ac, ctx->vs_state_bits);
	cond = LLVMBuildTrunc(ctx->ac.builder, cond, ctx->i1, "");

	ac_build_ifcc(&ctx->ac, cond, 6502);

	/* Store clamped colors to alloca variables within the conditional block. */
	for (unsigned i = 0; i < noutput; i++) {
		if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
		    outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
			continue;

		for (unsigned j = 0; j < 4; j++) {
			LLVMBuildStore(ctx->ac.builder,
				       ac_build_clamp(&ctx->ac, outputs[i].values[j]),
				       addr[i][j]);
		}
	}
	ac_build_endif(&ctx->ac, 6502);

	/* Load clamped colors */
	for (unsigned i = 0; i < noutput; i++) {
		if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
		    outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
			continue;

		for (unsigned j = 0; j < 4; j++) {
			outputs[i].values[j] =
				LLVMBuildLoad(ctx->ac.builder, addr[i][j], "");
		}
	}
}

/* Generate export instructions for hardware VS shader stage or NGG GS stage
 * (position and parameter data only).
 */
void si_llvm_export_vs(struct si_shader_context *ctx,
		       struct si_shader_output_values *outputs,
		       unsigned noutput)
{
	struct si_shader *shader = ctx->shader;
	struct ac_export_args pos_args[4] = {};
	LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL;
	unsigned pos_idx;
	int i;

	si_vertex_color_clamping(ctx, outputs, noutput);

	/* Build position exports. */
	for (i = 0; i < noutput; i++) {
		switch (outputs[i].semantic_name) {
		case TGSI_SEMANTIC_POSITION:
			si_llvm_init_vs_export_args(ctx, outputs[i].values,
						    V_008DFC_SQ_EXP_POS, &pos_args[0]);
			break;
		case TGSI_SEMANTIC_PSIZE:
			psize_value = outputs[i].values[0];
			break;
		case TGSI_SEMANTIC_LAYER:
			layer_value = outputs[i].values[0];
			break;
		case TGSI_SEMANTIC_VIEWPORT_INDEX:
			viewport_index_value = outputs[i].values[0];
			break;
		case TGSI_SEMANTIC_EDGEFLAG:
			edgeflag_value = outputs[i].values[0];
			break;
		case TGSI_SEMANTIC_CLIPDIST:
			if (!shader->key.opt.clip_disable) {
				unsigned index = 2 + outputs[i].semantic_index;
				si_llvm_init_vs_export_args(ctx, outputs[i].values,
							    V_008DFC_SQ_EXP_POS + index,
							    &pos_args[index]);
			}
			break;
		case TGSI_SEMANTIC_CLIPVERTEX:
			if (!shader->key.opt.clip_disable) {
				si_llvm_emit_clipvertex(ctx, pos_args,
							outputs[i].values);
			}
			break;
		}
	}

	/* We need to add the position output manually if it's missing. */
	if (!pos_args[0].out[0]) {
		pos_args[0].enabled_channels = 0xf; /* writemask */
		pos_args[0].valid_mask = 0; /* EXEC mask */
		pos_args[0].done = 0; /* last export? */
		pos_args[0].target = V_008DFC_SQ_EXP_POS;
		pos_args[0].compr = 0; /* COMPR flag */
		pos_args[0].out[0] = ctx->ac.f32_0; /* X */
		pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
		pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
		pos_args[0].out[3] = ctx->ac.f32_1;  /* W */
	}

	bool pos_writes_edgeflag = shader->selector->info.writes_edgeflag &&
				   !shader->key.as_ngg;

	/* Write the misc vector (point size, edgeflag, layer, viewport). */
	if (shader->selector->info.writes_psize ||
	    pos_writes_edgeflag ||
	    shader->selector->info.writes_viewport_index ||
	    shader->selector->info.writes_layer) {
		pos_args[1].enabled_channels = shader->selector->info.writes_psize |
					       (pos_writes_edgeflag << 1) |
					       (shader->selector->info.writes_layer << 2);

		pos_args[1].valid_mask = 0; /* EXEC mask */
		pos_args[1].done = 0; /* last export? */
		pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
		pos_args[1].compr = 0; /* COMPR flag */
		pos_args[1].out[0] = ctx->ac.f32_0; /* X */
		pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
		pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
		pos_args[1].out[3] = ctx->ac.f32_0; /* W */

		if (shader->selector->info.writes_psize)
			pos_args[1].out[0] = psize_value;

		if (pos_writes_edgeflag) {
			/* The output is a float, but the hw expects an integer
			 * with the first bit containing the edge flag. */
			edgeflag_value = LLVMBuildFPToUI(ctx->ac.builder,
							 edgeflag_value,
							 ctx->i32, "");
			edgeflag_value = ac_build_umin(&ctx->ac,
						      edgeflag_value,
						      ctx->i32_1);

			/* The LLVM intrinsic expects a float. */
			pos_args[1].out[1] = ac_to_float(&ctx->ac, edgeflag_value);
		}

		if (ctx->screen->info.chip_class >= GFX9) {
			/* GFX9 has the layer in out.z[10:0] and the viewport
			 * index in out.z[19:16].
			 */
			if (shader->selector->info.writes_layer)
				pos_args[1].out[2] = layer_value;

			if (shader->selector->info.writes_viewport_index) {
				LLVMValueRef v = viewport_index_value;

				v = ac_to_integer(&ctx->ac, v);
				v = LLVMBuildShl(ctx->ac.builder, v,
						 LLVMConstInt(ctx->i32, 16, 0), "");
				v = LLVMBuildOr(ctx->ac.builder, v,
						ac_to_integer(&ctx->ac,  pos_args[1].out[2]), "");
				pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
				pos_args[1].enabled_channels |= 1 << 2;
			}
		} else {
			if (shader->selector->info.writes_layer)
				pos_args[1].out[2] = layer_value;

			if (shader->selector->info.writes_viewport_index) {
				pos_args[1].out[3] = viewport_index_value;
				pos_args[1].enabled_channels |= 1 << 3;
			}
		}
	}

	for (i = 0; i < 4; i++)
		if (pos_args[i].out[0])
			shader->info.nr_pos_exports++;

	/* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
	 * Setting valid_mask=1 prevents it and has no other effect.
	 */
	if (ctx->screen->info.family == CHIP_NAVI10 ||
	    ctx->screen->info.family == CHIP_NAVI12 ||
	    ctx->screen->info.family == CHIP_NAVI14)
		pos_args[0].valid_mask = 1;

	pos_idx = 0;
	for (i = 0; i < 4; i++) {
		if (!pos_args[i].out[0])
			continue;

		/* Specify the target we are exporting */
		pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;

		if (pos_idx == shader->info.nr_pos_exports)
			/* Specify that this is the last export */
			pos_args[i].done = 1;

		ac_build_export(&ctx->ac, &pos_args[i]);
	}

	/* Build parameter exports. */
	si_build_param_exports(ctx, outputs, noutput);
}

static void si_llvm_emit_vs_epilogue(struct ac_shader_abi *abi,
				     unsigned max_outputs,
				     LLVMValueRef *addrs)
{
	struct si_shader_context *ctx = si_shader_context_from_abi(abi);
	struct si_shader_info *info = &ctx->shader->selector->info;
	struct si_shader_output_values *outputs = NULL;
	int i,j;

	assert(!ctx->shader->is_gs_copy_shader);
	assert(info->num_outputs <= max_outputs);

	outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));

	for (i = 0; i < info->num_outputs; i++) {
		outputs[i].semantic_name = info->output_semantic_name[i];
		outputs[i].semantic_index = info->output_semantic_index[i];

		for (j = 0; j < 4; j++) {
			outputs[i].values[j] =
				LLVMBuildLoad(ctx->ac.builder,
					      addrs[4 * i + j],
					      "");
			outputs[i].vertex_stream[j] =
				(info->output_streams[i] >> (2 * j)) & 3;
		}
	}

	if (!ctx->screen->use_ngg_streamout &&
	    ctx->shader->selector->so.num_outputs)
		si_llvm_emit_streamout(ctx, outputs, i, 0);

	/* Export PrimitiveID. */
	if (ctx->shader->key.mono.u.vs_export_prim_id) {
		outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
		outputs[i].semantic_index = 0;
		outputs[i].values[0] = ac_to_float(&ctx->ac, si_get_primitive_id(ctx, 0));
		for (j = 1; j < 4; j++)
			outputs[i].values[j] = LLVMConstReal(ctx->f32, 0);

		memset(outputs[i].vertex_stream, 0,
		       sizeof(outputs[i].vertex_stream));
		i++;
	}

	si_llvm_export_vs(ctx, outputs, i);
	FREE(outputs);
}

static void si_llvm_emit_prim_discard_cs_epilogue(struct ac_shader_abi *abi,
						  unsigned max_outputs,
						  LLVMValueRef *addrs)
{
	struct si_shader_context *ctx = si_shader_context_from_abi(abi);
	struct si_shader_info *info = &ctx->shader->selector->info;
	LLVMValueRef pos[4] = {};

	assert(info->num_outputs <= max_outputs);

	for (unsigned i = 0; i < info->num_outputs; i++) {
		if (info->output_semantic_name[i] != TGSI_SEMANTIC_POSITION)
			continue;

		for (unsigned chan = 0; chan < 4; chan++)
			pos[chan] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
		break;
	}
	assert(pos[0] != NULL);

	/* Return the position output. */
	LLVMValueRef ret = ctx->return_value;
	for (unsigned chan = 0; chan < 4; chan++)
		ret = LLVMBuildInsertValue(ctx->ac.builder, ret, pos[chan], chan, "");
	ctx->return_value = ret;
}

static void declare_streamout_params(struct si_shader_context *ctx,
				     struct pipe_stream_output_info *so)
{
	if (ctx->screen->use_ngg_streamout) {
		if (ctx->type == PIPE_SHADER_TESS_EVAL)
			ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
		return;
	}

	/* Streamout SGPRs. */
	if (so->num_outputs) {
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->streamout_config);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->streamout_write_index);
	} else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
	}

	/* A streamout buffer offset is loaded if the stride is non-zero. */
	for (int i = 0; i < 4; i++) {
		if (!so->stride[i])
			continue;

		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->streamout_offset[i]);
	}
}

static unsigned si_get_max_workgroup_size(const struct si_shader *shader)
{
	switch (shader->selector->type) {
	case PIPE_SHADER_VERTEX:
	case PIPE_SHADER_TESS_EVAL:
		return shader->key.as_ngg ? 128 : 0;

	case PIPE_SHADER_TESS_CTRL:
		/* Return this so that LLVM doesn't remove s_barrier
		 * instructions on chips where we use s_barrier. */
		return shader->selector->screen->info.chip_class >= GFX7 ? 128 : 0;

	case PIPE_SHADER_GEOMETRY:
		return shader->selector->screen->info.chip_class >= GFX9 ? 128 : 0;

	case PIPE_SHADER_COMPUTE:
		break; /* see below */

	default:
		return 0;
	}

	const unsigned *properties = shader->selector->info.properties;
	unsigned max_work_group_size =
	               properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] *
	               properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT] *
	               properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH];

	if (!max_work_group_size) {
		/* This is a variable group size compute shader,
		 * compile it for the maximum possible group size.
		 */
		max_work_group_size = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
	}
	return max_work_group_size;
}

static void declare_const_and_shader_buffers(struct si_shader_context *ctx,
					     bool assign_params)
{
	enum ac_arg_type const_shader_buf_type;

	if (ctx->shader->selector->info.const_buffers_declared == 1 &&
	    ctx->shader->selector->info.shader_buffers_declared == 0)
		const_shader_buf_type = AC_ARG_CONST_FLOAT_PTR;
	else
		const_shader_buf_type = AC_ARG_CONST_DESC_PTR;

	ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, const_shader_buf_type,
		   assign_params ? &ctx->const_and_shader_buffers :
		   &ctx->other_const_and_shader_buffers);
}

static void declare_samplers_and_images(struct si_shader_context *ctx,
					bool assign_params)
{
	ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_IMAGE_PTR,
		   assign_params ? &ctx->samplers_and_images :
		   &ctx->other_samplers_and_images);
}

static void declare_per_stage_desc_pointers(struct si_shader_context *ctx,
					    bool assign_params)
{
	declare_const_and_shader_buffers(ctx, assign_params);
	declare_samplers_and_images(ctx, assign_params);
}

static void declare_global_desc_pointers(struct si_shader_context *ctx)
{
	ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR,
		   &ctx->rw_buffers);
	ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_IMAGE_PTR,
		   &ctx->bindless_samplers_and_images);
}

static void declare_vs_specific_input_sgprs(struct si_shader_context *ctx)
{
	ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
	if (!ctx->shader->is_gs_copy_shader) {
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.base_vertex);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.start_instance);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.draw_id);
	}
}

static void declare_vb_descriptor_input_sgprs(struct si_shader_context *ctx)
{
	ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR, &ctx->vertex_buffers);

	unsigned num_vbos_in_user_sgprs = ctx->shader->selector->num_vbos_in_user_sgprs;
	if (num_vbos_in_user_sgprs) {
		unsigned user_sgprs = ctx->args.num_sgprs_used;

		if (si_is_merged_shader(ctx))
			user_sgprs -= 8;
		assert(user_sgprs <= SI_SGPR_VS_VB_DESCRIPTOR_FIRST);

		/* Declare unused SGPRs to align VB descriptors to 4 SGPRs (hw requirement). */
		for (unsigned i = user_sgprs; i < SI_SGPR_VS_VB_DESCRIPTOR_FIRST; i++)
			ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */

		assert(num_vbos_in_user_sgprs <= ARRAY_SIZE(ctx->vb_descriptors));
		for (unsigned i = 0; i < num_vbos_in_user_sgprs; i++)
			ac_add_arg(&ctx->args, AC_ARG_SGPR, 4, AC_ARG_INT, &ctx->vb_descriptors[i]);
	}
}

static void declare_vs_input_vgprs(struct si_shader_context *ctx,
				   unsigned *num_prolog_vgprs,
				   bool ngg_cull_shader)
{
	struct si_shader *shader = ctx->shader;

	ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.vertex_id);
	if (shader->key.as_ls) {
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->rel_auto_id);
		if (ctx->screen->info.chip_class >= GFX10) {
			ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* user VGPR */
			ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
		} else {
			ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
			ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* unused */
		}
	} else if (ctx->screen->info.chip_class >= GFX10) {
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* user VGPR */
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT,
			   &ctx->vs_prim_id); /* user vgpr or PrimID (legacy) */
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
	} else {
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->vs_prim_id);
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* unused */
	}

	if (!shader->is_gs_copy_shader) {
		if (shader->key.opt.ngg_culling && !ngg_cull_shader) {
			ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT,
				   &ctx->ngg_old_thread_id);
		}

