aboutsummaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/radeonsi/si_compute_prim_discard.c
blob: 373fd4ffa7cb0e1a6a5469b95c23b1b360a02df9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * on the rights to use, copy, modify, merge, publish, distribute, sub
 * license, and/or sell copies of the Software, and to permit persons to whom
 * the Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include "si_pipe.h"
#include "si_shader_internal.h"
#include "sid.h"
#include "si_build_pm4.h"
#include "ac_llvm_cull.h"

#include "util/u_prim.h"
#include "util/u_suballoc.h"
#include "util/u_upload_mgr.h"
#include "util/fast_idiv_by_const.h"

/* Based on:
 * https://frostbite-wp-prd.s3.amazonaws.com/wp-content/uploads/2016/03/29204330/GDC_2016_Compute.pdf
 */

/* This file implements primitive culling using asynchronous compute.
 * It's written to be GL conformant.
 *
 * It takes a monolithic VS in LLVM IR returning gl_Position and invokes it
 * in a compute shader. The shader processes 1 primitive/thread by invoking
 * the VS for each vertex to get the positions, decomposes strips and fans
 * into triangles (if needed), eliminates primitive restart (if needed),
 * does (W<0) culling, face culling, view XY culling, zero-area and
 * small-primitive culling, and generates a new index buffer that doesn't
 * contain culled primitives.
 *
 * The index buffer is generated using the Ordered Count feature of GDS,
 * which is an atomic counter that is incremented in the wavefront launch
 * order, so that the original primitive order is preserved.
 *
 * Another GDS ordered counter is used to eliminate primitive restart indices.
 * If a restart index lands on an even thread ID, the compute shader has to flip
 * the primitive orientation of the whole following triangle strip. The primitive
 * orientation has to be correct after strip and fan decomposition for two-sided
 * shading to behave correctly. The decomposition also needs to be aware of
 * which vertex is the provoking vertex for flat shading to behave correctly.
 *
 * IB = a GPU command buffer
 *
 * Both the compute and gfx IBs run in parallel sort of like CE and DE.
 * The gfx IB has a CP barrier (REWIND packet) before a draw packet. REWIND
 * doesn't continue if its word isn't 0x80000000. Once compute shaders are
 * finished culling, the last wave will write the final primitive count from
 * GDS directly into the count word of the draw packet in the gfx IB, and
 * a CS_DONE event will signal the REWIND packet to continue. It's really
 * a direct draw with command buffer patching from the compute queue.
 *
 * The compute IB doesn't have to start when its corresponding gfx IB starts,
 * but can start sooner. The compute IB is signaled to start after the last
 * execution barrier in the *previous* gfx IB. This is handled as follows.
 * The kernel GPU scheduler starts the compute IB after the previous gfx IB has
 * started. The compute IB then waits (WAIT_REG_MEM) for a mid-IB fence that
 * represents the barrier in the previous gfx IB.
 *
 * Features:
 * - Triangle strips and fans are decomposed into an indexed triangle list.
 *   The decomposition differs based on the provoking vertex state.
 * - Instanced draws are converted into non-instanced draws for 16-bit indices.
 *   (InstanceID is stored in the high bits of VertexID and unpacked by VS)
 * - Primitive restart is fully supported with triangle strips, including
 *   correct primitive orientation across multiple waves. (restart indices
 *   reset primitive orientation)
 * - W<0 culling (W<0 is behind the viewer, sort of like near Z culling).
 * - Back face culling, incl. culling zero-area / degenerate primitives.
 * - View XY culling.
 * - View Z culling (disabled due to limited impact with perspective projection).
 * - Small primitive culling for all MSAA modes and all quant modes.
 *
 * The following are not implemented:
 * - ClipVertex/ClipDistance/CullDistance-based culling.
 * - Scissor culling.
 * - HiZ culling.
 *
 * Limitations (and unimplemented features that may be possible to implement):
 * - Only triangles, triangle strips, and triangle fans are supported.
 * - Primitive restart is only supported with triangle strips.
 * - Instancing and primitive restart can't be used together.
 * - Instancing is only supported with 16-bit indices and instance count <= 2^16.
 * - The instance divisor buffer is unavailable, so all divisors must be
 *   either 0 or 1.
 * - Multidraws where the vertex shader reads gl_DrawID are unsupported.
 * - No support for tessellation and geometry shaders.
 *   (patch elimination where tess factors are 0 would be possible to implement)
 * - The vertex shader must not contain memory stores.
 * - All VS resources must not have a write usage in the command buffer.
 *   (TODO: all shader buffers currently set the write usage)
 * - Bindless textures and images must not occur in the vertex shader.
 *
 * User data SGPR layout:
 *   INDEX_BUFFERS: pointer to constants
 *     0..3: input index buffer - typed buffer view
 *     4..7: output index buffer - typed buffer view
 *     8..11: viewport state - scale.xy, translate.xy
 *   VERTEX_COUNTER: counter address or first primitive ID
 *     - If unordered memory counter: address of "count" in the draw packet
 *       and is incremented atomically by the shader.
 *     - If unordered GDS counter: address of "count" in GDS starting from 0,
 *       must be initialized to 0 before the dispatch.
 *     - If ordered GDS counter: the primitive ID that should reset the vertex
 *       counter to 0 in GDS
 *   LAST_WAVE_PRIM_ID: the primitive ID that should write the final vertex
 *       count to memory if using GDS ordered append
 *   VERTEX_COUNT_ADDR: where the last wave should write the vertex count if
 *       using GDS ordered append
 *   VS.VERTEX_BUFFERS:           same value as VS
 *   VS.CONST_AND_SHADER_BUFFERS: same value as VS
 *   VS.SAMPLERS_AND_IMAGES:      same value as VS
 *   VS.BASE_VERTEX:              same value as VS
 *   VS.START_INSTANCE:           same value as VS
 *   NUM_PRIMS_UDIV_MULTIPLIER: For fast 31-bit division by the number of primitives
 *       per instance for instancing.
 *   NUM_PRIMS_UDIV_TERMS:
 *     - Bits [0:4]: "post_shift" for fast 31-bit division for instancing.
 *     - Bits [5:31]: The number of primitives per instance for computing the remainder.
 *   PRIMITIVE_RESTART_INDEX
 *   SMALL_PRIM_CULLING_PRECISION: Scale the primitive bounding box by this number.
 *
 *
 * The code contains 3 codepaths:
 * - Unordered memory counter (for debugging, random primitive order, no primitive restart)
 * - Unordered GDS counter (for debugging, random primitive order, no primitive restart)
 * - Ordered GDS counter (it preserves the primitive order)
 *
 * How to test primitive restart (the most complicated part because it needs
 * to get the primitive orientation right):
 *   Set THREADGROUP_SIZE to 2 to exercise both intra-wave and inter-wave
 *   primitive orientation flips with small draw calls, which is what most tests use.
 *   You can also enable draw call splitting into draw calls with just 2 primitives.
 */

