1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
/*
* Copyright 2018 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "si_pipe.h"
#include "sid.h"
static void si_dma_emit_wait_idle(struct si_context *sctx)
{
struct radeon_cmdbuf *cs = sctx->sdma_cs;
/* NOP waits for idle. */
if (sctx->chip_class >= GFX7)
radeon_emit(cs, 0x00000000); /* NOP */
else
radeon_emit(cs, 0xf0000000); /* NOP */
}
void si_dma_emit_timestamp(struct si_context *sctx, struct si_resource *dst, uint64_t offset)
{
struct radeon_cmdbuf *cs = sctx->sdma_cs;
uint64_t va = dst->gpu_address + offset;
if (sctx->chip_class == GFX6) {
unreachable("SI DMA doesn't support the timestamp packet.");
return;
}
/* Mark the buffer range of destination as valid (initialized),
* so that transfer_map knows it should wait for the GPU when mapping
* that range. */
util_range_add(&dst->b.b, &dst->valid_buffer_range, offset, offset + 8);
assert(va % 8 == 0);
si_need_dma_space(sctx, 4, dst, NULL);
si_dma_emit_wait_idle(sctx);
radeon_emit(
cs, CIK_SDMA_PACKET(CIK_SDMA_OPCODE_TIMESTAMP, SDMA_TS_SUB_OPCODE_GET_GLOBAL_TIMESTAMP, 0));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
}
void si_sdma_clear_buffer(struct si_context *sctx, struct pipe_resource *dst, uint64_t offset,
uint64_t size, unsigned clear_value)
{
struct radeon_cmdbuf *cs = sctx->sdma_cs;
unsigned i, ncopy, csize;
struct si_resource *sdst = si_resource(dst);
assert(offset % 4 == 0);
assert(size);
assert(size % 4 == 0);
if (!cs || dst->flags & PIPE_RESOURCE_FLAG_SPARSE ||
sctx->screen->debug_flags & DBG(NO_SDMA_CLEARS)) {
sctx->b.clear_buffer(&sctx->b, dst, offset, size, &clear_value, 4);
return;
}
/* Mark the buffer range of destination as valid (initialized),
* so that transfer_map knows it should wait for the GPU when mapping
* that range. */
util_range_add(dst, &sdst->valid_buffer_range, offset, offset + size);
offset += sdst->gpu_address;
if (sctx->chip_class == GFX6) {
/* the same maximum size as for copying */
ncopy = DIV_ROUND_UP(size, SI_DMA_COPY_MAX_DWORD_ALIGNED_SIZE);
si_need_dma_space(sctx, ncopy * 4, sdst, NULL);
for (i = 0; i < ncopy; i++) {
csize = MIN2(size, SI_DMA_COPY_MAX_DWORD_ALIGNED_SIZE);
radeon_emit(cs, SI_DMA_PACKET(SI_DMA_PACKET_CONSTANT_FILL, 0, csize / 4));
radeon_emit(cs, offset);
radeon_emit(cs, clear_value);
radeon_emit(cs, (offset >> 32) << 16);
offset += csize;
size -= csize;
}
return;
}
/* The following code is for Sea Islands and later. */
/* the same maximum size as for copying */
ncopy = DIV_ROUND_UP(size, CIK_SDMA_COPY_MAX_SIZE);
si_need_dma_space(sctx, ncopy * 5, sdst, NULL);
for (i = 0; i < ncopy; i++) {
csize = MIN2(size, CIK_SDMA_COPY_MAX_SIZE);
radeon_emit(cs, CIK_SDMA_PACKET(CIK_SDMA_PACKET_CONSTANT_FILL, 0, 0x8000 /* dword copy */));
radeon_emit(cs, offset);
radeon_emit(cs, offset >> 32);
radeon_emit(cs, clear_value);
/* dw count */
radeon_emit(cs, (sctx->chip_class >= GFX9 ? csize - 1 : csize) & 0xfffffffc);
offset += csize;
size -= csize;
}
}
void si_sdma_copy_buffer(struct si_context *sctx, struct pipe_resource *dst,
struct pipe_resource *src, uint64_t dst_offset, uint64_t src_offset,
uint64_t size)