		/* Vertex load indices. */
		if (shader->selector->info.num_inputs) {
			ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT,
				   &ctx->vertex_index0);
			for (unsigned i = 1; i < shader->selector->info.num_inputs; i++)
				ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL);
		}
		*num_prolog_vgprs += shader->selector->info.num_inputs;
	}
}

static void declare_vs_blit_inputs(struct si_shader_context *ctx,
				   unsigned vs_blit_property)
{
	ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT,
		   &ctx->vs_blit_inputs); /* i16 x1, y1 */
	ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* i16 x1, y1 */
	ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* depth */

	if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color0 */
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color1 */
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color2 */
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color3 */
	} else if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD) {
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.x1 */
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.y1 */
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.x2 */
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.y2 */
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.z */
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.w */
	}
}

static void declare_tes_input_vgprs(struct si_shader_context *ctx, bool ngg_cull_shader)
{
	ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->tes_u);
	ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->tes_v);
	ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->tes_rel_patch_id);
	ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tes_patch_id);

	if (ctx->shader->key.opt.ngg_culling && !ngg_cull_shader) {
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT,
			   &ctx->ngg_old_thread_id);
	}
}

enum {
	/* Convenient merged shader definitions. */
	SI_SHADER_MERGED_VERTEX_TESSCTRL = PIPE_SHADER_TYPES,
	SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY,
};

void si_add_arg_checked(struct ac_shader_args *args,
			enum ac_arg_regfile file,
			unsigned registers, enum ac_arg_type type,
			struct ac_arg *arg,
			unsigned idx)
{
	assert(args->arg_count == idx);
	ac_add_arg(args, file, registers, type, arg);
}

void si_create_function(struct si_shader_context *ctx, bool ngg_cull_shader)
{
	struct si_shader *shader = ctx->shader;
	LLVMTypeRef returns[AC_MAX_ARGS];
	unsigned i, num_return_sgprs;
	unsigned num_returns = 0;
	unsigned num_prolog_vgprs = 0;
	unsigned type = ctx->type;
	unsigned vs_blit_property =
		shader->selector->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD];

	memset(&ctx->args, 0, sizeof(ctx->args));

	/* Set MERGED shaders. */
	if (ctx->screen->info.chip_class >= GFX9) {
		if (shader->key.as_ls || type == PIPE_SHADER_TESS_CTRL)
			type = SI_SHADER_MERGED_VERTEX_TESSCTRL; /* LS or HS */
		else if (shader->key.as_es || shader->key.as_ngg || type == PIPE_SHADER_GEOMETRY)
			type = SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY;
	}

	switch (type) {
	case PIPE_SHADER_VERTEX:
		declare_global_desc_pointers(ctx);

		if (vs_blit_property) {
			declare_vs_blit_inputs(ctx, vs_blit_property);

			/* VGPRs */
			declare_vs_input_vgprs(ctx, &num_prolog_vgprs, ngg_cull_shader);
			break;
		}

		declare_per_stage_desc_pointers(ctx, true);
		declare_vs_specific_input_sgprs(ctx); 
		if (!shader->is_gs_copy_shader)
			declare_vb_descriptor_input_sgprs(ctx);

		if (shader->key.as_es) {
			ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT,
				   &ctx->es2gs_offset);
		} else if (shader->key.as_ls) {
			/* no extra parameters */
		} else {
			/* The locations of the other parameters are assigned dynamically. */
			declare_streamout_params(ctx, &shader->selector->so);
		}

		/* VGPRs */
		declare_vs_input_vgprs(ctx, &num_prolog_vgprs, ngg_cull_shader);

		/* Return values */
		if (shader->key.opt.vs_as_prim_discard_cs) {
			for (i = 0; i < 4; i++)
				returns[num_returns++] = ctx->f32; /* VGPRs */
		}
		break;

	case PIPE_SHADER_TESS_CTRL: /* GFX6-GFX8 */
		declare_global_desc_pointers(ctx);
		declare_per_stage_desc_pointers(ctx, true);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_offsets);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_layout);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_offset);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_factor_offset);

		/* VGPRs */
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_patch_id);
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_rel_ids);

		/* param_tcs_offchip_offset and param_tcs_factor_offset are
		 * placed after the user SGPRs.
		 */
		for (i = 0; i < GFX6_TCS_NUM_USER_SGPR + 2; i++)
			returns[num_returns++] = ctx->i32; /* SGPRs */
		for (i = 0; i < 11; i++)
			returns[num_returns++] = ctx->f32; /* VGPRs */
		break;

	case SI_SHADER_MERGED_VERTEX_TESSCTRL:
		/* Merged stages have 8 system SGPRs at the beginning. */
		/* SPI_SHADER_USER_DATA_ADDR_LO/HI_HS */
		declare_per_stage_desc_pointers(ctx,
						ctx->type == PIPE_SHADER_TESS_CTRL);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_offset);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->merged_wave_info);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_factor_offset);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->merged_scratch_offset);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */

		declare_global_desc_pointers(ctx);
		declare_per_stage_desc_pointers(ctx,
						ctx->type == PIPE_SHADER_VERTEX);
		declare_vs_specific_input_sgprs(ctx);

		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_offsets);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_layout);
		declare_vb_descriptor_input_sgprs(ctx);

		/* VGPRs (first TCS, then VS) */
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_patch_id);
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_rel_ids);

		if (ctx->type == PIPE_SHADER_VERTEX) {
			declare_vs_input_vgprs(ctx, &num_prolog_vgprs, ngg_cull_shader);

			/* LS return values are inputs to the TCS main shader part. */
			for (i = 0; i < 8 + GFX9_TCS_NUM_USER_SGPR; i++)
				returns[num_returns++] = ctx->i32; /* SGPRs */
			for (i = 0; i < 2; i++)
				returns[num_returns++] = ctx->f32; /* VGPRs */
		} else {
			/* TCS return values are inputs to the TCS epilog.
			 *
			 * param_tcs_offchip_offset, param_tcs_factor_offset,
			 * param_tcs_offchip_layout, and param_rw_buffers
			 * should be passed to the epilog.
			 */
			for (i = 0; i <= 8 + GFX9_SGPR_TCS_OUT_LAYOUT; i++)
				returns[num_returns++] = ctx->i32; /* SGPRs */
			for (i = 0; i < 11; i++)
				returns[num_returns++] = ctx->f32; /* VGPRs */
		}
		break;

	case SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY:
		/* Merged stages have 8 system SGPRs at the beginning. */
		/* SPI_SHADER_USER_DATA_ADDR_LO/HI_GS */
		declare_per_stage_desc_pointers(ctx,
						ctx->type == PIPE_SHADER_GEOMETRY);

		if (ctx->shader->key.as_ngg)
			ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->gs_tg_info);
		else
			ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->gs2vs_offset);

		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->merged_wave_info);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_offset);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->merged_scratch_offset);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR,
			   &ctx->small_prim_cull_info); /* SPI_SHADER_PGM_LO_GS << 8 */
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused (SPI_SHADER_PGM_LO/HI_GS >> 24) */

		declare_global_desc_pointers(ctx);
		if (ctx->type != PIPE_SHADER_VERTEX || !vs_blit_property) {
			declare_per_stage_desc_pointers(ctx,
							(ctx->type == PIPE_SHADER_VERTEX ||
							 ctx->type == PIPE_SHADER_TESS_EVAL));
		}

		if (ctx->type == PIPE_SHADER_VERTEX) {
			if (vs_blit_property)
				declare_vs_blit_inputs(ctx, vs_blit_property);
			else
				declare_vs_specific_input_sgprs(ctx);
		} else {
			ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
			ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout);
			ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tes_offchip_addr);
			/* Declare as many input SGPRs as the VS has. */
		}

		if (ctx->type == PIPE_SHADER_VERTEX)
			declare_vb_descriptor_input_sgprs(ctx);

		/* VGPRs (first GS, then VS/TES) */
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx01_offset);
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx23_offset);
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_prim_id);
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_invocation_id);
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx45_offset);

		if (ctx->type == PIPE_SHADER_VERTEX) {
			declare_vs_input_vgprs(ctx, &num_prolog_vgprs, ngg_cull_shader);
		} else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
			declare_tes_input_vgprs(ctx, ngg_cull_shader);
		}

		if ((ctx->shader->key.as_es || ngg_cull_shader) &&
		    (ctx->type == PIPE_SHADER_VERTEX ||
		     ctx->type == PIPE_SHADER_TESS_EVAL)) {
			unsigned num_user_sgprs, num_vgprs;

			/* For the NGG cull shader, add 1 SGPR to hold the vertex buffer pointer. */
			if (ctx->type == PIPE_SHADER_VERTEX)
				num_user_sgprs = GFX9_VSGS_NUM_USER_SGPR + ngg_cull_shader;
			else
				num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;

			/* The NGG cull shader has to return all 9 VGPRs + the old thread ID.
			 *
			 * The normal merged ESGS shader only has to return the 5 VGPRs
			 * for the GS stage.
			 */
			num_vgprs = ngg_cull_shader ? 10 : 5;

			/* ES return values are inputs to GS. */
			for (i = 0; i < 8 + num_user_sgprs; i++)
				returns[num_returns++] = ctx->i32; /* SGPRs */
			for (i = 0; i < num_vgprs; i++)
				returns[num_returns++] = ctx->f32; /* VGPRs */
		}
		break;

	case PIPE_SHADER_TESS_EVAL:
		declare_global_desc_pointers(ctx);
		declare_per_stage_desc_pointers(ctx, true);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tes_offchip_addr);

		if (shader->key.as_es) {
			ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_offset);
			ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
			ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->es2gs_offset);
		} else {
			declare_streamout_params(ctx, &shader->selector->so);
			ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_offset);
		}

		/* VGPRs */
		declare_tes_input_vgprs(ctx, ngg_cull_shader);
		break;

	case PIPE_SHADER_GEOMETRY:
		declare_global_desc_pointers(ctx);
		declare_per_stage_desc_pointers(ctx, true);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->gs2vs_offset);
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->gs_wave_id);

		/* VGPRs */
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx_offset[0]);
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx_offset[1]);
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_prim_id);
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx_offset[2]);
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx_offset[3]);
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx_offset[4]);
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->gs_vtx_offset[5]);
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_invocation_id);
		break;

	case PIPE_SHADER_FRAGMENT:
		declare_global_desc_pointers(ctx);
		declare_per_stage_desc_pointers(ctx, true);
		si_add_arg_checked(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL,
				SI_PARAM_ALPHA_REF);
		si_add_arg_checked(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT,
				&ctx->args.prim_mask, SI_PARAM_PRIM_MASK);

		si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.persp_sample,
				SI_PARAM_PERSP_SAMPLE);
		si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT,
				&ctx->args.persp_center, SI_PARAM_PERSP_CENTER);
		si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT,
				&ctx->args.persp_centroid, SI_PARAM_PERSP_CENTROID);
		si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 3, AC_ARG_INT,
				NULL, SI_PARAM_PERSP_PULL_MODEL);
		si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT,
				&ctx->args.linear_sample, SI_PARAM_LINEAR_SAMPLE);
		si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT,
				&ctx->args.linear_center, SI_PARAM_LINEAR_CENTER);
		si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT,
				&ctx->args.linear_centroid, SI_PARAM_LINEAR_CENTROID);
		si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 3, AC_ARG_FLOAT,
				NULL, SI_PARAM_LINE_STIPPLE_TEX);
		si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT,
				&ctx->args.frag_pos[0], SI_PARAM_POS_X_FLOAT);
		si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT,
				&ctx->args.frag_pos[1], SI_PARAM_POS_Y_FLOAT);
		si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT,
				&ctx->args.frag_pos[2], SI_PARAM_POS_Z_FLOAT);
		si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT,
				&ctx->args.frag_pos[3], SI_PARAM_POS_W_FLOAT);
		shader->info.face_vgpr_index = ctx->args.num_vgprs_used;
		si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT,
				&ctx->args.front_face, SI_PARAM_FRONT_FACE);
		shader->info.ancillary_vgpr_index = ctx->args.num_vgprs_used;
		si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT,
				&ctx->args.ancillary, SI_PARAM_ANCILLARY);
		si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT,
				&ctx->args.sample_coverage, SI_PARAM_SAMPLE_COVERAGE);
		si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT,
				&ctx->pos_fixed_pt, SI_PARAM_POS_FIXED_PT);

		/* Color inputs from the prolog. */
		if (shader->selector->info.colors_read) {
			unsigned num_color_elements =
				util_bitcount(shader->selector->info.colors_read);

			for (i = 0; i < num_color_elements; i++)
				ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, NULL);

			num_prolog_vgprs += num_color_elements;
		}

		/* Outputs for the epilog. */
		num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
		num_returns =
			num_return_sgprs +
			util_bitcount(shader->selector->info.colors_written) * 4 +
			shader->selector->info.writes_z +
			shader->selector->info.writes_stencil +
			shader->selector->info.writes_samplemask +
			1 /* SampleMaskIn */;

		num_returns = MAX2(num_returns,
				   num_return_sgprs +
				   PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);

		for (i = 0; i < num_return_sgprs; i++)
			returns[i] = ctx->i32;
		for (; i < num_returns; i++)
			returns[i] = ctx->f32;
		break;

	case PIPE_SHADER_COMPUTE:
		declare_global_desc_pointers(ctx);
		declare_per_stage_desc_pointers(ctx, true);
		if (shader->selector->info.uses_grid_size)
			ac_add_arg(&ctx->args, AC_ARG_SGPR, 3, AC_ARG_INT,
				   &ctx->args.num_work_groups);
		if (shader->selector->info.uses_block_size &&
		    shader->selector->info.properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] == 0)
			ac_add_arg(&ctx->args, AC_ARG_SGPR, 3, AC_ARG_INT, &ctx->block_size);

		unsigned cs_user_data_dwords =
			shader->selector->info.properties[TGSI_PROPERTY_CS_USER_DATA_COMPONENTS_AMD];
		if (cs_user_data_dwords) {
			ac_add_arg(&ctx->args, AC_ARG_SGPR, cs_user_data_dwords, AC_ARG_INT,
				   &ctx->cs_user_data);
		}

		/* Hardware SGPRs. */
		for (i = 0; i < 3; i++) {
			if (shader->selector->info.uses_block_id[i]) {
				ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT,
					   &ctx->args.workgroup_ids[i]);
			}
		}
		if (shader->selector->info.uses_subgroup_info)
			ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tg_size);

		/* Hardware VGPRs. */
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 3, AC_ARG_INT,
			   &ctx->args.local_invocation_ids);
		break;
	default:
		assert(0 && "unimplemented shader");
		return;
	}

	si_llvm_create_func(ctx, ngg_cull_shader ? "ngg_cull_main" : "main",
			    returns, num_returns, si_get_max_workgroup_size(shader));

	/* Reserve register locations for VGPR inputs the PS prolog may need. */
	if (ctx->type == PIPE_SHADER_FRAGMENT && !ctx->shader->is_monolithic) {
		ac_llvm_add_target_dep_function_attr(ctx->main_fn,
						     "InitialPSInputAddr",
						     S_0286D0_PERSP_SAMPLE_ENA(1) |
						     S_0286D0_PERSP_CENTER_ENA(1) |
						     S_0286D0_PERSP_CENTROID_ENA(1) |
						     S_0286D0_LINEAR_SAMPLE_ENA(1) |
						     S_0286D0_LINEAR_CENTER_ENA(1) |
						     S_0286D0_LINEAR_CENTROID_ENA(1) |
						     S_0286D0_FRONT_FACE_ENA(1) |
						     S_0286D0_ANCILLARY_ENA(1) |
						     S_0286D0_POS_FIXED_PT_ENA(1));
	}

	shader->info.num_input_sgprs = ctx->args.num_sgprs_used;
	shader->info.num_input_vgprs = ctx->args.num_vgprs_used;

	assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
	shader->info.num_input_vgprs -= num_prolog_vgprs;

	if (shader->key.as_ls || ctx->type == PIPE_SHADER_TESS_CTRL) {
		if (USE_LDS_SYMBOLS && LLVM_VERSION_MAJOR >= 9) {
			/* The LSHS size is not known until draw time, so we append it
			 * at the end of whatever LDS use there may be in the rest of
			 * the shader (currently none, unless LLVM decides to do its
			 * own LDS-based lowering).
			 */
			ctx->ac.lds = LLVMAddGlobalInAddressSpace(
				ctx->ac.module, LLVMArrayType(ctx->i32, 0),
				"__lds_end", AC_ADDR_SPACE_LDS);
			LLVMSetAlignment(ctx->ac.lds, 256);
		} else {
			ac_declare_lds_as_pointer(&ctx->ac);
		}
	}

