aboutsummaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/radeonsi/si_cp_dma.c
blob: 17e15d13744dbbcf71ca2713e8172206c9fd9d2c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
/*
 * Copyright 2013 Advanced Micro Devices, Inc.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * on the rights to use, copy, modify, merge, publish, distribute, sub
 * license, and/or sell copies of the Software, and to permit persons to whom
 * the Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#include "si_pipe.h"
#include "sid.h"
#include "radeon/r600_cs.h"

/* Recommended maximum sizes for optimal performance.
 * Fall back to compute or SDMA if the size is greater.
 */
#define CP_DMA_COPY_PERF_THRESHOLD	(64 * 1024) /* copied from Vulkan */
#define CP_DMA_CLEAR_PERF_THRESHOLD	(32 * 1024) /* guess (clear is much slower) */

/* Set this if you want the ME to wait until CP DMA is done.
 * It should be set on the last CP DMA packet. */
#define CP_DMA_SYNC		(1 << 0)

/* Set this if the source data was used as a destination in a previous CP DMA
 * packet. It's for preventing a read-after-write (RAW) hazard between two
 * CP DMA packets. */
#define CP_DMA_RAW_WAIT		(1 << 1)
#define CP_DMA_USE_L2		(1 << 2) /* CIK+ */
#define CP_DMA_CLEAR		(1 << 3)

/* The max number of bytes that can be copied per packet. */
static inline unsigned cp_dma_max_byte_count(struct si_context *sctx)
{
	unsigned max = sctx->b.chip_class >= GFX9 ?
			       S_414_BYTE_COUNT_GFX9(~0u) :
			       S_414_BYTE_COUNT_GFX6(~0u);

	/* make it aligned for optimal performance */
	return max & ~(SI_CPDMA_ALIGNMENT - 1);
}


/* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
 * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
 * clear value.
 */
static void si_emit_cp_dma(struct si_context *sctx, uint64_t dst_va,
			   uint64_t src_va, unsigned size, unsigned flags,
			   enum r600_coherency coher)
{
	struct radeon_winsys_cs *cs = sctx->b.gfx_cs;
	uint32_t header = 0, command = 0;

	assert(size);
	assert(size <= cp_dma_max_byte_count(sctx));

	if (sctx->b.chip_class >= GFX9)
		command |= S_414_BYTE_COUNT_GFX9(size);
	else
		command |= S_414_BYTE_COUNT_GFX6(size);

	/* Sync flags. */
	if (flags & CP_DMA_SYNC)
		header |= S_411_CP_SYNC(1);
	else {
		if (sctx->b.chip_class >= GFX9)
			command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
		else
			command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
	}

	if (flags & CP_DMA_RAW_WAIT)
		command |= S_414_RAW_WAIT(1);

	/* Src and dst flags. */
	if (sctx->b.chip_class >= GFX9 && !(flags & CP_DMA_CLEAR) &&
	    src_va == dst_va)
		header |= S_411_DSL_SEL(V_411_NOWHERE); /* prefetch only */
	else if (flags & CP_DMA_USE_L2)
		header |= S_411_DSL_SEL(V_411_DST_ADDR_TC_L2);

	if (flags & CP_DMA_CLEAR)
		header |= S_411_SRC_SEL(V_411_DATA);
	else if (flags & CP_DMA_USE_L2)
		header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);

	if (sctx->b.chip_class >= CIK) {
		radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0));
		radeon_emit(cs, header);
		radeon_emit(cs, src_va);	/* SRC_ADDR_LO [31:0] */
		radeon_emit(cs, src_va >> 32);	/* SRC_ADDR_HI [31:0] */
		radeon_emit(cs, dst_va);	/* DST_ADDR_LO [31:0] */
		radeon_emit(cs, dst_va >> 32);	/* DST_ADDR_HI [31:0] */
		radeon_emit(cs, command);
	} else {
		header |= S_411_SRC_ADDR_HI(src_va >> 32);

		radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0));
		radeon_emit(cs, src_va);	/* SRC_ADDR_LO [31:0] */
		radeon_emit(cs, header);	/* SRC_ADDR_HI [15:0] + flags. */
		radeon_emit(cs, dst_va);	/* DST_ADDR_LO [31:0] */
		radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
		radeon_emit(cs, command);
	}