{
struct radeon_cmdbuf *cs = sctx->sdma_cs;
unsigned i, ncopy, csize;
struct si_resource *sdst = si_resource(dst);
struct si_resource *ssrc = si_resource(src);
if (!cs || dst->flags & PIPE_RESOURCE_FLAG_SPARSE || src->flags & PIPE_RESOURCE_FLAG_SPARSE) {
si_copy_buffer(sctx, dst, src, dst_offset, src_offset, size);
return;
}
/* Mark the buffer range of destination as valid (initialized),
* so that transfer_map knows it should wait for the GPU when mapping
* that range. */
util_range_add(dst, &sdst->valid_buffer_range, dst_offset, dst_offset + size);
dst_offset += sdst->gpu_address;
src_offset += ssrc->gpu_address;
if (sctx->chip_class == GFX6) {
unsigned max_size, sub_cmd, shift;
/* see whether we should use the dword-aligned or byte-aligned copy */
if (!(dst_offset % 4) && !(src_offset % 4) && !(size % 4)) {
sub_cmd = SI_DMA_COPY_DWORD_ALIGNED;
shift = 2;
max_size = SI_DMA_COPY_MAX_DWORD_ALIGNED_SIZE;
} else {
sub_cmd = SI_DMA_COPY_BYTE_ALIGNED;
shift = 0;
max_size = SI_DMA_COPY_MAX_BYTE_ALIGNED_SIZE;
}
ncopy = DIV_ROUND_UP(size, max_size);
si_need_dma_space(sctx, ncopy * 5, sdst, ssrc);
for (i = 0; i < ncopy; i++) {
csize = MIN2(size, max_size);
radeon_emit(cs, SI_DMA_PACKET(SI_DMA_PACKET_COPY, sub_cmd, csize >> shift));
radeon_emit(cs, dst_offset);
radeon_emit(cs, src_offset);
radeon_emit(cs, (dst_offset >> 32UL) & 0xff);
radeon_emit(cs, (src_offset >> 32UL) & 0xff);
dst_offset += csize;
src_offset += csize;
size -= csize;
}
return;
}
/* The following code is for CI and later. */
unsigned align = ~0u;
ncopy = DIV_ROUND_UP(size, CIK_SDMA_COPY_MAX_SIZE);
/* Align copy size to dw if src/dst address are dw aligned */
if ((src_offset & 0x3) == 0 && (dst_offset & 0x3) == 0 && size > 4 && (size & 3) != 0) {
align = ~0x3u;
ncopy++;
}
si_need_dma_space(sctx, ncopy * 7, sdst, ssrc);
for (i = 0; i < ncopy; i++) {
csize = size >= 4 ? MIN2(size & align, CIK_SDMA_COPY_MAX_SIZE) : size;
radeon_emit(cs, CIK_SDMA_PACKET(CIK_SDMA_OPCODE_COPY, CIK_SDMA_COPY_SUB_OPCODE_LINEAR, 0));
radeon_emit(cs, sctx->chip_class >= GFX9 ? csize - 1 : csize);
radeon_emit(cs, 0); /* src/dst endian swap */
radeon_emit(cs, src_offset);
radeon_emit(cs, src_offset >> 32);
radeon_emit(cs, dst_offset);
radeon_emit(cs, dst_offset >> 32);
dst_offset += csize;
src_offset += csize;
size -= csize;
}
}
void si_need_dma_space(struct si_context *ctx, unsigned num_dw, struct si_resource *dst,
struct si_resource *src)
{
struct radeon_winsys *ws = ctx->ws;
uint64_t vram = ctx->sdma_cs->used_vram;
uint64_t gtt = ctx->sdma_cs->used_gart;
if (dst) {
vram += dst->vram_usage;
gtt += dst->gart_usage;
}
if (src) {
vram += src->vram_usage;
gtt += src->gart_usage;
}
/* Flush the GFX IB if DMA depends on it. */
if (!ctx->sdma_uploads_in_progress && radeon_emitted(ctx->gfx_cs, ctx->initial_gfx_cs_size) &&
((dst && ws->cs_is_buffer_referenced(ctx->gfx_cs, dst->buf, RADEON_USAGE_READWRITE)) ||
(src && ws->cs_is_buffer_referenced(ctx->gfx_cs, src->buf, RADEON_USAGE_WRITE))))
si_flush_gfx_cs(ctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
/* Flush if there's not enough space, or if the memory usage per IB
* is too large.