	/* Unlike radv, we override these arguments in the prolog, so to the
	 * API shader they appear as normal arguments.
	 */
	if (ctx->type == PIPE_SHADER_VERTEX) {
		ctx->abi.vertex_id = ac_get_arg(&ctx->ac, ctx->args.vertex_id);
		ctx->abi.instance_id = ac_get_arg(&ctx->ac, ctx->args.instance_id);
	} else if (ctx->type == PIPE_SHADER_FRAGMENT) {
		ctx->abi.persp_centroid = ac_get_arg(&ctx->ac, ctx->args.persp_centroid);
		ctx->abi.linear_centroid = ac_get_arg(&ctx->ac, ctx->args.linear_centroid);
	}
}

/* For the UMR disassembler. */
#define DEBUGGER_END_OF_CODE_MARKER	0xbf9f0000 /* invalid instruction */
#define DEBUGGER_NUM_MARKERS		5

static bool si_shader_binary_open(struct si_screen *screen,
				  struct si_shader *shader,
				  struct ac_rtld_binary *rtld)
{
	const struct si_shader_selector *sel = shader->selector;
	const char *part_elfs[5];
	size_t part_sizes[5];
	unsigned num_parts = 0;

#define add_part(shader_or_part) \
	if (shader_or_part) { \
		part_elfs[num_parts] = (shader_or_part)->binary.elf_buffer; \
		part_sizes[num_parts] = (shader_or_part)->binary.elf_size; \
		num_parts++; \
	}

	add_part(shader->prolog);
	add_part(shader->previous_stage);
	add_part(shader->prolog2);
	add_part(shader);
	add_part(shader->epilog);

#undef add_part

	struct ac_rtld_symbol lds_symbols[2];
	unsigned num_lds_symbols = 0;

	if (sel && screen->info.chip_class >= GFX9 && !shader->is_gs_copy_shader &&
	    (sel->type == PIPE_SHADER_GEOMETRY || shader->key.as_ngg)) {
		/* We add this symbol even on LLVM <= 8 to ensure that
		 * shader->config.lds_size is set correctly below.
		 */
		struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
		sym->name = "esgs_ring";
		sym->size = shader->gs_info.esgs_ring_size;
		sym->align = 64 * 1024;
	}

	if (shader->key.as_ngg && sel->type == PIPE_SHADER_GEOMETRY) {
		struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
		sym->name = "ngg_emit";
		sym->size = shader->ngg.ngg_emit_size * 4;
		sym->align = 4;
	}

	bool ok = ac_rtld_open(rtld, (struct ac_rtld_open_info){
			.info = &screen->info,
			.options = {
				.halt_at_entry = screen->options.halt_shaders,
			},
			.shader_type = tgsi_processor_to_shader_stage(sel->type),
			.wave_size = si_get_shader_wave_size(shader),
			.num_parts = num_parts,
			.elf_ptrs = part_elfs,
			.elf_sizes = part_sizes,
			.num_shared_lds_symbols = num_lds_symbols,
			.shared_lds_symbols = lds_symbols });

	if (rtld->lds_size > 0) {
		unsigned alloc_granularity = screen->info.chip_class >= GFX7 ? 512 : 256;
		shader->config.lds_size =
			align(rtld->lds_size, alloc_granularity) / alloc_granularity;
	}

	return ok;
}

static unsigned si_get_shader_binary_size(struct si_screen *screen, struct si_shader *shader)
{
	struct ac_rtld_binary rtld;
	si_shader_binary_open(screen, shader, &rtld);
	return rtld.exec_size;
}

static bool si_get_external_symbol(void *data, const char *name, uint64_t *value)
{
	uint64_t *scratch_va = data;

	if (!strcmp(scratch_rsrc_dword0_symbol, name)) {
		*value = (uint32_t)*scratch_va;
		return true;
	}
	if (!strcmp(scratch_rsrc_dword1_symbol, name)) {
		/* Enable scratch coalescing. */
		*value = S_008F04_BASE_ADDRESS_HI(*scratch_va >> 32) |
			 S_008F04_SWIZZLE_ENABLE(1);
		return true;
	}

	return false;
}

bool si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader,
			     uint64_t scratch_va)
{
	struct ac_rtld_binary binary;
	if (!si_shader_binary_open(sscreen, shader, &binary))
		return false;

	si_resource_reference(&shader->bo, NULL);
	shader->bo = si_aligned_buffer_create(&sscreen->b,
					      sscreen->info.cpdma_prefetch_writes_memory ?
						0 : SI_RESOURCE_FLAG_READ_ONLY,
                                              PIPE_USAGE_IMMUTABLE,
                                              align(binary.rx_size, SI_CPDMA_ALIGNMENT),
                                              256);
	if (!shader->bo)
		return false;

	/* Upload. */
	struct ac_rtld_upload_info u = {};
	u.binary = &binary;
	u.get_external_symbol = si_get_external_symbol;
	u.cb_data = &scratch_va;
	u.rx_va = shader->bo->gpu_address;
	u.rx_ptr = sscreen->ws->buffer_map(shader->bo->buf, NULL,
					PIPE_TRANSFER_READ_WRITE |
					PIPE_TRANSFER_UNSYNCHRONIZED |
					RADEON_TRANSFER_TEMPORARY);
	if (!u.rx_ptr)
		return false;

	bool ok = ac_rtld_upload(&u);

	sscreen->ws->buffer_unmap(shader->bo->buf);
	ac_rtld_close(&binary);

	return ok;
}

static void si_shader_dump_disassembly(struct si_screen *screen,
				       const struct si_shader_binary *binary,
				       enum pipe_shader_type shader_type,
				       unsigned wave_size,
				       struct pipe_debug_callback *debug,
				       const char *name, FILE *file)
{
	struct ac_rtld_binary rtld_binary;

	if (!ac_rtld_open(&rtld_binary, (struct ac_rtld_open_info){
			.info = &screen->info,
			.shader_type = tgsi_processor_to_shader_stage(shader_type),
			.wave_size = wave_size,
			.num_parts = 1,
			.elf_ptrs = &binary->elf_buffer,
			.elf_sizes = &binary->elf_size }))
		return;

	const char *disasm;
	size_t nbytes;

	if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm, &nbytes))
		goto out;

	if (nbytes > INT_MAX)
		goto out;

	if (debug && debug->debug_message) {
		/* Very long debug messages are cut off, so send the
		 * disassembly one line at a time. This causes more
		 * overhead, but on the plus side it simplifies
		 * parsing of resulting logs.
		 */
		pipe_debug_message(debug, SHADER_INFO,
				   "Shader Disassembly Begin");

		uint64_t line = 0;
		while (line < nbytes) {
			int count = nbytes - line;
			const char *nl = memchr(disasm + line, '\n', nbytes - line);
			if (nl)
				count = nl - (disasm + line);

			if (count) {
				pipe_debug_message(debug, SHADER_INFO,
						   "%.*s", count, disasm + line);
			}

			line += count + 1;
		}

		pipe_debug_message(debug, SHADER_INFO,
				   "Shader Disassembly End");
	}

	if (file) {
		fprintf(file, "Shader %s disassembly:\n", name);
		fprintf(file, "%*s", (int)nbytes, disasm);
	}

out:
	ac_rtld_close(&rtld_binary);
}

static void si_calculate_max_simd_waves(struct si_shader *shader)
{
	struct si_screen *sscreen = shader->selector->screen;
	struct ac_shader_config *conf = &shader->config;
	unsigned num_inputs = shader->selector->info.num_inputs;
	unsigned lds_increment = sscreen->info.chip_class >= GFX7 ? 512 : 256;
	unsigned lds_per_wave = 0;
	unsigned max_simd_waves;

	max_simd_waves = sscreen->info.max_wave64_per_simd;

	/* Compute LDS usage for PS. */
	switch (shader->selector->type) {
	case PIPE_SHADER_FRAGMENT:
		/* The minimum usage per wave is (num_inputs * 48). The maximum
		 * usage is (num_inputs * 48 * 16).
		 * We can get anything in between and it varies between waves.
		 *
		 * The 48 bytes per input for a single primitive is equal to
		 * 4 bytes/component * 4 components/input * 3 points.
		 *
		 * Other stages don't know the size at compile time or don't
		 * allocate LDS per wave, but instead they do it per thread group.
		 */
		lds_per_wave = conf->lds_size * lds_increment +
			       align(num_inputs * 48, lds_increment);
		break;
	case PIPE_SHADER_COMPUTE:
		if (shader->selector) {
			unsigned max_workgroup_size =
				si_get_max_workgroup_size(shader);
			lds_per_wave = (conf->lds_size * lds_increment) /
				       DIV_ROUND_UP(max_workgroup_size,
						    sscreen->compute_wave_size);
		}
		break;
	default:;
	}

	/* Compute the per-SIMD wave counts. */
	if (conf->num_sgprs) {
		max_simd_waves =
			MIN2(max_simd_waves,
			     sscreen->info.num_physical_sgprs_per_simd / conf->num_sgprs);
	}

	if (conf->num_vgprs) {
		/* Always print wave limits as Wave64, so that we can compare
		 * Wave32 and Wave64 with shader-db fairly. */
		unsigned max_vgprs = sscreen->info.num_physical_wave64_vgprs_per_simd;
		max_simd_waves = MIN2(max_simd_waves, max_vgprs / conf->num_vgprs);
	}

	/* LDS is 64KB per CU (4 SIMDs) on GFX6-9, which is 16KB per SIMD (usage above
	 * 16KB makes some SIMDs unoccupied).
	 *
	 * LDS is 128KB in WGP mode and 64KB in CU mode. Assume the WGP mode is used.
	 */
	unsigned max_lds_size = sscreen->info.chip_class >= GFX10 ? 128*1024 : 64*1024;
	unsigned max_lds_per_simd = max_lds_size / 4;
	if (lds_per_wave)
		max_simd_waves = MIN2(max_simd_waves, max_lds_per_simd / lds_per_wave);

	shader->info.max_simd_waves = max_simd_waves;
}

void si_shader_dump_stats_for_shader_db(struct si_screen *screen,
					struct si_shader *shader,
					struct pipe_debug_callback *debug)
{
	const struct ac_shader_config *conf = &shader->config;

	if (screen->options.debug_disassembly)
		si_shader_dump_disassembly(screen, &shader->binary,
					   shader->selector->type,
					   si_get_shader_wave_size(shader),
					   debug, "main", NULL);

	pipe_debug_message(debug, SHADER_INFO,
			   "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
			   "LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
			   "Spilled VGPRs: %d PrivMem VGPRs: %d",
			   conf->num_sgprs, conf->num_vgprs,
			   si_get_shader_binary_size(screen, shader),
			   conf->lds_size, conf->scratch_bytes_per_wave,
			   shader->info.max_simd_waves, conf->spilled_sgprs,
			   conf->spilled_vgprs, shader->info.private_mem_vgprs);
}

static void si_shader_dump_stats(struct si_screen *sscreen,
				 struct si_shader *shader,
				 FILE *file,
				 bool check_debug_option)
{
	const struct ac_shader_config *conf = &shader->config;

	if (!check_debug_option ||
	    si_can_dump_shader(sscreen, shader->selector->type)) {
		if (shader->selector->type == PIPE_SHADER_FRAGMENT) {
			fprintf(file, "*** SHADER CONFIG ***\n"
				"SPI_PS_INPUT_ADDR = 0x%04x\n"
				"SPI_PS_INPUT_ENA  = 0x%04x\n",
				conf->spi_ps_input_addr, conf->spi_ps_input_ena);
		}

		fprintf(file, "*** SHADER STATS ***\n"
			"SGPRS: %d\n"
			"VGPRS: %d\n"
		        "Spilled SGPRs: %d\n"
			"Spilled VGPRs: %d\n"
			"Private memory VGPRs: %d\n"
			"Code Size: %d bytes\n"
			"LDS: %d blocks\n"
			"Scratch: %d bytes per wave\n"
			"Max Waves: %d\n"
			"********************\n\n\n",
			conf->num_sgprs, conf->num_vgprs,
			conf->spilled_sgprs, conf->spilled_vgprs,
			shader->info.private_mem_vgprs,
			si_get_shader_binary_size(sscreen, shader),
			conf->lds_size, conf->scratch_bytes_per_wave,
			shader->info.max_simd_waves);
	}
}

const char *si_get_shader_name(const struct si_shader *shader)
{
	switch (shader->selector->type) {
	case PIPE_SHADER_VERTEX:
		if (shader->key.as_es)
			return "Vertex Shader as ES";
		else if (shader->key.as_ls)
			return "Vertex Shader as LS";
		else if (shader->key.opt.vs_as_prim_discard_cs)
			return "Vertex Shader as Primitive Discard CS";
		else if (shader->key.as_ngg)
			return "Vertex Shader as ESGS";
		else
			return "Vertex Shader as VS";
	case PIPE_SHADER_TESS_CTRL:
		return "Tessellation Control Shader";
	case PIPE_SHADER_TESS_EVAL:
		if (shader->key.as_es)
			return "Tessellation Evaluation Shader as ES";
		else if (shader->key.as_ngg)
			return "Tessellation Evaluation Shader as ESGS";
		else
			return "Tessellation Evaluation Shader as VS";
	case PIPE_SHADER_GEOMETRY:
		if (shader->is_gs_copy_shader)
			return "GS Copy Shader as VS";
		else
			return "Geometry Shader";
	case PIPE_SHADER_FRAGMENT:
		return "Pixel Shader";
	case PIPE_SHADER_COMPUTE:
		return "Compute Shader";
	default:
		return "Unknown Shader";
	}
}

void si_shader_dump(struct si_screen *sscreen, struct si_shader *shader,
		    struct pipe_debug_callback *debug,
		    FILE *file, bool check_debug_option)
{
	enum pipe_shader_type shader_type = shader->selector->type;

	if (!check_debug_option ||
	    si_can_dump_shader(sscreen, shader_type))
		si_dump_shader_key(shader, file);

	if (!check_debug_option && shader->binary.llvm_ir_string) {
		if (shader->previous_stage &&
		    shader->previous_stage->binary.llvm_ir_string) {
			fprintf(file, "\n%s - previous stage - LLVM IR:\n\n",
				si_get_shader_name(shader));
			fprintf(file, "%s\n", shader->previous_stage->binary.llvm_ir_string);
		}

		fprintf(file, "\n%s - main shader part - LLVM IR:\n\n",
			si_get_shader_name(shader));
		fprintf(file, "%s\n", shader->binary.llvm_ir_string);
	}