	/* CP DMA is executed in ME, but index buffers are read by PFP.
	 * This ensures that ME (CP DMA) is idle before PFP starts fetching
	 * indices. If we wanted to execute CP DMA in PFP, this packet
	 * should precede it.
	 */
	if (coher == R600_COHERENCY_SHADER && flags & CP_DMA_SYNC) {
		radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
		radeon_emit(cs, 0);
	}
}

static unsigned get_flush_flags(struct si_context *sctx, enum r600_coherency coher)
{
	switch (coher) {
	default:
	case R600_COHERENCY_NONE:
		return 0;
	case R600_COHERENCY_SHADER:
		return SI_CONTEXT_INV_SMEM_L1 |
		       SI_CONTEXT_INV_VMEM_L1 |
		       (sctx->b.chip_class == SI ? SI_CONTEXT_INV_GLOBAL_L2 : 0);
	case R600_COHERENCY_CB_META:
		return SI_CONTEXT_FLUSH_AND_INV_CB;
	}
}

static unsigned get_tc_l2_flag(struct si_context *sctx, enum r600_coherency coher)
{
	if ((sctx->b.chip_class >= GFX9 && coher == R600_COHERENCY_CB_META) ||
	    (sctx->b.chip_class >= CIK && coher == R600_COHERENCY_SHADER))
		return CP_DMA_USE_L2;

	return 0;
}

static void si_cp_dma_prepare(struct si_context *sctx, struct pipe_resource *dst,
			      struct pipe_resource *src, unsigned byte_count,
			      uint64_t remaining_size, unsigned user_flags,
			      bool *is_first, unsigned *packet_flags)
{
	/* Fast exit for a CPDMA prefetch. */
	if ((user_flags & SI_CPDMA_SKIP_ALL) == SI_CPDMA_SKIP_ALL) {
		*is_first = false;
		return;
	}

	if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
		/* Count memory usage in so that need_cs_space can take it into account. */
		si_context_add_resource_size(sctx, dst);
		if (src)
			si_context_add_resource_size(sctx, src);
	}

	if (!(user_flags & SI_CPDMA_SKIP_CHECK_CS_SPACE))
		si_need_gfx_cs_space(sctx);

	/* This must be done after need_cs_space. */
	if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
		radeon_add_to_buffer_list(sctx, sctx->b.gfx_cs,
					  (struct r600_resource*)dst,
					  RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA);
		if (src)
			radeon_add_to_buffer_list(sctx, sctx->b.gfx_cs,
						  (struct r600_resource*)src,
						  RADEON_USAGE_READ, RADEON_PRIO_CP_DMA);
	}

	/* Flush the caches for the first copy only.
	 * Also wait for the previous CP DMA operations.
	 */
	if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC) && sctx->b.flags)
		si_emit_cache_flush(sctx);

	if (!(user_flags & SI_CPDMA_SKIP_SYNC_BEFORE) && *is_first)
		*packet_flags |= CP_DMA_RAW_WAIT;

	*is_first = false;

	/* Do the synchronization after the last dma, so that all data
	 * is written to memory.
	 */
	if (!(user_flags & SI_CPDMA_SKIP_SYNC_AFTER) &&
	    byte_count == remaining_size)
		*packet_flags |= CP_DMA_SYNC;
}

void si_clear_buffer(struct si_context *sctx, struct pipe_resource *dst,
		     uint64_t offset, uint64_t size, unsigned value,
		     enum r600_coherency coher)
{
	struct radeon_winsys *ws = sctx->b.ws;
	struct r600_resource *rdst = r600_resource(dst);
	unsigned tc_l2_flag = get_tc_l2_flag(sctx, coher);
	unsigned flush_flags = get_flush_flags(sctx, coher);
	uint64_t dma_clear_size;
	bool is_first = true;

	if (!size)
		return;

       dma_clear_size = size & ~3ull;

	/* Mark the buffer range of destination as valid (initialized),
	 * so that transfer_map knows it should wait for the GPU when mapping
	 * that range. */
	util_range_add(&rdst->valid_buffer_range, offset,
		       offset + dma_clear_size);