/* At least 256 is needed for the fastest wave launch rate from compute queues
 * due to hw constraints. Nothing in the code needs more than 1 wave/threadgroup. */
#define THREADGROUP_SIZE		256 /* high numbers limit available VGPRs */
#define THREADGROUPS_PER_CU		1 /* TGs to launch on 1 CU before going onto the next, max 8 */
#define MAX_WAVES_PER_SH		0 /* no limit */
#define INDEX_STORES_USE_SLC		1 /* don't cache indices if L2 is full */
/* Don't cull Z. We already do (W < 0) culling for primitives behind the viewer. */
#define CULL_Z				0
/* 0 = unordered memory counter, 1 = unordered GDS counter, 2 = ordered GDS counter */
#define VERTEX_COUNTER_GDS_MODE		2
#define GDS_SIZE_UNORDERED		(4 * 1024) /* only for the unordered GDS counter */

/* Grouping compute dispatches for small draw calls: How many primitives from multiple
 * draw calls to process by compute before signaling the gfx IB. This reduces the number
 * of EOP events + REWIND packets, because they decrease performance. */
#define PRIMS_PER_BATCH			(512 * 1024)
/* Draw call splitting at the packet level. This allows signaling the gfx IB
 * for big draw calls sooner, but doesn't allow context flushes between packets.
 * Primitive restart is supported. Only implemented for ordered append. */
#define SPLIT_PRIMS_PACKET_LEVEL_VALUE	PRIMS_PER_BATCH
/* If there is not enough ring buffer space for the current IB, split draw calls into
 * this number of primitives, so that we can flush the context and get free ring space. */
#define SPLIT_PRIMS_DRAW_LEVEL		PRIMS_PER_BATCH