	if (!check_debug_option ||
	    (si_can_dump_shader(sscreen, shader_type) &&
	     !(sscreen->debug_flags & DBG(NO_ASM)))) {
		unsigned wave_size = si_get_shader_wave_size(shader);

		fprintf(file, "\n%s:\n", si_get_shader_name(shader));

		if (shader->prolog)
			si_shader_dump_disassembly(sscreen, &shader->prolog->binary,
						   shader_type, wave_size, debug, "prolog", file);
		if (shader->previous_stage)
			si_shader_dump_disassembly(sscreen, &shader->previous_stage->binary,
						   shader_type, wave_size, debug, "previous stage", file);
		if (shader->prolog2)
			si_shader_dump_disassembly(sscreen, &shader->prolog2->binary,
						   shader_type, wave_size, debug, "prolog2", file);

		si_shader_dump_disassembly(sscreen, &shader->binary, shader_type,
					   wave_size, debug, "main", file);

		if (shader->epilog)
			si_shader_dump_disassembly(sscreen, &shader->epilog->binary,
						   shader_type, wave_size, debug, "epilog", file);
		fprintf(file, "\n");
	}

	si_shader_dump_stats(sscreen, shader, file, check_debug_option);
}

static void si_dump_shader_key_vs(const struct si_shader_key *key,
				  const struct si_vs_prolog_bits *prolog,
				  const char *prefix, FILE *f)
{
	fprintf(f, "  %s.instance_divisor_is_one = %u\n",
		prefix, prolog->instance_divisor_is_one);
	fprintf(f, "  %s.instance_divisor_is_fetched = %u\n",
		prefix, prolog->instance_divisor_is_fetched);
	fprintf(f, "  %s.unpack_instance_id_from_vertex_id = %u\n",
		prefix, prolog->unpack_instance_id_from_vertex_id);
	fprintf(f, "  %s.ls_vgpr_fix = %u\n",
		prefix, prolog->ls_vgpr_fix);

	fprintf(f, "  mono.vs.fetch_opencode = %x\n", key->mono.vs_fetch_opencode);
	fprintf(f, "  mono.vs.fix_fetch = {");
	for (int i = 0; i < SI_MAX_ATTRIBS; i++) {
		union si_vs_fix_fetch fix = key->mono.vs_fix_fetch[i];
		if (i)
			fprintf(f, ", ");
		if (!fix.bits)
			fprintf(f, "0");
		else
			fprintf(f, "%u.%u.%u.%u", fix.u.reverse, fix.u.log_size,
				fix.u.num_channels_m1, fix.u.format);
	}
	fprintf(f, "}\n");
}

static void si_dump_shader_key(const struct si_shader *shader, FILE *f)
{
	const struct si_shader_key *key = &shader->key;
	enum pipe_shader_type shader_type = shader->selector->type;

	fprintf(f, "SHADER KEY\n");

	switch (shader_type) {
	case PIPE_SHADER_VERTEX:
		si_dump_shader_key_vs(key, &key->part.vs.prolog,
				      "part.vs.prolog", f);
		fprintf(f, "  as_es = %u\n", key->as_es);
		fprintf(f, "  as_ls = %u\n", key->as_ls);
		fprintf(f, "  as_ngg = %u\n", key->as_ngg);
		fprintf(f, "  mono.u.vs_export_prim_id = %u\n",
			key->mono.u.vs_export_prim_id);
		fprintf(f, "  opt.vs_as_prim_discard_cs = %u\n",
			key->opt.vs_as_prim_discard_cs);
		fprintf(f, "  opt.cs_prim_type = %s\n",
			tgsi_primitive_names[key->opt.cs_prim_type]);
		fprintf(f, "  opt.cs_indexed = %u\n",
			key->opt.cs_indexed);
		fprintf(f, "  opt.cs_instancing = %u\n",
			key->opt.cs_instancing);
		fprintf(f, "  opt.cs_primitive_restart = %u\n",
			key->opt.cs_primitive_restart);
		fprintf(f, "  opt.cs_provoking_vertex_first = %u\n",
			key->opt.cs_provoking_vertex_first);
		fprintf(f, "  opt.cs_need_correct_orientation = %u\n",
			key->opt.cs_need_correct_orientation);
		fprintf(f, "  opt.cs_cull_front = %u\n",
			key->opt.cs_cull_front);
		fprintf(f, "  opt.cs_cull_back = %u\n",
			key->opt.cs_cull_back);
		fprintf(f, "  opt.cs_cull_z = %u\n",
			key->opt.cs_cull_z);
		fprintf(f, "  opt.cs_halfz_clip_space = %u\n",
			key->opt.cs_halfz_clip_space);
		break;

	case PIPE_SHADER_TESS_CTRL:
		if (shader->selector->screen->info.chip_class >= GFX9) {
			si_dump_shader_key_vs(key, &key->part.tcs.ls_prolog,
					      "part.tcs.ls_prolog", f);
		}
		fprintf(f, "  part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode);
		fprintf(f, "  mono.u.ff_tcs_inputs_to_copy = 0x%"PRIx64"\n", key->mono.u.ff_tcs_inputs_to_copy);
		break;

	case PIPE_SHADER_TESS_EVAL:
		fprintf(f, "  as_es = %u\n", key->as_es);
		fprintf(f, "  as_ngg = %u\n", key->as_ngg);
		fprintf(f, "  mono.u.vs_export_prim_id = %u\n",
			key->mono.u.vs_export_prim_id);
		break;

	case PIPE_SHADER_GEOMETRY:
		if (shader->is_gs_copy_shader)
			break;

		if (shader->selector->screen->info.chip_class >= GFX9 &&
		    key->part.gs.es->type == PIPE_SHADER_VERTEX) {
			si_dump_shader_key_vs(key, &key->part.gs.vs_prolog,
					      "part.gs.vs_prolog", f);
		}
		fprintf(f, "  part.gs.prolog.tri_strip_adj_fix = %u\n", key->part.gs.prolog.tri_strip_adj_fix);
		fprintf(f, "  part.gs.prolog.gfx9_prev_is_vs = %u\n", key->part.gs.prolog.gfx9_prev_is_vs);
		fprintf(f, "  as_ngg = %u\n", key->as_ngg);
		break;

	case PIPE_SHADER_COMPUTE:
		break;

	case PIPE_SHADER_FRAGMENT:
		fprintf(f, "  part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side);
		fprintf(f, "  part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors);
		fprintf(f, "  part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple);
		fprintf(f, "  part.ps.prolog.force_persp_sample_interp = %u\n", key->part.ps.prolog.force_persp_sample_interp);
		fprintf(f, "  part.ps.prolog.force_linear_sample_interp = %u\n", key->part.ps.prolog.force_linear_sample_interp);
		fprintf(f, "  part.ps.prolog.force_persp_center_interp = %u\n", key->part.ps.prolog.force_persp_center_interp);
		fprintf(f, "  part.ps.prolog.force_linear_center_interp = %u\n", key->part.ps.prolog.force_linear_center_interp);
		fprintf(f, "  part.ps.prolog.bc_optimize_for_persp = %u\n", key->part.ps.prolog.bc_optimize_for_persp);
		fprintf(f, "  part.ps.prolog.bc_optimize_for_linear = %u\n", key->part.ps.prolog.bc_optimize_for_linear);
		fprintf(f, "  part.ps.prolog.samplemask_log_ps_iter = %u\n", key->part.ps.prolog.samplemask_log_ps_iter);
		fprintf(f, "  part.ps.epilog.spi_shader_col_format = 0x%x\n", key->part.ps.epilog.spi_shader_col_format);
		fprintf(f, "  part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8);
		fprintf(f, "  part.ps.epilog.color_is_int10 = 0x%X\n", key->part.ps.epilog.color_is_int10);
		fprintf(f, "  part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf);
		fprintf(f, "  part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func);
		fprintf(f, "  part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one);
		fprintf(f, "  part.ps.epilog.poly_line_smoothing = %u\n", key->part.ps.epilog.poly_line_smoothing);
		fprintf(f, "  part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color);
		fprintf(f, "  mono.u.ps.interpolate_at_sample_force_center = %u\n", key->mono.u.ps.interpolate_at_sample_force_center);
		fprintf(f, "  mono.u.ps.fbfetch_msaa = %u\n", key->mono.u.ps.fbfetch_msaa);
		fprintf(f, "  mono.u.ps.fbfetch_is_1D = %u\n", key->mono.u.ps.fbfetch_is_1D);
		fprintf(f, "  mono.u.ps.fbfetch_layered = %u\n", key->mono.u.ps.fbfetch_layered);
		break;

	default:
		assert(0);
	}

	if ((shader_type == PIPE_SHADER_GEOMETRY ||
	     shader_type == PIPE_SHADER_TESS_EVAL ||
	     shader_type == PIPE_SHADER_VERTEX) &&
	    !key->as_es && !key->as_ls) {
		fprintf(f, "  opt.kill_outputs = 0x%"PRIx64"\n", key->opt.kill_outputs);
		fprintf(f, "  opt.clip_disable = %u\n", key->opt.clip_disable);
		if (shader_type != PIPE_SHADER_GEOMETRY)
			fprintf(f, "  opt.ngg_culling = 0x%x\n", key->opt.ngg_culling);
	}
}

static void si_optimize_vs_outputs(struct si_shader_context *ctx)
{
	struct si_shader *shader = ctx->shader;
	struct si_shader_info *info = &shader->selector->info;

	if ((ctx->type != PIPE_SHADER_VERTEX &&
	     ctx->type != PIPE_SHADER_TESS_EVAL) ||
	    shader->key.as_ls ||
	    shader->key.as_es)
		return;

	ac_optimize_vs_outputs(&ctx->ac,
			       ctx->main_fn,
			       shader->info.vs_output_param_offset,
			       info->num_outputs,
			       &shader->info.nr_param_exports);
}

static void si_init_exec_from_input(struct si_shader_context *ctx,
				    struct ac_arg param, unsigned bitoffset)
{
	LLVMValueRef args[] = {
		ac_get_arg(&ctx->ac, param),
		LLVMConstInt(ctx->i32, bitoffset, 0),
	};
	ac_build_intrinsic(&ctx->ac,
			   "llvm.amdgcn.init.exec.from.input",
			   ctx->voidt, args, 2, AC_FUNC_ATTR_CONVERGENT);
}

static bool si_vs_needs_prolog(const struct si_shader_selector *sel,
			       const struct si_vs_prolog_bits *key)
{
	/* VGPR initialization fixup for Vega10 and Raven is always done in the
	 * VS prolog. */
	return sel->vs_needs_prolog ||
	       key->ls_vgpr_fix ||
	       key->unpack_instance_id_from_vertex_id;
}

static bool si_build_main_function(struct si_shader_context *ctx,
				   struct nir_shader *nir, bool free_nir,
				   bool ngg_cull_shader)
{
	struct si_shader *shader = ctx->shader;
	struct si_shader_selector *sel = shader->selector;

	si_llvm_init_resource_callbacks(ctx);

	switch (ctx->type) {
	case PIPE_SHADER_VERTEX:
		if (shader->key.as_ls)
			ctx->abi.emit_outputs = si_llvm_emit_ls_epilogue;
		else if (shader->key.as_es)
			ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
		else if (shader->key.opt.vs_as_prim_discard_cs)
			ctx->abi.emit_outputs = si_llvm_emit_prim_discard_cs_epilogue;
		else if (ngg_cull_shader)
			ctx->abi.emit_outputs = gfx10_emit_ngg_culling_epilogue_4x_wave32;
		else if (shader->key.as_ngg)
			ctx->abi.emit_outputs = gfx10_emit_ngg_epilogue;
		else
			ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
		ctx->abi.load_base_vertex = get_base_vertex;
		break;
	case PIPE_SHADER_TESS_CTRL:
		si_llvm_init_tcs_callbacks(ctx);
		break;
	case PIPE_SHADER_TESS_EVAL:
		si_llvm_init_tes_callbacks(ctx);

		if (shader->key.as_es)
			ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
		else if (ngg_cull_shader)
			ctx->abi.emit_outputs = gfx10_emit_ngg_culling_epilogue_4x_wave32;
		else if (shader->key.as_ngg)
			ctx->abi.emit_outputs = gfx10_emit_ngg_epilogue;
		else
			ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
		break;
	case PIPE_SHADER_GEOMETRY:
		si_llvm_init_gs_callbacks(ctx);
		break;
	case PIPE_SHADER_FRAGMENT:
		si_llvm_init_ps_callbacks(ctx);
		break;
	case PIPE_SHADER_COMPUTE:
		ctx->abi.load_local_group_size = get_block_size;
		break;
	default:
		assert(!"Unsupported shader type");
		return false;
	}

	si_create_function(ctx, ngg_cull_shader);

	if (ctx->shader->key.as_es || ctx->type == PIPE_SHADER_GEOMETRY)
		si_preload_esgs_ring(ctx);

	if (ctx->type == PIPE_SHADER_GEOMETRY)
		si_preload_gs_rings(ctx);
	else if (ctx->type == PIPE_SHADER_TESS_EVAL)
		si_llvm_preload_tes_rings(ctx);

	if (ctx->type == PIPE_SHADER_TESS_CTRL &&
	    sel->info.tessfactors_are_def_in_all_invocs) {
		for (unsigned i = 0; i < 6; i++) {
			ctx->invoc0_tess_factors[i] =
				ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
		}
	}

	if (ctx->type == PIPE_SHADER_GEOMETRY) {
		for (unsigned i = 0; i < 4; i++) {
			ctx->gs_next_vertex[i] =
				ac_build_alloca(&ctx->ac, ctx->i32, "");
		}
		if (shader->key.as_ngg) {
			for (unsigned i = 0; i < 4; ++i) {
				ctx->gs_curprim_verts[i] =
					ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
				ctx->gs_generated_prims[i] =
					ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
			}

			unsigned scratch_size = 8;
			if (sel->so.num_outputs)
				scratch_size = 44;

			assert(!ctx->gs_ngg_scratch);
			LLVMTypeRef ai32 = LLVMArrayType(ctx->i32, scratch_size);
			ctx->gs_ngg_scratch = LLVMAddGlobalInAddressSpace(ctx->ac.module,
				ai32, "ngg_scratch", AC_ADDR_SPACE_LDS);
			LLVMSetInitializer(ctx->gs_ngg_scratch, LLVMGetUndef(ai32));
			LLVMSetAlignment(ctx->gs_ngg_scratch, 4);

			ctx->gs_ngg_emit = LLVMAddGlobalInAddressSpace(ctx->ac.module,
				LLVMArrayType(ctx->i32, 0), "ngg_emit", AC_ADDR_SPACE_LDS);
			LLVMSetLinkage(ctx->gs_ngg_emit, LLVMExternalLinkage);
			LLVMSetAlignment(ctx->gs_ngg_emit, 4);
		}
	}

	if (ctx->type != PIPE_SHADER_GEOMETRY &&
	    (shader->key.as_ngg && !shader->key.as_es)) {
		/* Unconditionally declare scratch space base for streamout and
		 * vertex compaction. Whether space is actually allocated is
		 * determined during linking / PM4 creation.
		 *
		 * Add an extra dword per vertex to ensure an odd stride, which
		 * avoids bank conflicts for SoA accesses.
		 */
		if (!gfx10_is_ngg_passthrough(shader))
			si_llvm_declare_esgs_ring(ctx);