	/* dma_clear_buffer can use clear_buffer on failure. Make sure that
	 * doesn't happen. We don't want an infinite recursion: */
	if (sctx->b.dma_cs &&
	    !(dst->flags & PIPE_RESOURCE_FLAG_SPARSE) &&
	    (offset % 4 == 0) &&
	    /* CP DMA is very slow. Always use SDMA for big clears. This
	     * alone improves DeusEx:MD performance by 70%. */
	    (size > CP_DMA_CLEAR_PERF_THRESHOLD ||
	     /* Buffers not used by the GFX IB yet will be cleared by SDMA.
	      * This happens to move most buffer clears to SDMA, including
	      * DCC and CMASK clears, because pipe->clear clears them before
	      * si_emit_framebuffer_state (in a draw call) adds them.
	      * For example, DeusEx:MD has 21 buffer clears per frame and all
	      * of them are moved to SDMA thanks to this. */
	     !ws->cs_is_buffer_referenced(sctx->b.gfx_cs, rdst->buf,
				          RADEON_USAGE_READWRITE))) {
		sctx->b.dma_clear_buffer(sctx, dst, offset, dma_clear_size, value);

		offset += dma_clear_size;
		size -= dma_clear_size;
	} else if (dma_clear_size >= 4) {
		uint64_t va = rdst->gpu_address + offset;

		offset += dma_clear_size;
		size -= dma_clear_size;

		/* Flush the caches. */
		sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
				 SI_CONTEXT_CS_PARTIAL_FLUSH | flush_flags;

		while (dma_clear_size) {
			unsigned byte_count = MIN2(dma_clear_size, cp_dma_max_byte_count(sctx));
			unsigned dma_flags = tc_l2_flag  | CP_DMA_CLEAR;

			si_cp_dma_prepare(sctx, dst, NULL, byte_count, dma_clear_size, 0,
					  &is_first, &dma_flags);

			/* Emit the clear packet. */
			si_emit_cp_dma(sctx, va, value, byte_count, dma_flags, coher);

			dma_clear_size -= byte_count;
			va += byte_count;
		}

		if (tc_l2_flag)
			rdst->TC_L2_dirty = true;

		/* If it's not a framebuffer fast clear... */
		if (coher == R600_COHERENCY_SHADER)
			sctx->b.num_cp_dma_calls++;
	}

	if (size) {
		/* Handle non-dword alignment.
		 *
		 * This function is called for embedded texture metadata clears,
		 * but those should always be properly aligned. */
		assert(dst->target == PIPE_BUFFER);
		assert(size < 4);

		pipe_buffer_write(&sctx->b.b, dst, offset, size, &value);
	}
}

static void si_pipe_clear_buffer(struct pipe_context *ctx,
				 struct pipe_resource *dst,
				 unsigned offset, unsigned size,
				 const void *clear_value_ptr,
				 int clear_value_size)
{
	struct si_context *sctx = (struct si_context*)ctx;
	uint32_t dword_value;
	unsigned i;

	assert(offset % clear_value_size == 0);
	assert(size % clear_value_size == 0);

	if (clear_value_size > 4) {
		const uint32_t *u32 = clear_value_ptr;
		bool clear_dword_duplicated = true;

		/* See if we can lower large fills to dword fills. */
		for (i = 1; i < clear_value_size / 4; i++)
			if (u32[0] != u32[i]) {
				clear_dword_duplicated = false;
				break;
			}

		if (!clear_dword_duplicated) {
			/* Use transform feedback for 64-bit, 96-bit, and
			 * 128-bit fills.
			 */
			union pipe_color_union clear_value;

			memcpy(&clear_value, clear_value_ptr, clear_value_size);
			si_blitter_begin(ctx, SI_DISABLE_RENDER_COND);
			util_blitter_clear_buffer(sctx->blitter, dst, offset,
						  size, clear_value_size / 4,
						  &clear_value);
			si_blitter_end(ctx);
			return;
		}
	}

	/* Expand the clear value to a dword. */
	switch (clear_value_size) {
	case 1:
		dword_value = *(uint8_t*)clear_value_ptr;
		dword_value |= (dword_value << 8) |
			       (dword_value << 16) |
			       (dword_value << 24);
		break;
	case 2:
		dword_value = *(uint16_t*)clear_value_ptr;
		dword_value |= dword_value << 16;
		break;
	default:
		dword_value = *(uint32_t*)clear_value_ptr;
	}

	si_clear_buffer(sctx, dst, offset, size, dword_value,
			R600_COHERENCY_SHADER);
}