/* Derived values. */
#define WAVES_PER_TG			DIV_ROUND_UP(THREADGROUP_SIZE, 64)
#define SPLIT_PRIMS_PACKET_LEVEL	(VERTEX_COUNTER_GDS_MODE == 2 ? \
					 SPLIT_PRIMS_PACKET_LEVEL_VALUE : \
					 UINT_MAX & ~(THREADGROUP_SIZE - 1))

#define REWIND_SIGNAL_BIT		0x80000000
/* For emulating the rewind packet on CI. */
#define FORCE_REWIND_EMULATION		0

void si_initialize_prim_discard_tunables(struct si_context *sctx)
{
	sctx->prim_discard_vertex_count_threshold = UINT_MAX; /* disable */

	if (sctx->chip_class == GFX6 || /* SI support is not implemented */
	    !sctx->screen->info.has_gds_ordered_append ||
	    sctx->screen->debug_flags & DBG(NO_PD) ||
	    /* If aux_context == NULL, we are initializing aux_context right now. */
	    !sctx->screen->aux_context)
		return;

	/* TODO: enable this after the GDS kernel memory management is fixed */
	bool enable_on_pro_graphics_by_default = false;

	if (sctx->screen->debug_flags & DBG(ALWAYS_PD) ||
	    sctx->screen->debug_flags & DBG(PD) ||
	    (enable_on_pro_graphics_by_default &&
	     sctx->screen->info.is_pro_graphics &&
	     (sctx->family == CHIP_BONAIRE ||
	      sctx->family == CHIP_HAWAII ||
	      sctx->family == CHIP_TONGA ||
	      sctx->family == CHIP_FIJI ||
	      sctx->family == CHIP_POLARIS10 ||
	      sctx->family == CHIP_POLARIS11 ||
	      sctx->family == CHIP_VEGA10 ||
	      sctx->family == CHIP_VEGA20))) {
		sctx->prim_discard_vertex_count_threshold = 6000 * 3; /* 6K triangles */

		if (sctx->screen->debug_flags & DBG(ALWAYS_PD))
			sctx->prim_discard_vertex_count_threshold = 0; /* always enable */

		const uint32_t MB = 1024 * 1024;
		const uint64_t GB = 1024 * 1024 * 1024;

		/* The total size is double this per context.
		 * Greater numbers allow bigger gfx IBs.
		 */
		if (sctx->screen->info.vram_size <= 2 * GB)
			sctx->index_ring_size_per_ib = 64 * MB;
		else if (sctx->screen->info.vram_size <= 4 * GB)
			sctx->index_ring_size_per_ib = 128 * MB;
		else
			sctx->index_ring_size_per_ib = 256 * MB;
	}
}

/* Opcode can be "add" or "swap". */
static LLVMValueRef
si_build_ds_ordered_op(struct si_shader_context *ctx, const char *opcode,
		       LLVMValueRef m0, LLVMValueRef value, unsigned ordered_count_index,
		       bool release, bool done)
{
	LLVMValueRef args[] = {
		LLVMBuildIntToPtr(ctx->ac.builder, m0,
				  LLVMPointerType(ctx->i32, AC_ADDR_SPACE_GDS), ""),
		value,
		LLVMConstInt(ctx->i32, LLVMAtomicOrderingMonotonic, 0), /* ordering */
		ctx->i32_0, /* scope */
		ctx->i1false, /* volatile */
		LLVMConstInt(ctx->i32, ordered_count_index, 0),
		LLVMConstInt(ctx->i1, release, 0),
		LLVMConstInt(ctx->i1, done, 0),
	};

	char intrinsic[64];
	snprintf(intrinsic, sizeof(intrinsic), "llvm.amdgcn.ds.ordered.%s", opcode);
	return ac_build_intrinsic(&ctx->ac, intrinsic, ctx->i32, args, ARRAY_SIZE(args), 0);
}

static LLVMValueRef si_expand_32bit_pointer(struct si_shader_context *ctx, LLVMValueRef ptr)
{
	uint64_t hi = (uint64_t)ctx->screen->info.address32_hi << 32;
	ptr = LLVMBuildZExt(ctx->ac.builder, ptr, ctx->i64, "");
	ptr = LLVMBuildOr(ctx->ac.builder, ptr, LLVMConstInt(ctx->i64, hi, 0), "");
	return LLVMBuildIntToPtr(ctx->ac.builder, ptr,
				 LLVMPointerType(ctx->i32, AC_ADDR_SPACE_GLOBAL), "");
}

struct si_thread0_section {
	struct si_shader_context *ctx;
	LLVMValueRef vgpr_result; /* a VGPR for the value on thread 0. */
	LLVMValueRef saved_exec;
};