		/* This is really only needed when streamout and / or vertex
		 * compaction is enabled.
		 */
		if (!ctx->gs_ngg_scratch &&
		    (sel->so.num_outputs || shader->key.opt.ngg_culling)) {
			LLVMTypeRef asi32 = LLVMArrayType(ctx->i32, 8);
			ctx->gs_ngg_scratch = LLVMAddGlobalInAddressSpace(ctx->ac.module,
				asi32, "ngg_scratch", AC_ADDR_SPACE_LDS);
			LLVMSetInitializer(ctx->gs_ngg_scratch, LLVMGetUndef(asi32));
			LLVMSetAlignment(ctx->gs_ngg_scratch, 4);
		}
	}

	/* For GFX9 merged shaders:
	 * - Set EXEC for the first shader. If the prolog is present, set
	 *   EXEC there instead.
	 * - Add a barrier before the second shader.
	 * - In the second shader, reset EXEC to ~0 and wrap the main part in
	 *   an if-statement. This is required for correctness in geometry
	 *   shaders, to ensure that empty GS waves do not send GS_EMIT and
	 *   GS_CUT messages.
	 *
	 * For monolithic merged shaders, the first shader is wrapped in an
	 * if-block together with its prolog in si_build_wrapper_function.
	 *
	 * NGG vertex and tess eval shaders running as the last
	 * vertex/geometry stage handle execution explicitly using
	 * if-statements.
	 */
	if (ctx->screen->info.chip_class >= GFX9) {
		if (!shader->is_monolithic &&
		    (shader->key.as_es || shader->key.as_ls) &&
		    (ctx->type == PIPE_SHADER_TESS_EVAL ||
		     (ctx->type == PIPE_SHADER_VERTEX &&
		      !si_vs_needs_prolog(sel, &shader->key.part.vs.prolog)))) {
			si_init_exec_from_input(ctx,
						ctx->merged_wave_info, 0);
		} else if (ctx->type == PIPE_SHADER_TESS_CTRL ||
			   ctx->type == PIPE_SHADER_GEOMETRY ||
			   (shader->key.as_ngg && !shader->key.as_es)) {
			LLVMValueRef thread_enabled;
			bool nested_barrier;

			if (!shader->is_monolithic ||
			    (ctx->type == PIPE_SHADER_TESS_EVAL &&
			     shader->key.as_ngg && !shader->key.as_es &&
			     !shader->key.opt.ngg_culling))
				ac_init_exec_full_mask(&ctx->ac);

			if ((ctx->type == PIPE_SHADER_VERTEX ||
			     ctx->type == PIPE_SHADER_TESS_EVAL) &&
			    shader->key.as_ngg && !shader->key.as_es &&
			    !shader->key.opt.ngg_culling) {
				gfx10_ngg_build_sendmsg_gs_alloc_req(ctx);

				/* Build the primitive export at the beginning
				 * of the shader if possible.
				 */
				if (gfx10_ngg_export_prim_early(shader))
					gfx10_ngg_build_export_prim(ctx, NULL, NULL);
			}

			if (ctx->type == PIPE_SHADER_TESS_CTRL ||
			    ctx->type == PIPE_SHADER_GEOMETRY) {
				if (ctx->type == PIPE_SHADER_GEOMETRY && shader->key.as_ngg) {
					gfx10_ngg_gs_emit_prologue(ctx);
					nested_barrier = false;
				} else {
					nested_barrier = true;
				}

				thread_enabled = si_is_gs_thread(ctx);
			} else {
				thread_enabled = si_is_es_thread(ctx);
				nested_barrier = false;
			}

			ctx->merged_wrap_if_entry_block = LLVMGetInsertBlock(ctx->ac.builder);
			ctx->merged_wrap_if_label = 11500;
			ac_build_ifcc(&ctx->ac, thread_enabled, ctx->merged_wrap_if_label);

			if (nested_barrier) {
				/* Execute a barrier before the second shader in
				 * a merged shader.
				 *
				 * Execute the barrier inside the conditional block,
				 * so that empty waves can jump directly to s_endpgm,
				 * which will also signal the barrier.
				 *
				 * This is possible in gfx9, because an empty wave
				 * for the second shader does not participate in
				 * the epilogue. With NGG, empty waves may still
				 * be required to export data (e.g. GS output vertices),
				 * so we cannot let them exit early.
				 *
				 * If the shader is TCS and the TCS epilog is present
				 * and contains a barrier, it will wait there and then
				 * reach s_endpgm.
				 */
				si_llvm_emit_barrier(ctx);
			}
		}
	}

	if (sel->force_correct_derivs_after_kill) {
		ctx->postponed_kill = ac_build_alloca_undef(&ctx->ac, ctx->i1, "");
		/* true = don't kill. */
		LLVMBuildStore(ctx->ac.builder, ctx->i1true,
			       ctx->postponed_kill);
	}

	bool success = si_nir_build_llvm(ctx, nir);
	if (free_nir)
		ralloc_free(nir);
	if (!success) {
		fprintf(stderr, "Failed to translate shader from NIR to LLVM\n");
		return false;
	}

	si_llvm_build_ret(ctx, ctx->return_value);
	return true;
}

/**
 * Compute the VS prolog key, which contains all the information needed to
 * build the VS prolog function, and set shader->info bits where needed.
 *
 * \param info             Shader info of the vertex shader.
 * \param num_input_sgprs  Number of input SGPRs for the vertex shader.
 * \param has_old_  Whether the preceding shader part is the NGG cull shader.
 * \param prolog_key       Key of the VS prolog
 * \param shader_out       The vertex shader, or the next shader if merging LS+HS or ES+GS.
 * \param key              Output shader part key.
 */
static void si_get_vs_prolog_key(const struct si_shader_info *info,
				 unsigned num_input_sgprs,
				 bool ngg_cull_shader,
				 const struct si_vs_prolog_bits *prolog_key,
				 struct si_shader *shader_out,
				 union si_shader_part_key *key)
{
	memset(key, 0, sizeof(*key));
	key->vs_prolog.states = *prolog_key;
	key->vs_prolog.num_input_sgprs = num_input_sgprs;
	key->vs_prolog.num_inputs = info->num_inputs;
	key->vs_prolog.as_ls = shader_out->key.as_ls;
	key->vs_prolog.as_es = shader_out->key.as_es;
	key->vs_prolog.as_ngg = shader_out->key.as_ngg;

	if (!ngg_cull_shader)
		key->vs_prolog.has_ngg_cull_inputs = !!shader_out->key.opt.ngg_culling;

	if (shader_out->selector->type == PIPE_SHADER_TESS_CTRL) {
		key->vs_prolog.as_ls = 1;
		key->vs_prolog.num_merged_next_stage_vgprs = 2;
	} else if (shader_out->selector->type == PIPE_SHADER_GEOMETRY) {
		key->vs_prolog.as_es = 1;
		key->vs_prolog.num_merged_next_stage_vgprs = 5;
	} else if (shader_out->key.as_ngg) {
		key->vs_prolog.num_merged_next_stage_vgprs = 5;
	}

	/* Enable loading the InstanceID VGPR. */
	uint16_t input_mask = u_bit_consecutive(0, info->num_inputs);

	if ((key->vs_prolog.states.instance_divisor_is_one |
	     key->vs_prolog.states.instance_divisor_is_fetched) & input_mask)
		shader_out->info.uses_instanceid = true;
}

/**
 * Given a list of shader part functions, build a wrapper function that
 * runs them in sequence to form a monolithic shader.
 */
void si_build_wrapper_function(struct si_shader_context *ctx, LLVMValueRef *parts,
			       unsigned num_parts, unsigned main_part,
			       unsigned next_shader_first_part)
{
	LLVMBuilderRef builder = ctx->ac.builder;
	/* PS epilog has one arg per color component; gfx9 merged shader
	 * prologs need to forward 40 SGPRs.
	 */
	LLVMValueRef initial[AC_MAX_ARGS], out[AC_MAX_ARGS];
	LLVMTypeRef function_type;
	unsigned num_first_params;
	unsigned num_out, initial_num_out;
	ASSERTED unsigned num_out_sgpr; /* used in debug checks */
	ASSERTED unsigned initial_num_out_sgpr; /* used in debug checks */
	unsigned num_sgprs, num_vgprs;
	unsigned gprs;

	memset(&ctx->args, 0, sizeof(ctx->args));

	for (unsigned i = 0; i < num_parts; ++i) {
		ac_add_function_attr(ctx->ac.context, parts[i], -1,
				     AC_FUNC_ATTR_ALWAYSINLINE);
		LLVMSetLinkage(parts[i], LLVMPrivateLinkage);
	}

	/* The parameters of the wrapper function correspond to those of the
	 * first part in terms of SGPRs and VGPRs, but we use the types of the
	 * main part to get the right types. This is relevant for the
	 * dereferenceable attribute on descriptor table pointers.
	 */
	num_sgprs = 0;
	num_vgprs = 0;

	function_type = LLVMGetElementType(LLVMTypeOf(parts[0]));
	num_first_params = LLVMCountParamTypes(function_type);

	for (unsigned i = 0; i < num_first_params; ++i) {
		LLVMValueRef param = LLVMGetParam(parts[0], i);

		if (ac_is_sgpr_param(param)) {
			assert(num_vgprs == 0);
			num_sgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
		} else {
			num_vgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
		}
	}

	gprs = 0;
	while (gprs < num_sgprs + num_vgprs) {
		LLVMValueRef param = LLVMGetParam(parts[main_part], ctx->args.arg_count);
		LLVMTypeRef type = LLVMTypeOf(param);
		unsigned size = ac_get_type_size(type) / 4;

		/* This is going to get casted anyways, so we don't have to
		 * have the exact same type. But we do have to preserve the
		 * pointer-ness so that LLVM knows about it.
		 */
		enum ac_arg_type arg_type = AC_ARG_INT;
		if (LLVMGetTypeKind(type) == LLVMPointerTypeKind) {
			type = LLVMGetElementType(type);

			if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) {
				if (LLVMGetVectorSize(type) == 4)
					arg_type = AC_ARG_CONST_DESC_PTR;
				else if (LLVMGetVectorSize(type) == 8)
					arg_type = AC_ARG_CONST_IMAGE_PTR;
				else
					assert(0);
			} else if (type == ctx->f32) {
				arg_type = AC_ARG_CONST_FLOAT_PTR;
			} else {
				assert(0);
			}
		}

		ac_add_arg(&ctx->args, gprs < num_sgprs ? AC_ARG_SGPR : AC_ARG_VGPR,
			   size, arg_type, NULL);

		assert(ac_is_sgpr_param(param) == (gprs < num_sgprs));
		assert(gprs + size <= num_sgprs + num_vgprs &&
		       (gprs >= num_sgprs || gprs + size <= num_sgprs));

		gprs += size;
	}

	/* Prepare the return type. */
	unsigned num_returns = 0;
	LLVMTypeRef returns[AC_MAX_ARGS], last_func_type, return_type;

	last_func_type = LLVMGetElementType(LLVMTypeOf(parts[num_parts - 1]));
	return_type = LLVMGetReturnType(last_func_type);

	switch (LLVMGetTypeKind(return_type)) {
	case LLVMStructTypeKind:
		num_returns = LLVMCountStructElementTypes(return_type);
		assert(num_returns <= ARRAY_SIZE(returns));
		LLVMGetStructElementTypes(return_type, returns);
		break;
	case LLVMVoidTypeKind:
		break;
	default:
		unreachable("unexpected type");
	}

	si_llvm_create_func(ctx, "wrapper", returns, num_returns,
			    si_get_max_workgroup_size(ctx->shader));

	if (si_is_merged_shader(ctx))
		ac_init_exec_full_mask(&ctx->ac);

	/* Record the arguments of the function as if they were an output of
	 * a previous part.
	 */
	num_out = 0;
	num_out_sgpr = 0;

	for (unsigned i = 0; i < ctx->args.arg_count; ++i) {
		LLVMValueRef param = LLVMGetParam(ctx->main_fn, i);
		LLVMTypeRef param_type = LLVMTypeOf(param);
		LLVMTypeRef out_type = ctx->args.args[i].file == AC_ARG_SGPR ? ctx->i32 : ctx->f32;
		unsigned size = ac_get_type_size(param_type) / 4;

		if (size == 1) {
			if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
				param = LLVMBuildPtrToInt(builder, param, ctx->i32, "");
				param_type = ctx->i32;
			}

			if (param_type != out_type)
				param = LLVMBuildBitCast(builder, param, out_type, "");
			out[num_out++] = param;
		} else {
			LLVMTypeRef vector_type = LLVMVectorType(out_type, size);

			if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
				param = LLVMBuildPtrToInt(builder, param, ctx->i64, "");
				param_type = ctx->i64;
			}

			if (param_type != vector_type)
				param = LLVMBuildBitCast(builder, param, vector_type, "");

			for (unsigned j = 0; j < size; ++j)
				out[num_out++] = LLVMBuildExtractElement(
					builder, param, LLVMConstInt(ctx->i32, j, 0), "");
		}

		if (ctx->args.args[i].file == AC_ARG_SGPR)
			num_out_sgpr = num_out;
	}

	memcpy(initial, out, sizeof(out));
	initial_num_out = num_out;
	initial_num_out_sgpr = num_out_sgpr;

	/* Now chain the parts. */
	LLVMValueRef ret = NULL;
	for (unsigned part = 0; part < num_parts; ++part) {
		LLVMValueRef in[AC_MAX_ARGS];
		LLVMTypeRef ret_type;
		unsigned out_idx = 0;
		unsigned num_params = LLVMCountParams(parts[part]);

		/* Merged shaders are executed conditionally depending
		 * on the number of enabled threads passed in the input SGPRs. */
		if (is_multi_part_shader(ctx) && part == 0) {
			LLVMValueRef ena, count = initial[3];

			count = LLVMBuildAnd(builder, count,
					     LLVMConstInt(ctx->i32, 0x7f, 0), "");
			ena = LLVMBuildICmp(builder, LLVMIntULT,
					    ac_get_thread_id(&ctx->ac), count, "");
			ac_build_ifcc(&ctx->ac, ena, 6506);
		}

		/* Derive arguments for the next part from outputs of the
		 * previous one.
		 */
		for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) {
			LLVMValueRef param;
			LLVMTypeRef param_type;
			bool is_sgpr;
			unsigned param_size;
			LLVMValueRef arg = NULL;

			param = LLVMGetParam(parts[part], param_idx);
			param_type = LLVMTypeOf(param);
			param_size = ac_get_type_size(param_type) / 4;
			is_sgpr = ac_is_sgpr_param(param);

			if (is_sgpr) {
				ac_add_function_attr(ctx->ac.context, parts[part],
						     param_idx + 1, AC_FUNC_ATTR_INREG);
			} else if (out_idx < num_out_sgpr) {
				/* Skip returned SGPRs the current part doesn't
				 * declare on the input. */
				out_idx = num_out_sgpr;
			}

			assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out));

			if (param_size == 1)
				arg = out[out_idx];
			else
				arg = ac_build_gather_values(&ctx->ac, &out[out_idx], param_size);

			if (LLVMTypeOf(arg) != param_type) {
				if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
					if (LLVMGetPointerAddressSpace(param_type) ==
					    AC_ADDR_SPACE_CONST_32BIT) {
						arg = LLVMBuildBitCast(builder, arg, ctx->i32, "");
						arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
					} else {
						arg = LLVMBuildBitCast(builder, arg, ctx->i64, "");
						arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
					}
				} else {
					arg = LLVMBuildBitCast(builder, arg, param_type, "");
				}
			}

			in[param_idx] = arg;
			out_idx += param_size;
		}

		ret = ac_build_call(&ctx->ac, parts[part], in, num_params);

		if (is_multi_part_shader(ctx) &&
		    part + 1 == next_shader_first_part) {
			ac_build_endif(&ctx->ac, 6506);