*
* IBs using too little memory are limited by the IB submission overhead.
* IBs using too much memory are limited by the kernel/TTM overhead.
* Too long IBs create CPU-GPU pipeline bubbles and add latency.
*
* This heuristic makes sure that DMA requests are executed
* very soon after the call is made and lowers memory usage.
* It improves texture upload performance by keeping the DMA
* engine busy while uploads are being submitted.
*/
num_dw++; /* for emit_wait_idle below */
if (!ctx->sdma_uploads_in_progress &&
(!ws->cs_check_space(ctx->sdma_cs, num_dw, false) ||
ctx->sdma_cs->used_vram + ctx->sdma_cs->used_gart > 64 * 1024 * 1024 ||
!radeon_cs_memory_below_limit(ctx->screen, ctx->sdma_cs, vram, gtt))) {
si_flush_dma_cs(ctx, PIPE_FLUSH_ASYNC, NULL);
assert((num_dw + ctx->sdma_cs->current.cdw) <= ctx->sdma_cs->current.max_dw);
}
/* Wait for idle if either buffer has been used in the IB before to
* prevent read-after-write hazards.
*/
if ((dst && ws->cs_is_buffer_referenced(ctx->sdma_cs, dst->buf, RADEON_USAGE_READWRITE)) ||
(src && ws->cs_is_buffer_referenced(ctx->sdma_cs, src->buf, RADEON_USAGE_WRITE)))
si_dma_emit_wait_idle(ctx);
unsigned sync = ctx->sdma_uploads_in_progress ? 0 : RADEON_USAGE_SYNCHRONIZED;
if (dst) {
ws->cs_add_buffer(ctx->sdma_cs, dst->buf, RADEON_USAGE_WRITE | sync, dst->domains, 0);
}
if (src) {
ws->cs_add_buffer(ctx->sdma_cs, src->buf, RADEON_USAGE_READ | sync, src->domains, 0);
}
/* this function is called before all DMA calls, so increment this. */
ctx->num_dma_calls++;
}
void si_flush_dma_cs(struct si_context *ctx, unsigned flags, struct pipe_fence_handle **fence)
{
struct radeon_cmdbuf *cs = ctx->sdma_cs;
struct radeon_saved_cs saved;
bool check_vm = (ctx->screen->debug_flags & DBG(CHECK_VM)) != 0;
if (!radeon_emitted(cs, 0)) {
if (fence)
ctx->ws->fence_reference(fence, ctx->last_sdma_fence);
return;
}
if (check_vm)
si_save_cs(ctx->ws, cs, &saved, true);
ctx->ws->cs_flush(cs, flags, &ctx->last_sdma_fence);
if (fence)
ctx->ws->fence_reference(fence, ctx->last_sdma_fence);
if (check_vm) {
/* Use conservative timeout 800ms, after which we won't wait any
* longer and assume the GPU is hung.
*/
ctx->ws->fence_wait(ctx->ws, ctx->last_sdma_fence, 800 * 1000 * 1000);
si_check_vm_faults(ctx, &saved, RING_DMA);
si_clear_saved_cs(&saved);
}
}
void si_screen_clear_buffer(struct si_screen *sscreen, struct pipe_resource *dst, uint64_t offset,
uint64_t size, unsigned value)
{
struct si_context *ctx = (struct si_context *)sscreen->aux_context;
simple_mtx_lock(&sscreen->aux_context_lock);
si_sdma_clear_buffer(ctx, dst, offset, size, value);
sscreen->aux_context->flush(sscreen->aux_context, NULL, 0);
simple_mtx_unlock(&sscreen->aux_context_lock);
}
|