/* Enter a section that only executes on thread 0. */
static void si_enter_thread0_section(struct si_shader_context *ctx,
				     struct si_thread0_section *section,
				     LLVMValueRef thread_id)
{
	section->ctx = ctx;
	section->vgpr_result = ac_build_alloca_undef(&ctx->ac, ctx->i32, "result0");

	/* This IF has 4 instructions:
	 *   v_and_b32_e32 v, 63, v         ; get the thread ID
	 *   v_cmp_eq_u32_e32 vcc, 0, v     ; thread ID == 0
	 *   s_and_saveexec_b64 s, vcc
	 *   s_cbranch_execz BB0_4
	 *
	 * It could just be s_and_saveexec_b64 s, 1.
	 */
	ac_build_ifcc(&ctx->ac,
		      LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, thread_id,
				    ctx->i32_0, ""), 12601);
}

/* Exit a section that only executes on thread 0 and broadcast the result
 * to all threads. */
static void si_exit_thread0_section(struct si_thread0_section *section,
				    LLVMValueRef *result)
{
	struct si_shader_context *ctx = section->ctx;

	LLVMBuildStore(ctx->ac.builder, *result, section->vgpr_result);

	ac_build_endif(&ctx->ac, 12601);

	/* Broadcast the result from thread 0 to all threads. */
	*result = ac_build_readlane(&ctx->ac,
			LLVMBuildLoad(ctx->ac.builder, section->vgpr_result, ""), NULL);
}

void si_build_prim_discard_compute_shader(struct si_shader_context *ctx)
{
	struct si_shader_key *key = &ctx->shader->key;
	LLVMBuilderRef builder = ctx->ac.builder;
	LLVMValueRef vs = ctx->main_fn;

	/* Always inline the VS function. */
	ac_add_function_attr(ctx->ac.context, vs, -1, AC_FUNC_ATTR_ALWAYSINLINE);
	LLVMSetLinkage(vs, LLVMPrivateLinkage);

	LLVMTypeRef const_desc_type;
	if (ctx->shader->selector->info.const_buffers_declared == 1 &&
	    ctx->shader->selector->info.shader_buffers_declared == 0)
		const_desc_type = ctx->f32;
	else
		const_desc_type = ctx->v4i32;

	struct si_function_info fninfo;
	si_init_function_info(&fninfo);

	LLVMValueRef index_buffers_and_constants, vertex_counter, vb_desc, const_desc;
	LLVMValueRef base_vertex, start_instance, block_id, local_id, ordered_wave_id;
	LLVMValueRef restart_index, vp_scale[2], vp_translate[2], smallprim_precision;
	LLVMValueRef num_prims_udiv_multiplier, num_prims_udiv_terms, sampler_desc;
	LLVMValueRef last_wave_prim_id, vertex_count_addr;

	add_arg_assign(&fninfo, ARG_SGPR, ac_array_in_const32_addr_space(ctx->v4i32),
		       &index_buffers_and_constants);
	add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &vertex_counter);
	add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &last_wave_prim_id);
	add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &vertex_count_addr);
	add_arg_assign(&fninfo, ARG_SGPR, ac_array_in_const32_addr_space(ctx->v4i32),
		       &vb_desc);
	add_arg_assign(&fninfo, ARG_SGPR, ac_array_in_const32_addr_space(const_desc_type),
		       &const_desc);
	add_arg_assign(&fninfo, ARG_SGPR, ac_array_in_const32_addr_space(ctx->v8i32),
		       &sampler_desc);
	add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &base_vertex);
	add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &start_instance);
	add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &num_prims_udiv_multiplier);
	add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &num_prims_udiv_terms);
	add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &restart_index);
	add_arg_assign(&fninfo, ARG_SGPR, ctx->f32, &smallprim_precision);