			/* The second half of the merged shader should use
			 * the inputs from the toplevel (wrapper) function,
			 * not the return value from the last call.
			 *
			 * That's because the last call was executed condi-
			 * tionally, so we can't consume it in the main
			 * block.
			 */
			memcpy(out, initial, sizeof(initial));
			num_out = initial_num_out;
			num_out_sgpr = initial_num_out_sgpr;
			continue;
		}

		/* Extract the returned GPRs. */
		ret_type = LLVMTypeOf(ret);
		num_out = 0;
		num_out_sgpr = 0;

		if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) {
			assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind);

			unsigned ret_size = LLVMCountStructElementTypes(ret_type);

			for (unsigned i = 0; i < ret_size; ++i) {
				LLVMValueRef val =
					LLVMBuildExtractValue(builder, ret, i, "");

				assert(num_out < ARRAY_SIZE(out));
				out[num_out++] = val;

				if (LLVMTypeOf(val) == ctx->i32) {
					assert(num_out_sgpr + 1 == num_out);
					num_out_sgpr = num_out;
				}
			}
		}
	}

	/* Return the value from the last part. */
	if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
		LLVMBuildRetVoid(builder);
	else
		LLVMBuildRet(builder, ret);
}

static bool si_should_optimize_less(struct ac_llvm_compiler *compiler,
				    struct si_shader_selector *sel)
{
	if (!compiler->low_opt_passes)
		return false;

	/* Assume a slow CPU. */
	assert(!sel->screen->info.has_dedicated_vram &&
	       sel->screen->info.chip_class <= GFX8);

	/* For a crazy dEQP test containing 2597 memory opcodes, mostly
	 * buffer stores. */
	return sel->type == PIPE_SHADER_COMPUTE &&
	       sel->info.num_memory_instructions > 1000;
}

static struct nir_shader *get_nir_shader(struct si_shader_selector *sel,
					 bool *free_nir)
{
	*free_nir = false;

	if (sel->nir) {
		return sel->nir;
	} else if (sel->nir_binary) {
		struct pipe_screen *screen = &sel->screen->b;
		const void *options =
			screen->get_compiler_options(screen, PIPE_SHADER_IR_NIR,
						     sel->type);

		struct blob_reader blob_reader;
		blob_reader_init(&blob_reader, sel->nir_binary, sel->nir_size);
		*free_nir = true;
		return nir_deserialize(NULL, options, &blob_reader);
	}
	return NULL;
}

int si_compile_shader(struct si_screen *sscreen,
		      struct ac_llvm_compiler *compiler,
		      struct si_shader *shader,
		      struct pipe_debug_callback *debug)
{
	struct si_shader_selector *sel = shader->selector;
	struct si_shader_context ctx;
	bool free_nir;
	struct nir_shader *nir = get_nir_shader(sel, &free_nir);
	int r = -1;

	/* Dump NIR before doing NIR->LLVM conversion in case the
	 * conversion fails. */
	if (si_can_dump_shader(sscreen, sel->type) &&
	    !(sscreen->debug_flags & DBG(NO_NIR))) {
		nir_print_shader(nir, stderr);
		si_dump_streamout(&sel->so);
	}

	si_llvm_context_init(&ctx, sscreen, compiler, si_get_shader_wave_size(shader));
	si_llvm_context_set_ir(&ctx, shader);

	memset(shader->info.vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
	       sizeof(shader->info.vs_output_param_offset));

	shader->info.uses_instanceid = sel->info.uses_instanceid;

	LLVMValueRef ngg_cull_main_fn = NULL;
	if (ctx.shader->key.opt.ngg_culling) {
		if (!si_build_main_function(&ctx, nir, false, true)) {
			si_llvm_dispose(&ctx);
			return -1;
		}
		ngg_cull_main_fn = ctx.main_fn;
		ctx.main_fn = NULL;
		/* Re-set the IR. */
		si_llvm_context_set_ir(&ctx, shader);
	}

	if (!si_build_main_function(&ctx, nir, free_nir, false)) {
		si_llvm_dispose(&ctx);
		return -1;
	}

	if (shader->is_monolithic && ctx.type == PIPE_SHADER_VERTEX) {
		LLVMValueRef parts[4];
		unsigned num_parts = 0;
		bool need_prolog = si_vs_needs_prolog(sel, &shader->key.part.vs.prolog);
		LLVMValueRef main_fn = ctx.main_fn;

		if (ngg_cull_main_fn) {
			if (need_prolog) {
				union si_shader_part_key prolog_key;
				si_get_vs_prolog_key(&sel->info,
						     shader->info.num_input_sgprs,
						     true,
						     &shader->key.part.vs.prolog,
						     shader, &prolog_key);
				prolog_key.vs_prolog.is_monolithic = true;
				si_build_vs_prolog_function(&ctx, &prolog_key);
				parts[num_parts++] = ctx.main_fn;
			}
			parts[num_parts++] = ngg_cull_main_fn;
		}

		if (need_prolog) {
			union si_shader_part_key prolog_key;
			si_get_vs_prolog_key(&sel->info,
					     shader->info.num_input_sgprs,
					     false,
					     &shader->key.part.vs.prolog,
					     shader, &prolog_key);
			prolog_key.vs_prolog.is_monolithic = true;
			si_build_vs_prolog_function(&ctx, &prolog_key);
			parts[num_parts++] = ctx.main_fn;
		}
		parts[num_parts++] = main_fn;

		si_build_wrapper_function(&ctx, parts, num_parts,
					  need_prolog ? 1 : 0, 0);

		if (ctx.shader->key.opt.vs_as_prim_discard_cs)
			si_build_prim_discard_compute_shader(&ctx);
	} else if (shader->is_monolithic && ctx.type == PIPE_SHADER_TESS_EVAL &&
		   ngg_cull_main_fn) {
		LLVMValueRef parts[2];

		parts[0] = ngg_cull_main_fn;
		parts[1] = ctx.main_fn;

		si_build_wrapper_function(&ctx, parts, 2, 0, 0);
	} else if (shader->is_monolithic && ctx.type == PIPE_SHADER_TESS_CTRL) {
		if (sscreen->info.chip_class >= GFX9) {
			struct si_shader_selector *ls = shader->key.part.tcs.ls;
			LLVMValueRef parts[4];
			bool vs_needs_prolog =
				si_vs_needs_prolog(ls, &shader->key.part.tcs.ls_prolog);

			/* TCS main part */
			parts[2] = ctx.main_fn;

			/* TCS epilog */
			union si_shader_part_key tcs_epilog_key;
			memset(&tcs_epilog_key, 0, sizeof(tcs_epilog_key));
			tcs_epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
			si_llvm_build_tcs_epilog(&ctx, &tcs_epilog_key);
			parts[3] = ctx.main_fn;

			/* VS as LS main part */
			nir = get_nir_shader(ls, &free_nir);
			struct si_shader shader_ls = {};
			shader_ls.selector = ls;
			shader_ls.key.as_ls = 1;
			shader_ls.key.mono = shader->key.mono;
			shader_ls.key.opt = shader->key.opt;
			shader_ls.is_monolithic = true;
			si_llvm_context_set_ir(&ctx, &shader_ls);

			if (!si_build_main_function(&ctx, nir, free_nir, false)) {
				si_llvm_dispose(&ctx);
				return -1;
			}
			shader->info.uses_instanceid |= ls->info.uses_instanceid;
			parts[1] = ctx.main_fn;

			/* LS prolog */
			if (vs_needs_prolog) {
				union si_shader_part_key vs_prolog_key;
				si_get_vs_prolog_key(&ls->info,
						     shader_ls.info.num_input_sgprs,
						     false,
						     &shader->key.part.tcs.ls_prolog,
						     shader, &vs_prolog_key);
				vs_prolog_key.vs_prolog.is_monolithic = true;
				si_build_vs_prolog_function(&ctx, &vs_prolog_key);
				parts[0] = ctx.main_fn;
			}

			/* Reset the shader context. */
			ctx.shader = shader;
			ctx.type = PIPE_SHADER_TESS_CTRL;

			si_build_wrapper_function(&ctx,
						  parts + !vs_needs_prolog,
						  4 - !vs_needs_prolog, vs_needs_prolog,
						  vs_needs_prolog ? 2 : 1);
		} else {
			LLVMValueRef parts[2];
			union si_shader_part_key epilog_key;

			parts[0] = ctx.main_fn;

			memset(&epilog_key, 0, sizeof(epilog_key));
			epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
			si_llvm_build_tcs_epilog(&ctx, &epilog_key);
			parts[1] = ctx.main_fn;

			si_build_wrapper_function(&ctx, parts, 2, 0, 0);
		}
	} else if (shader->is_monolithic && ctx.type == PIPE_SHADER_GEOMETRY) {
		if (ctx.screen->info.chip_class >= GFX9) {
			struct si_shader_selector *es = shader->key.part.gs.es;
			LLVMValueRef es_prolog = NULL;
			LLVMValueRef es_main = NULL;
			LLVMValueRef gs_prolog = NULL;
			LLVMValueRef gs_main = ctx.main_fn;

			/* GS prolog */
			union si_shader_part_key gs_prolog_key;
			memset(&gs_prolog_key, 0, sizeof(gs_prolog_key));
			gs_prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
			gs_prolog_key.gs_prolog.is_monolithic = true;
			gs_prolog_key.gs_prolog.as_ngg = shader->key.as_ngg;
			si_llvm_build_gs_prolog(&ctx, &gs_prolog_key);
			gs_prolog = ctx.main_fn;

			/* ES main part */
			nir = get_nir_shader(es, &free_nir);
			struct si_shader shader_es = {};
			shader_es.selector = es;
			shader_es.key.as_es = 1;
			shader_es.key.as_ngg = shader->key.as_ngg;
			shader_es.key.mono = shader->key.mono;
			shader_es.key.opt = shader->key.opt;
			shader_es.is_monolithic = true;
			si_llvm_context_set_ir(&ctx, &shader_es);

			if (!si_build_main_function(&ctx, nir, free_nir, false)) {
				si_llvm_dispose(&ctx);
				return -1;
			}
			shader->info.uses_instanceid |= es->info.uses_instanceid;
			es_main = ctx.main_fn;

			/* ES prolog */
			if (es->type == PIPE_SHADER_VERTEX &&
			    si_vs_needs_prolog(es, &shader->key.part.gs.vs_prolog)) {
				union si_shader_part_key vs_prolog_key;
				si_get_vs_prolog_key(&es->info,
						     shader_es.info.num_input_sgprs,
						     false,
						     &shader->key.part.gs.vs_prolog,
						     shader, &vs_prolog_key);
				vs_prolog_key.vs_prolog.is_monolithic = true;
				si_build_vs_prolog_function(&ctx, &vs_prolog_key);
				es_prolog = ctx.main_fn;
			}

			/* Reset the shader context. */
			ctx.shader = shader;
			ctx.type = PIPE_SHADER_GEOMETRY;

			/* Prepare the array of shader parts. */
			LLVMValueRef parts[4];
			unsigned num_parts = 0, main_part, next_first_part;

			if (es_prolog)
				parts[num_parts++] = es_prolog;

			parts[main_part = num_parts++] = es_main;
			parts[next_first_part = num_parts++] = gs_prolog;
			parts[num_parts++] = gs_main;

			si_build_wrapper_function(&ctx, parts, num_parts,
						  main_part, next_first_part);
		} else {
			LLVMValueRef parts[2];
			union si_shader_part_key prolog_key;

			parts[1] = ctx.main_fn;

			memset(&prolog_key, 0, sizeof(prolog_key));
			prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
			si_llvm_build_gs_prolog(&ctx, &prolog_key);
			parts[0] = ctx.main_fn;

			si_build_wrapper_function(&ctx, parts, 2, 1, 0);
		}
	} else if (shader->is_monolithic && ctx.type == PIPE_SHADER_FRAGMENT) {
		si_llvm_build_monolithic_ps(&ctx, shader);
	}

	si_llvm_optimize_module(&ctx);

	/* Post-optimization transformations and analysis. */
	si_optimize_vs_outputs(&ctx);

	if ((debug && debug->debug_message) ||
	    si_can_dump_shader(sscreen, ctx.type)) {
		ctx.shader->info.private_mem_vgprs =
			ac_count_scratch_private_memory(ctx.main_fn);
	}

	/* Make sure the input is a pointer and not integer followed by inttoptr. */
	assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(ctx.main_fn, 0))) ==
	       LLVMPointerTypeKind);

	/* Compile to bytecode. */
	r = si_compile_llvm(sscreen, &shader->binary, &shader->config, compiler,
			    &ctx.ac, debug, ctx.type, si_get_shader_name(shader),
			    si_should_optimize_less(compiler, shader->selector));
	si_llvm_dispose(&ctx);
	if (r) {
		fprintf(stderr, "LLVM failed to compile shader\n");
		return r;
	}

	/* Validate SGPR and VGPR usage for compute to detect compiler bugs.
	 * LLVM 3.9svn has this bug.
	 */
	if (sel->type == PIPE_SHADER_COMPUTE) {
		unsigned wave_size = sscreen->compute_wave_size;
		unsigned max_vgprs = sscreen->info.num_physical_wave64_vgprs_per_simd *
				     (wave_size == 32 ? 2 : 1);
		unsigned max_sgprs = sscreen->info.num_physical_sgprs_per_simd;
		unsigned max_sgprs_per_wave = 128;
		unsigned simds_per_tg = 4; /* assuming WGP mode on gfx10 */
		unsigned threads_per_tg = si_get_max_workgroup_size(shader);
		unsigned waves_per_tg = DIV_ROUND_UP(threads_per_tg, wave_size);
		unsigned waves_per_simd = DIV_ROUND_UP(waves_per_tg, simds_per_tg);

		max_vgprs = max_vgprs / waves_per_simd;
		max_sgprs = MIN2(max_sgprs / waves_per_simd, max_sgprs_per_wave);

		if (shader->config.num_sgprs > max_sgprs ||
		    shader->config.num_vgprs > max_vgprs) {
			fprintf(stderr, "LLVM failed to compile a shader correctly: "
				"SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
				shader->config.num_sgprs, shader->config.num_vgprs,
				max_sgprs, max_vgprs);

			/* Just terminate the process, because dependent
			 * shaders can hang due to bad input data, but use
			 * the env var to allow shader-db to work.
			 */
			if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
				abort();
		}
	}

	/* Add the scratch offset to input SGPRs. */
	if (shader->config.scratch_bytes_per_wave && !si_is_merged_shader(&ctx))
		shader->info.num_input_sgprs += 1; /* scratch byte offset */