/**
 * Realign the CP DMA engine. This must be done after a copy with an unaligned
 * size.
 *
 * \param size  Remaining size to the CP DMA alignment.
 */
static void si_cp_dma_realign_engine(struct si_context *sctx, unsigned size,
				     unsigned user_flags, bool *is_first)
{
	uint64_t va;
	unsigned dma_flags = 0;
	unsigned scratch_size = SI_CPDMA_ALIGNMENT * 2;

	assert(size < SI_CPDMA_ALIGNMENT);

	/* Use the scratch buffer as the dummy buffer. The 3D engine should be
	 * idle at this point.
	 */
	if (!sctx->scratch_buffer ||
	    sctx->scratch_buffer->b.b.width0 < scratch_size) {
		r600_resource_reference(&sctx->scratch_buffer, NULL);
		sctx->scratch_buffer = (struct r600_resource*)
			si_aligned_buffer_create(&sctx->screen->b,
						   R600_RESOURCE_FLAG_UNMAPPABLE,
						   PIPE_USAGE_DEFAULT,
						   scratch_size, 256);
		if (!sctx->scratch_buffer)
			return;

		si_mark_atom_dirty(sctx, &sctx->scratch_state);
	}

	si_cp_dma_prepare(sctx, &sctx->scratch_buffer->b.b,
			  &sctx->scratch_buffer->b.b, size, size, user_flags,
			  is_first, &dma_flags);

	va = sctx->scratch_buffer->gpu_address;
	si_emit_cp_dma(sctx, va, va + SI_CPDMA_ALIGNMENT, size, dma_flags,
		       R600_COHERENCY_SHADER);
}

/**
 * Do memcpy between buffers using CP DMA.
 *
 * \param user_flags	bitmask of SI_CPDMA_*
 */
void si_copy_buffer(struct si_context *sctx,
		    struct pipe_resource *dst, struct pipe_resource *src,
		    uint64_t dst_offset, uint64_t src_offset, unsigned size,
		    unsigned user_flags)
{
	uint64_t main_dst_offset, main_src_offset;
	unsigned skipped_size = 0;
	unsigned realign_size = 0;
	unsigned tc_l2_flag = get_tc_l2_flag(sctx, R600_COHERENCY_SHADER);
	unsigned flush_flags = get_flush_flags(sctx, R600_COHERENCY_SHADER);
	bool is_first = true;

	if (!size)
		return;

	if (dst != src || dst_offset != src_offset) {
		/* Mark the buffer range of destination as valid (initialized),
		 * so that transfer_map knows it should wait for the GPU when mapping
		 * that range. */
		util_range_add(&r600_resource(dst)->valid_buffer_range, dst_offset,
			       dst_offset + size);
	}

	dst_offset += r600_resource(dst)->gpu_address;
	src_offset += r600_resource(src)->gpu_address;

	/* The workarounds aren't needed on Fiji and beyond. */
	if (sctx->b.family <= CHIP_CARRIZO ||
	    sctx->b.family == CHIP_STONEY) {
		/* If the size is not aligned, we must add a dummy copy at the end
		 * just to align the internal counter. Otherwise, the DMA engine
		 * would slow down by an order of magnitude for following copies.
		 */
		if (size % SI_CPDMA_ALIGNMENT)
			realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);

		/* If the copy begins unaligned, we must start copying from the next
		 * aligned block and the skipped part should be copied after everything
		 * else has been copied. Only the src alignment matters, not dst.
		 */
		if (src_offset % SI_CPDMA_ALIGNMENT) {
			skipped_size = SI_CPDMA_ALIGNMENT - (src_offset % SI_CPDMA_ALIGNMENT);
			/* The main part will be skipped if the size is too small. */
			skipped_size = MIN2(skipped_size, size);
			size -= skipped_size;
		}
	}

	/* Flush the caches. */
	if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC))
		sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
				 SI_CONTEXT_CS_PARTIAL_FLUSH | flush_flags;

	/* This is the main part doing the copying. Src is always aligned. */
	main_dst_offset = dst_offset + skipped_size;
	main_src_offset = src_offset + skipped_size;

	while (size) {
		unsigned dma_flags = tc_l2_flag;
		unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx));

		si_cp_dma_prepare(sctx, dst, src, byte_count,
				  size + skipped_size + realign_size,
				  user_flags, &is_first, &dma_flags);

		si_emit_cp_dma(sctx, main_dst_offset, main_src_offset,
			       byte_count, dma_flags, R600_COHERENCY_SHADER);

		size -= byte_count;
		main_src_offset += byte_count;
		main_dst_offset += byte_count;
	}

