1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
/*
* Copyright 2018 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "si_pipe.h"
static void si_dma_emit_wait_idle(struct si_context *sctx)
{
struct radeon_cmdbuf *cs = sctx->dma_cs;
/* NOP waits for idle. */
if (sctx->chip_class >= CIK)
radeon_emit(cs, 0x00000000); /* NOP */
else
radeon_emit(cs, 0xf0000000); /* NOP */
}
void si_need_dma_space(struct si_context *ctx, unsigned num_dw,
struct r600_resource *dst, struct r600_resource *src)
{
uint64_t vram = ctx->dma_cs->used_vram;
uint64_t gtt = ctx->dma_cs->used_gart;
if (dst) {
vram += dst->vram_usage;
gtt += dst->gart_usage;
}
if (src) {
vram += src->vram_usage;
gtt += src->gart_usage;
}
/* Flush the GFX IB if DMA depends on it. */
if (radeon_emitted(ctx->gfx_cs, ctx->initial_gfx_cs_size) &&
((dst &&
ctx->ws->cs_is_buffer_referenced(ctx->gfx_cs, dst->buf,
RADEON_USAGE_READWRITE)) ||
(src &&
ctx->ws->cs_is_buffer_referenced(ctx->gfx_cs, src->buf,
RADEON_USAGE_WRITE))))
si_flush_gfx_cs(ctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
/* Flush if there's not enough space, or if the memory usage per IB
* is too large.
*
* IBs using too little memory are limited by the IB submission overhead.
* IBs using too much memory are limited by the kernel/TTM overhead.
* Too long IBs create CPU-GPU pipeline bubbles and add latency.
*
* This heuristic makes sure that DMA requests are executed
* very soon after the call is made and lowers memory usage.
* It improves texture upload performance by keeping the DMA
* engine busy while uploads are being submitted.
*/
num_dw++; /* for emit_wait_idle below */
if (!ctx->ws->cs_check_space(ctx->dma_cs, num_dw) ||
ctx->dma_cs->used_vram + ctx->dma_cs->used_gart > 64 * 1024 * 1024 ||
!radeon_cs_memory_below_limit(ctx->screen, ctx->dma_cs, vram, gtt)) {
si_flush_dma_cs(ctx, PIPE_FLUSH_ASYNC, NULL);
assert((num_dw + ctx->dma_cs->current.cdw) <= ctx->dma_cs->current.max_dw);
}
/* Wait for idle if either buffer has been used in the IB before to
* prevent read-after-write hazards.
*/
if ((dst &&
ctx->ws->cs_is_buffer_referenced(ctx->dma_cs, dst->buf,
RADEON_USAGE_READWRITE)) ||
(src &&
ctx->ws->cs_is_buffer_referenced(ctx->dma_cs, src->buf,
RADEON_USAGE_WRITE)))
si_dma_emit_wait_idle(ctx);
if (dst) {
radeon_add_to_buffer_list(ctx, ctx->dma_cs, dst,
RADEON_USAGE_WRITE,
RADEON_PRIO_SDMA_BUFFER);
}
if (src) {
radeon_add_to_buffer_list(ctx, ctx->dma_cs, src,
RADEON_USAGE_READ,
RADEON_PRIO_SDMA_BUFFER);
}
/* this function is called before all DMA calls, so increment this. */
ctx->num_dma_calls++;
}
void si_flush_dma_cs(struct si_context *ctx, unsigned flags,
struct pipe_fence_handle **fence)
{
struct radeon_cmdbuf *cs = ctx->dma_cs;
struct radeon_saved_cs saved;
bool check_vm = (ctx->screen->debug_flags & DBG(CHECK_VM)) != 0;
if (!radeon_emitted(cs, 0)) {
if (fence)
ctx->ws->fence_reference(fence, ctx->last_sdma_fence);
return;
}
if (check_vm)
si_save_cs(ctx->ws, cs, &saved, true);
ctx->ws->cs_flush(cs, flags, &ctx->last_sdma_fence);
if (fence)
ctx->ws->fence_reference(fence, ctx->last_sdma_fence);
if (check_vm) {
/* Use conservative timeout 800ms, after which we won't wait any
* longer and assume the GPU is hung.
*/
ctx->ws->fence_wait(ctx->ws, ctx->last_sdma_fence, 800*1000*1000);
si_check_vm_faults(ctx, &saved, RING_DMA);
si_clear_saved_cs(&saved);
}
}
void si_screen_clear_buffer(struct si_screen *sscreen, struct pipe_resource *dst,
uint64_t offset, uint64_t size, unsigned value)
{
struct si_context *ctx = (struct si_context*)sscreen->aux_context;
mtx_lock(&sscreen->aux_context_lock);
ctx->dma_clear_buffer(ctx, dst, offset, size, value);
sscreen->aux_context->flush(sscreen->aux_context, NULL, 0);
mtx_unlock(&sscreen->aux_context_lock);
}
|