	/* Calculate the number of fragment input VGPRs. */
	if (ctx.type == PIPE_SHADER_FRAGMENT) {
		shader->info.num_input_vgprs = ac_get_fs_input_vgpr_cnt(&shader->config,
						&shader->info.face_vgpr_index,
						&shader->info.ancillary_vgpr_index);
	}

	si_calculate_max_simd_waves(shader);
	si_shader_dump_stats_for_shader_db(sscreen, shader, debug);
	return 0;
}

/**
 * Create, compile and return a shader part (prolog or epilog).
 *
 * \param sscreen	screen
 * \param list		list of shader parts of the same category
 * \param type		shader type
 * \param key		shader part key
 * \param prolog	whether the part being requested is a prolog
 * \param tm		LLVM target machine
 * \param debug		debug callback
 * \param build		the callback responsible for building the main function
 * \return		non-NULL on success
 */
static struct si_shader_part *
si_get_shader_part(struct si_screen *sscreen,
		   struct si_shader_part **list,
		   enum pipe_shader_type type,
		   bool prolog,
		   union si_shader_part_key *key,
		   struct ac_llvm_compiler *compiler,
		   struct pipe_debug_callback *debug,
		   void (*build)(struct si_shader_context *,
				 union si_shader_part_key *),
		   const char *name)
{
	struct si_shader_part *result;

	simple_mtx_lock(&sscreen->shader_parts_mutex);

	/* Find existing. */
	for (result = *list; result; result = result->next) {
		if (memcmp(&result->key, key, sizeof(*key)) == 0) {
			simple_mtx_unlock(&sscreen->shader_parts_mutex);
			return result;
		}
	}

	/* Compile a new one. */
	result = CALLOC_STRUCT(si_shader_part);
	result->key = *key;

	struct si_shader shader = {};

	switch (type) {
	case PIPE_SHADER_VERTEX:
		shader.key.as_ls = key->vs_prolog.as_ls;
		shader.key.as_es = key->vs_prolog.as_es;
		shader.key.as_ngg = key->vs_prolog.as_ngg;
		break;
	case PIPE_SHADER_TESS_CTRL:
		assert(!prolog);
		shader.key.part.tcs.epilog = key->tcs_epilog.states;
		break;
	case PIPE_SHADER_GEOMETRY:
		assert(prolog);
		shader.key.as_ngg = key->gs_prolog.as_ngg;
		break;
	case PIPE_SHADER_FRAGMENT:
		if (prolog)
			shader.key.part.ps.prolog = key->ps_prolog.states;
		else
			shader.key.part.ps.epilog = key->ps_epilog.states;
		break;
	default:
		unreachable("bad shader part");
	}

	struct si_shader_context ctx;
	si_llvm_context_init(&ctx, sscreen, compiler,
			     si_get_wave_size(sscreen, type, shader.key.as_ngg,
					      shader.key.as_es));
	ctx.shader = &shader;
	ctx.type = type;

	build(&ctx, key);

	/* Compile. */
	si_llvm_optimize_module(&ctx);

	if (si_compile_llvm(sscreen, &result->binary, &result->config, compiler,
			    &ctx.ac, debug, ctx.type, name, false)) {
		FREE(result);
		result = NULL;
		goto out;
	}

	result->next = *list;
	*list = result;

out:
	si_llvm_dispose(&ctx);
	simple_mtx_unlock(&sscreen->shader_parts_mutex);
	return result;
}

/**
 * Build the vertex shader prolog function.
 *
 * The inputs are the same as VS (a lot of SGPRs and 4 VGPR system values).
 * All inputs are returned unmodified. The vertex load indices are
 * stored after them, which will be used by the API VS for fetching inputs.
 *
 * For example, the expected outputs for instance_divisors[] = {0, 1, 2} are:
 *   input_v0,
 *   input_v1,
 *   input_v2,
 *   input_v3,
 *   (VertexID + BaseVertex),
 *   (InstanceID + StartInstance),
 *   (InstanceID / 2 + StartInstance)
 */
static void si_build_vs_prolog_function(struct si_shader_context *ctx,
					union si_shader_part_key *key)
{
	LLVMTypeRef *returns;
	LLVMValueRef ret, func;
	int num_returns, i;
	unsigned first_vs_vgpr = key->vs_prolog.num_merged_next_stage_vgprs;
	unsigned num_input_vgprs = key->vs_prolog.num_merged_next_stage_vgprs + 4 +
				   (key->vs_prolog.has_ngg_cull_inputs ? 1 : 0);
	struct ac_arg input_sgpr_param[key->vs_prolog.num_input_sgprs];
	struct ac_arg input_vgpr_param[13];
	LLVMValueRef input_vgprs[13];
	unsigned num_all_input_regs = key->vs_prolog.num_input_sgprs +
				      num_input_vgprs;
	unsigned user_sgpr_base = key->vs_prolog.num_merged_next_stage_vgprs ? 8 : 0;

	memset(&ctx->args, 0, sizeof(ctx->args));

	/* 4 preloaded VGPRs + vertex load indices as prolog outputs */
	returns = alloca((num_all_input_regs + key->vs_prolog.num_inputs) *
			 sizeof(LLVMTypeRef));
	num_returns = 0;

	/* Declare input and output SGPRs. */
	for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
		ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT,
			   &input_sgpr_param[i]);
		returns[num_returns++] = ctx->i32;
	}

	struct ac_arg merged_wave_info = input_sgpr_param[3];

	/* Preloaded VGPRs (outputs must be floats) */
	for (i = 0; i < num_input_vgprs; i++) {
		ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &input_vgpr_param[i]);
		returns[num_returns++] = ctx->f32;
	}

	/* Vertex load indices. */
	for (i = 0; i < key->vs_prolog.num_inputs; i++)
		returns[num_returns++] = ctx->f32;

	/* Create the function. */
	si_llvm_create_func(ctx, "vs_prolog", returns, num_returns, 0);
	func = ctx->main_fn;

	for (i = 0; i < num_input_vgprs; i++) {
		input_vgprs[i] = ac_get_arg(&ctx->ac, input_vgpr_param[i]);
	}

	if (key->vs_prolog.num_merged_next_stage_vgprs) {
		if (!key->vs_prolog.is_monolithic)
			si_init_exec_from_input(ctx, merged_wave_info, 0);

		if (key->vs_prolog.as_ls &&
		    ctx->screen->info.has_ls_vgpr_init_bug) {
			/* If there are no HS threads, SPI loads the LS VGPRs
			 * starting at VGPR 0. Shift them back to where they
			 * belong.
			 */
			LLVMValueRef has_hs_threads =
				LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
				    si_unpack_param(ctx, input_sgpr_param[3], 8, 8),
				    ctx->i32_0, "");

			for (i = 4; i > 0; --i) {
				input_vgprs[i + 1] =
					LLVMBuildSelect(ctx->ac.builder, has_hs_threads,
						        input_vgprs[i + 1],
						        input_vgprs[i - 1], "");
			}
		}
	}

	unsigned vertex_id_vgpr = first_vs_vgpr;
	unsigned instance_id_vgpr =
		ctx->screen->info.chip_class >= GFX10 ?
			first_vs_vgpr + 3 :
			first_vs_vgpr + (key->vs_prolog.as_ls ? 2 : 1);

	ctx->abi.vertex_id = input_vgprs[vertex_id_vgpr];
	ctx->abi.instance_id = input_vgprs[instance_id_vgpr];

	/* InstanceID = VertexID >> 16;
	 * VertexID   = VertexID & 0xffff;
	 */
	if (key->vs_prolog.states.unpack_instance_id_from_vertex_id) {
		ctx->abi.instance_id = LLVMBuildLShr(ctx->ac.builder, ctx->abi.vertex_id,
						     LLVMConstInt(ctx->i32, 16, 0), "");
		ctx->abi.vertex_id = LLVMBuildAnd(ctx->ac.builder, ctx->abi.vertex_id,
						  LLVMConstInt(ctx->i32, 0xffff, 0), "");
	}

	/* Copy inputs to outputs. This should be no-op, as the registers match,
	 * but it will prevent the compiler from overwriting them unintentionally.
	 */
	ret = ctx->return_value;
	for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
		LLVMValueRef p = LLVMGetParam(func, i);
		ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
	}
	for (i = 0; i < num_input_vgprs; i++) {
		LLVMValueRef p = input_vgprs[i];

		if (i == vertex_id_vgpr)
			p = ctx->abi.vertex_id;
		else if (i == instance_id_vgpr)
			p = ctx->abi.instance_id;

		p = ac_to_float(&ctx->ac, p);
		ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p,
					   key->vs_prolog.num_input_sgprs + i, "");
	}

	/* Compute vertex load indices from instance divisors. */
	LLVMValueRef instance_divisor_constbuf = NULL;

	if (key->vs_prolog.states.instance_divisor_is_fetched) {
		LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
		LLVMValueRef buf_index =
			LLVMConstInt(ctx->i32, SI_VS_CONST_INSTANCE_DIVISORS, 0);
		instance_divisor_constbuf =
			ac_build_load_to_sgpr(&ctx->ac, list, buf_index);
	}

	for (i = 0; i < key->vs_prolog.num_inputs; i++) {
		bool divisor_is_one =
			key->vs_prolog.states.instance_divisor_is_one & (1u << i);
		bool divisor_is_fetched =
			key->vs_prolog.states.instance_divisor_is_fetched & (1u << i);
		LLVMValueRef index = NULL;

		if (divisor_is_one) {
			index = ctx->abi.instance_id;
		} else if (divisor_is_fetched) {
			LLVMValueRef udiv_factors[4];

			for (unsigned j = 0; j < 4; j++) {
				udiv_factors[j] =
					si_buffer_load_const(ctx, instance_divisor_constbuf,
							     LLVMConstInt(ctx->i32, i*16 + j*4, 0));
				udiv_factors[j] = ac_to_integer(&ctx->ac, udiv_factors[j]);
			}
			/* The faster NUW version doesn't work when InstanceID == UINT_MAX.
			 * Such InstanceID might not be achievable in a reasonable time though.
			 */
			index = ac_build_fast_udiv_nuw(&ctx->ac, ctx->abi.instance_id,
						       udiv_factors[0], udiv_factors[1],
						       udiv_factors[2], udiv_factors[3]);
		}

		if (divisor_is_one || divisor_is_fetched) {
			/* Add StartInstance. */
			index = LLVMBuildAdd(ctx->ac.builder, index,
					     LLVMGetParam(ctx->main_fn, user_sgpr_base +
							  SI_SGPR_START_INSTANCE), "");
		} else {
			/* VertexID + BaseVertex */
			index = LLVMBuildAdd(ctx->ac.builder,
					     ctx->abi.vertex_id,
					     LLVMGetParam(func, user_sgpr_base +
								SI_SGPR_BASE_VERTEX), "");
		}

		index = ac_to_float(&ctx->ac, index);
		ret = LLVMBuildInsertValue(ctx->ac.builder, ret, index,
					   ctx->args.arg_count + i, "");
	}

	si_llvm_build_ret(ctx, ret);
}

static bool si_get_vs_prolog(struct si_screen *sscreen,
			     struct ac_llvm_compiler *compiler,
			     struct si_shader *shader,
			     struct pipe_debug_callback *debug,
			     struct si_shader *main_part,
			     const struct si_vs_prolog_bits *key)
{
	struct si_shader_selector *vs = main_part->selector;

	if (!si_vs_needs_prolog(vs, key))
		return true;

	/* Get the prolog. */
	union si_shader_part_key prolog_key;
	si_get_vs_prolog_key(&vs->info, main_part->info.num_input_sgprs, false,
			     key, shader, &prolog_key);

	shader->prolog =
		si_get_shader_part(sscreen, &sscreen->vs_prologs,
				   PIPE_SHADER_VERTEX, true, &prolog_key, compiler,
				   debug, si_build_vs_prolog_function,
				   "Vertex Shader Prolog");
	return shader->prolog != NULL;
}

/**
 * Select and compile (or reuse) vertex shader parts (prolog & epilog).
 */
static bool si_shader_select_vs_parts(struct si_screen *sscreen,
				      struct ac_llvm_compiler *compiler,
				      struct si_shader *shader,
				      struct pipe_debug_callback *debug)
{
	return si_get_vs_prolog(sscreen, compiler, shader, debug, shader,
				&shader->key.part.vs.prolog);
}

/**
 * Select and compile (or reuse) TCS parts (epilog).
 */
static bool si_shader_select_tcs_parts(struct si_screen *sscreen,
				       struct ac_llvm_compiler *compiler,
				       struct si_shader *shader,
				       struct pipe_debug_callback *debug)
{
	if (sscreen->info.chip_class >= GFX9) {
		struct si_shader *ls_main_part =
			shader->key.part.tcs.ls->main_shader_part_ls;

		if (!si_get_vs_prolog(sscreen, compiler, shader, debug, ls_main_part,
				      &shader->key.part.tcs.ls_prolog))
			return false;

		shader->previous_stage = ls_main_part;
	}

	/* Get the epilog. */
	union si_shader_part_key epilog_key;
	memset(&epilog_key, 0, sizeof(epilog_key));
	epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;

	shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs,
					    PIPE_SHADER_TESS_CTRL, false,
					    &epilog_key, compiler, debug,
					    si_llvm_build_tcs_epilog,
					    "Tessellation Control Shader Epilog");
	return shader->epilog != NULL;
}

/**
 * Select and compile (or reuse) GS parts (prolog).
 */
static bool si_shader_select_gs_parts(struct si_screen *sscreen,
				      struct ac_llvm_compiler *compiler,
				      struct si_shader *shader,
				      struct pipe_debug_callback *debug)
{
	if (sscreen->info.chip_class >= GFX9) {
		struct si_shader *es_main_part;
		enum pipe_shader_type es_type = shader->key.part.gs.es->type;

		if (shader->key.as_ngg)
			es_main_part = shader->key.part.gs.es->main_shader_part_ngg_es;
		else
			es_main_part = shader->key.part.gs.es->main_shader_part_es;

		if (es_type == PIPE_SHADER_VERTEX &&
		    !si_get_vs_prolog(sscreen, compiler, shader, debug, es_main_part,
				      &shader->key.part.gs.vs_prolog))
			return false;

		shader->previous_stage = es_main_part;
	}

	if (!shader->key.part.gs.prolog.tri_strip_adj_fix)
		return true;

	union si_shader_part_key prolog_key;
	memset(&prolog_key, 0, sizeof(prolog_key));
	prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
	prolog_key.gs_prolog.as_ngg = shader->key.as_ngg;

	shader->prolog2 = si_get_shader_part(sscreen, &sscreen->gs_prologs,
					    PIPE_SHADER_GEOMETRY, true,
					    &prolog_key, compiler, debug,
					    si_llvm_build_gs_prolog,
					    "Geometry Shader Prolog");
	return shader->prolog2 != NULL;
}