	/* Copy the part we skipped because src wasn't aligned. */
	if (skipped_size) {
		unsigned dma_flags = tc_l2_flag;

		si_cp_dma_prepare(sctx, dst, src, skipped_size,
				  skipped_size + realign_size, user_flags,
				  &is_first, &dma_flags);

		si_emit_cp_dma(sctx, dst_offset, src_offset, skipped_size,
			       dma_flags, R600_COHERENCY_SHADER);
	}

	/* Finally, realign the engine if the size wasn't aligned. */
	if (realign_size)
		si_cp_dma_realign_engine(sctx, realign_size, user_flags,
					 &is_first);

	if (tc_l2_flag)
		r600_resource(dst)->TC_L2_dirty = true;

	/* If it's not a prefetch... */
	if (dst_offset != src_offset)
		sctx->b.num_cp_dma_calls++;
}

void cik_prefetch_TC_L2_async(struct si_context *sctx, struct pipe_resource *buf,
			      uint64_t offset, unsigned size)
{
	assert(sctx->b.chip_class >= CIK);

	si_copy_buffer(sctx, buf, buf, offset, offset, size, SI_CPDMA_SKIP_ALL);
}

static void cik_prefetch_shader_async(struct si_context *sctx,
				      struct si_pm4_state *state)
{
	struct pipe_resource *bo = &state->bo[0]->b.b;
	assert(state->nbo == 1);

	cik_prefetch_TC_L2_async(sctx, bo, 0, bo->width0);
}

static void cik_prefetch_VBO_descriptors(struct si_context *sctx)
{
	if (!sctx->vertex_elements)
		return;

	cik_prefetch_TC_L2_async(sctx, &sctx->vb_descriptors_buffer->b.b,
				 sctx->vb_descriptors_offset,
				 sctx->vertex_elements->desc_list_byte_size);
}

void cik_emit_prefetch_L2(struct si_context *sctx)
{
	/* Prefetch shaders and VBO descriptors to TC L2. */
	if (sctx->b.chip_class >= GFX9) {
		/* Choose the right spot for the VBO prefetch. */
		if (sctx->tes_shader.cso) {
			if (sctx->prefetch_L2_mask & SI_PREFETCH_HS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
			if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
				cik_prefetch_VBO_descriptors(sctx);
			if (sctx->prefetch_L2_mask & SI_PREFETCH_GS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
			if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
		} else if (sctx->gs_shader.cso) {
			if (sctx->prefetch_L2_mask & SI_PREFETCH_GS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
			if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
				cik_prefetch_VBO_descriptors(sctx);
			if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
		} else {
			if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
			if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
				cik_prefetch_VBO_descriptors(sctx);
		}
	} else {
		/* SI-CI-VI */
		/* Choose the right spot for the VBO prefetch. */
		if (sctx->tes_shader.cso) {
			if (sctx->prefetch_L2_mask & SI_PREFETCH_LS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.ls);
			if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
				cik_prefetch_VBO_descriptors(sctx);
			if (sctx->prefetch_L2_mask & SI_PREFETCH_HS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
			if (sctx->prefetch_L2_mask & SI_PREFETCH_ES)
				cik_prefetch_shader_async(sctx, sctx->queued.named.es);
			if (sctx->prefetch_L2_mask & SI_PREFETCH_GS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
			if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
		} else if (sctx->gs_shader.cso) {
			if (sctx->prefetch_L2_mask & SI_PREFETCH_ES)
				cik_prefetch_shader_async(sctx, sctx->queued.named.es);
			if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
				cik_prefetch_VBO_descriptors(sctx);
			if (sctx->prefetch_L2_mask & SI_PREFETCH_GS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
			if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
		} else {
			if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
			if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
				cik_prefetch_VBO_descriptors(sctx);
		}
	}

	if (sctx->prefetch_L2_mask & SI_PREFETCH_PS)
		cik_prefetch_shader_async(sctx, sctx->queued.named.ps);

	sctx->prefetch_L2_mask = 0;
}

void si_init_cp_dma_functions(struct si_context *sctx)
{
	sctx->b.b.clear_buffer = si_pipe_clear_buffer;
}