/**
 * Compute the PS prolog key, which contains all the information needed to
 * build the PS prolog function, and set related bits in shader->config.
 */
void si_get_ps_prolog_key(struct si_shader *shader,
			  union si_shader_part_key *key,
			  bool separate_prolog)
{
	struct si_shader_info *info = &shader->selector->info;

	memset(key, 0, sizeof(*key));
	key->ps_prolog.states = shader->key.part.ps.prolog;
	key->ps_prolog.colors_read = info->colors_read;
	key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
	key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
	key->ps_prolog.wqm = info->uses_derivatives &&
		(key->ps_prolog.colors_read ||
		 key->ps_prolog.states.force_persp_sample_interp ||
		 key->ps_prolog.states.force_linear_sample_interp ||
		 key->ps_prolog.states.force_persp_center_interp ||
		 key->ps_prolog.states.force_linear_center_interp ||
		 key->ps_prolog.states.bc_optimize_for_persp ||
		 key->ps_prolog.states.bc_optimize_for_linear);
	key->ps_prolog.ancillary_vgpr_index = shader->info.ancillary_vgpr_index;

	if (info->colors_read) {
		unsigned *color = shader->selector->color_attr_index;

		if (shader->key.part.ps.prolog.color_two_side) {
			/* BCOLORs are stored after the last input. */
			key->ps_prolog.num_interp_inputs = info->num_inputs;
			key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
			if (separate_prolog)
				shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
		}

		for (unsigned i = 0; i < 2; i++) {
			unsigned interp = info->input_interpolate[color[i]];
			unsigned location = info->input_interpolate_loc[color[i]];

			if (!(info->colors_read & (0xf << i*4)))
				continue;

			key->ps_prolog.color_attr_index[i] = color[i];

			if (shader->key.part.ps.prolog.flatshade_colors &&
			    interp == TGSI_INTERPOLATE_COLOR)
				interp = TGSI_INTERPOLATE_CONSTANT;

			switch (interp) {
			case TGSI_INTERPOLATE_CONSTANT:
				key->ps_prolog.color_interp_vgpr_index[i] = -1;
				break;
			case TGSI_INTERPOLATE_PERSPECTIVE:
			case TGSI_INTERPOLATE_COLOR:
				/* Force the interpolation location for colors here. */
				if (shader->key.part.ps.prolog.force_persp_sample_interp)
					location = TGSI_INTERPOLATE_LOC_SAMPLE;
				if (shader->key.part.ps.prolog.force_persp_center_interp)
					location = TGSI_INTERPOLATE_LOC_CENTER;

				switch (location) {
				case TGSI_INTERPOLATE_LOC_SAMPLE:
					key->ps_prolog.color_interp_vgpr_index[i] = 0;
					if (separate_prolog) {
						shader->config.spi_ps_input_ena |=
							S_0286CC_PERSP_SAMPLE_ENA(1);
					}
					break;
				case TGSI_INTERPOLATE_LOC_CENTER:
					key->ps_prolog.color_interp_vgpr_index[i] = 2;
					if (separate_prolog) {
						shader->config.spi_ps_input_ena |=
							S_0286CC_PERSP_CENTER_ENA(1);
					}
					break;
				case TGSI_INTERPOLATE_LOC_CENTROID:
					key->ps_prolog.color_interp_vgpr_index[i] = 4;
					if (separate_prolog) {
						shader->config.spi_ps_input_ena |=
							S_0286CC_PERSP_CENTROID_ENA(1);
					}
					break;
				default:
					assert(0);
				}
				break;
			case TGSI_INTERPOLATE_LINEAR:
				/* Force the interpolation location for colors here. */
				if (shader->key.part.ps.prolog.force_linear_sample_interp)
					location = TGSI_INTERPOLATE_LOC_SAMPLE;
				if (shader->key.part.ps.prolog.force_linear_center_interp)
					location = TGSI_INTERPOLATE_LOC_CENTER;

				/* The VGPR assignment for non-monolithic shaders
				 * works because InitialPSInputAddr is set on the
				 * main shader and PERSP_PULL_MODEL is never used.
				 */
				switch (location) {
				case TGSI_INTERPOLATE_LOC_SAMPLE:
					key->ps_prolog.color_interp_vgpr_index[i] =
						separate_prolog ? 6 : 9;
					if (separate_prolog) {
						shader->config.spi_ps_input_ena |=
							S_0286CC_LINEAR_SAMPLE_ENA(1);
					}
					break;
				case TGSI_INTERPOLATE_LOC_CENTER:
					key->ps_prolog.color_interp_vgpr_index[i] =
						separate_prolog ? 8 : 11;
					if (separate_prolog) {
						shader->config.spi_ps_input_ena |=
							S_0286CC_LINEAR_CENTER_ENA(1);
					}
					break;
				case TGSI_INTERPOLATE_LOC_CENTROID:
					key->ps_prolog.color_interp_vgpr_index[i] =
						separate_prolog ? 10 : 13;
					if (separate_prolog) {
						shader->config.spi_ps_input_ena |=
							S_0286CC_LINEAR_CENTROID_ENA(1);
					}
					break;
				default:
					assert(0);
				}
				break;
			default:
				assert(0);
			}
		}
	}
}

/**
 * Check whether a PS prolog is required based on the key.
 */
bool si_need_ps_prolog(const union si_shader_part_key *key)
{
	return key->ps_prolog.colors_read ||
	       key->ps_prolog.states.force_persp_sample_interp ||
	       key->ps_prolog.states.force_linear_sample_interp ||
	       key->ps_prolog.states.force_persp_center_interp ||
	       key->ps_prolog.states.force_linear_center_interp ||
	       key->ps_prolog.states.bc_optimize_for_persp ||
	       key->ps_prolog.states.bc_optimize_for_linear ||
	       key->ps_prolog.states.poly_stipple ||
	       key->ps_prolog.states.samplemask_log_ps_iter;
}

/**
 * Compute the PS epilog key, which contains all the information needed to
 * build the PS epilog function.
 */
void si_get_ps_epilog_key(struct si_shader *shader,
			  union si_shader_part_key *key)
{
	struct si_shader_info *info = &shader->selector->info;
	memset(key, 0, sizeof(*key));
	key->ps_epilog.colors_written = info->colors_written;
	key->ps_epilog.writes_z = info->writes_z;
	key->ps_epilog.writes_stencil = info->writes_stencil;
	key->ps_epilog.writes_samplemask = info->writes_samplemask;
	key->ps_epilog.states = shader->key.part.ps.epilog;
}

/**
 * Select and compile (or reuse) pixel shader parts (prolog & epilog).
 */
static bool si_shader_select_ps_parts(struct si_screen *sscreen,
				      struct ac_llvm_compiler *compiler,
				      struct si_shader *shader,
				      struct pipe_debug_callback *debug)
{
	union si_shader_part_key prolog_key;
	union si_shader_part_key epilog_key;

	/* Get the prolog. */
	si_get_ps_prolog_key(shader, &prolog_key, true);

	/* The prolog is a no-op if these aren't set. */
	if (si_need_ps_prolog(&prolog_key)) {
		shader->prolog =
			si_get_shader_part(sscreen, &sscreen->ps_prologs,
					   PIPE_SHADER_FRAGMENT, true,
					   &prolog_key, compiler, debug,
					   si_llvm_build_ps_prolog,
					   "Fragment Shader Prolog");
		if (!shader->prolog)
			return false;
	}

	/* Get the epilog. */
	si_get_ps_epilog_key(shader, &epilog_key);

	shader->epilog =
		si_get_shader_part(sscreen, &sscreen->ps_epilogs,
				   PIPE_SHADER_FRAGMENT, false,
				   &epilog_key, compiler, debug,
				   si_llvm_build_ps_epilog,
				   "Fragment Shader Epilog");
	if (!shader->epilog)
		return false;

	/* Enable POS_FIXED_PT if polygon stippling is enabled. */
	if (shader->key.part.ps.prolog.poly_stipple) {
		shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
		assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
	}

	/* Set up the enable bits for per-sample shading if needed. */
	if (shader->key.part.ps.prolog.force_persp_sample_interp &&
	    (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
	     G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
		shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
		shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
		shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
	}
	if (shader->key.part.ps.prolog.force_linear_sample_interp &&
	    (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
	     G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
		shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
		shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
		shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
	}
	if (shader->key.part.ps.prolog.force_persp_center_interp &&
	    (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
	     G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
		shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
		shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
		shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
	}
	if (shader->key.part.ps.prolog.force_linear_center_interp &&
	    (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
	     G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
		shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
		shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
		shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
	}

	/* POW_W_FLOAT requires that one of the perspective weights is enabled. */
	if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
	    !(shader->config.spi_ps_input_ena & 0xf)) {
		shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
		assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
	}

	/* At least one pair of interpolation weights must be enabled. */
	if (!(shader->config.spi_ps_input_ena & 0x7f)) {
		shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
		assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
	}

	/* Samplemask fixup requires the sample ID. */
	if (shader->key.part.ps.prolog.samplemask_log_ps_iter) {
		shader->config.spi_ps_input_ena |= S_0286CC_ANCILLARY_ENA(1);
		assert(G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr));
	}

	/* The sample mask input is always enabled, because the API shader always
	 * passes it through to the epilog. Disable it here if it's unused.
	 */
	if (!shader->key.part.ps.epilog.poly_line_smoothing &&
	    !shader->selector->info.reads_samplemask)
		shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA;

	return true;
}

void si_multiwave_lds_size_workaround(struct si_screen *sscreen,
				      unsigned *lds_size)
{
	/* If tessellation is all offchip and on-chip GS isn't used, this
	 * workaround is not needed.
	 */
	return;

	/* SPI barrier management bug:
	 *   Make sure we have at least 4k of LDS in use to avoid the bug.
	 *   It applies to workgroup sizes of more than one wavefront.
	 */
	if (sscreen->info.family == CHIP_BONAIRE ||
	    sscreen->info.family == CHIP_KABINI)
		*lds_size = MAX2(*lds_size, 8);
}

void si_fix_resource_usage(struct si_screen *sscreen, struct si_shader *shader)
{
	unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */

	shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);

	if (shader->selector->type == PIPE_SHADER_COMPUTE &&
	    si_get_max_workgroup_size(shader) > sscreen->compute_wave_size) {
		si_multiwave_lds_size_workaround(sscreen,
						 &shader->config.lds_size);
	}
}

bool si_create_shader_variant(struct si_screen *sscreen,
			      struct ac_llvm_compiler *compiler,
			      struct si_shader *shader,
			      struct pipe_debug_callback *debug)
{
	struct si_shader_selector *sel = shader->selector;
	struct si_shader *mainp = *si_get_main_shader_part(sel, &shader->key);
	int r;

	/* LS, ES, VS are compiled on demand if the main part hasn't been
	 * compiled for that stage.
	 *
	 * GS are compiled on demand if the main part hasn't been compiled
	 * for the chosen NGG-ness.
	 *
	 * Vertex shaders are compiled on demand when a vertex fetch
	 * workaround must be applied.
	 */
	if (shader->is_monolithic) {
		/* Monolithic shader (compiled as a whole, has many variants,
		 * may take a long time to compile).
		 */
		r = si_compile_shader(sscreen, compiler, shader, debug);
		if (r)
			return false;
	} else {
		/* The shader consists of several parts:
		 *
		 * - the middle part is the user shader, it has 1 variant only
		 *   and it was compiled during the creation of the shader
		 *   selector
		 * - the prolog part is inserted at the beginning
		 * - the epilog part is inserted at the end
		 *
		 * The prolog and epilog have many (but simple) variants.
		 *
		 * Starting with gfx9, geometry and tessellation control
		 * shaders also contain the prolog and user shader parts of
		 * the previous shader stage.
		 */

		if (!mainp)
			return false;

		/* Copy the compiled shader data over. */
		shader->is_binary_shared = true;
		shader->binary = mainp->binary;
		shader->config = mainp->config;
		shader->info.num_input_sgprs = mainp->info.num_input_sgprs;
		shader->info.num_input_vgprs = mainp->info.num_input_vgprs;
		shader->info.face_vgpr_index = mainp->info.face_vgpr_index;
		shader->info.ancillary_vgpr_index = mainp->info.ancillary_vgpr_index;
		memcpy(shader->info.vs_output_param_offset,
		       mainp->info.vs_output_param_offset,
		       sizeof(mainp->info.vs_output_param_offset));
		shader->info.uses_instanceid = mainp->info.uses_instanceid;
		shader->info.nr_pos_exports = mainp->info.nr_pos_exports;
		shader->info.nr_param_exports = mainp->info.nr_param_exports;

		/* Select prologs and/or epilogs. */
		switch (sel->type) {
		case PIPE_SHADER_VERTEX:
			if (!si_shader_select_vs_parts(sscreen, compiler, shader, debug))
				return false;
			break;
		case PIPE_SHADER_TESS_CTRL:
			if (!si_shader_select_tcs_parts(sscreen, compiler, shader, debug))
				return false;
			break;
		case PIPE_SHADER_TESS_EVAL:
			break;
		case PIPE_SHADER_GEOMETRY:
			if (!si_shader_select_gs_parts(sscreen, compiler, shader, debug))
				return false;
			break;
		case PIPE_SHADER_FRAGMENT:
			if (!si_shader_select_ps_parts(sscreen, compiler, shader, debug))
				return false;

			/* Make sure we have at least as many VGPRs as there
			 * are allocated inputs.
			 */
			shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
							shader->info.num_input_vgprs);
			break;
		default:;
		}

		/* Update SGPR and VGPR counts. */
		if (shader->prolog) {
			shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
							shader->prolog->config.num_sgprs);
			shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
							shader->prolog->config.num_vgprs);
		}
		if (shader->previous_stage) {
			shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
							shader->previous_stage->config.num_sgprs);
			shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
							shader->previous_stage->config.num_vgprs);
			shader->config.spilled_sgprs =
				MAX2(shader->config.spilled_sgprs,
				     shader->previous_stage->config.spilled_sgprs);
			shader->config.spilled_vgprs =
				MAX2(shader->config.spilled_vgprs,
				     shader->previous_stage->config.spilled_vgprs);
			shader->info.private_mem_vgprs =
				MAX2(shader->info.private_mem_vgprs,
				     shader->previous_stage->info.private_mem_vgprs);
			shader->config.scratch_bytes_per_wave =
				MAX2(shader->config.scratch_bytes_per_wave,
				     shader->previous_stage->config.scratch_bytes_per_wave);
			shader->info.uses_instanceid |=
				shader->previous_stage->info.uses_instanceid;
		}
		if (shader->prolog2) {
			shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
							shader->prolog2->config.num_sgprs);
			shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
							shader->prolog2->config.num_vgprs);
		}
		if (shader->epilog) {
			shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
							shader->epilog->config.num_sgprs);
			shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
							shader->epilog->config.num_vgprs);
		}
		si_calculate_max_simd_waves(shader);
	}

	if (shader->key.as_ngg) {
		assert(!shader->key.as_es && !shader->key.as_ls);
		gfx10_ngg_calculate_subgroup_info(shader);
	} else if (sscreen->info.chip_class >= GFX9 && sel->type == PIPE_SHADER_GEOMETRY) {
		gfx9_get_gs_info(shader->previous_stage_sel, sel, &shader->gs_info);
	}

	si_fix_resource_usage(sscreen, shader);
	si_shader_dump(sscreen, shader, debug, stderr, true);

	/* Upload. */
	if (!si_shader_binary_upload(sscreen, shader, 0)) {
		fprintf(stderr, "LLVM failed to upload shader\n");
		return false;
	}

	return true;
}

void si_shader_destroy(struct si_shader *shader)
{
	if (shader->scratch_bo)
		si_resource_reference(&shader->scratch_bo, NULL);

	si_resource_reference(&shader->bo, NULL);

	if (!shader->is_binary_shared)
		si_shader_binary_clean(&shader->binary);

	free(shader->shader_log);
}