	/* Block ID and thread ID inputs. */
	add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &block_id);
	if (VERTEX_COUNTER_GDS_MODE == 2)
		add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &ordered_wave_id);
	add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &local_id);

	/* Create the compute shader function. */
	unsigned old_type = ctx->type;
	ctx->type = PIPE_SHADER_COMPUTE;
	si_create_function(ctx, "prim_discard_cs", NULL, 0, &fninfo, THREADGROUP_SIZE);
	ctx->type = old_type;

	if (VERTEX_COUNTER_GDS_MODE == 1) {
		ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size",
						     GDS_SIZE_UNORDERED);
	}

	/* Assemble parameters for VS. */
	LLVMValueRef vs_params[16];
	unsigned num_vs_params = 0;
	unsigned param_vertex_id, param_instance_id;

	vs_params[num_vs_params++] = LLVMGetUndef(LLVMTypeOf(LLVMGetParam(vs, 0))); /* RW_BUFFERS */
	vs_params[num_vs_params++] = LLVMGetUndef(LLVMTypeOf(LLVMGetParam(vs, 1))); /* BINDLESS */
	vs_params[num_vs_params++] = const_desc;
	vs_params[num_vs_params++] = sampler_desc;
	vs_params[num_vs_params++] = LLVMConstInt(ctx->i32,
					S_VS_STATE_INDEXED(key->opt.cs_indexed), 0);
	vs_params[num_vs_params++] = base_vertex;
	vs_params[num_vs_params++] = start_instance;
	vs_params[num_vs_params++] = ctx->i32_0; /* DrawID */
	vs_params[num_vs_params++] = vb_desc;

	vs_params[(param_vertex_id = num_vs_params++)] = NULL; /* VertexID */
	vs_params[(param_instance_id = num_vs_params++)] = NULL; /* InstanceID */
	vs_params[num_vs_params++] = ctx->i32_0; /* unused (PrimID) */
	vs_params[num_vs_params++] = ctx->i32_0; /* unused */

	assert(num_vs_params <= ARRAY_SIZE(vs_params));
	assert(num_vs_params == LLVMCountParamTypes(LLVMGetElementType(LLVMTypeOf(vs))));

	/* Load descriptors. (load 8 dwords at once) */
	LLVMValueRef input_indexbuf, output_indexbuf, tmp, desc[8];

	tmp = LLVMBuildPointerCast(builder, index_buffers_and_constants,
				   ac_array_in_const32_addr_space(ctx->v8i32), "");
	tmp = ac_build_load_to_sgpr(&ctx->ac, tmp, ctx->i32_0);

	for (unsigned i = 0; i < 8; i++)
		desc[i] = ac_llvm_extract_elem(&ctx->ac, tmp, i);

	input_indexbuf = ac_build_gather_values(&ctx->ac, desc, 4);
	output_indexbuf = ac_build_gather_values(&ctx->ac, desc + 4, 4);

	/* Compute PrimID and InstanceID. */
	LLVMValueRef global_thread_id =
		ac_build_imad(&ctx->ac, block_id,
			      LLVMConstInt(ctx->i32, THREADGROUP_SIZE, 0), local_id);
	LLVMValueRef prim_id = global_thread_id; /* PrimID within an instance */
	LLVMValueRef instance_id = ctx->i32_0;

	if (key->opt.cs_instancing) {
		/* Unpack num_prims_udiv_terms. */
		LLVMValueRef post_shift = LLVMBuildAnd(builder, num_prims_udiv_terms,
						       LLVMConstInt(ctx->i32, 0x1f, 0), "");
		LLVMValueRef prims_per_instance = LLVMBuildLShr(builder, num_prims_udiv_terms,
								LLVMConstInt(ctx->i32, 5, 0), "");
		/* Divide the total prim_id by the number of prims per instance. */
		instance_id = ac_build_fast_udiv_u31_d_not_one(&ctx->ac, prim_id,
							       num_prims_udiv_multiplier,
							       post_shift);
		/* Compute the remainder. */
		prim_id = LLVMBuildSub(builder, prim_id,
				       LLVMBuildMul(builder, instance_id,
						    prims_per_instance, ""), "");
	}

	/* Generate indices (like a non-indexed draw call). */
	LLVMValueRef index[4] = {NULL, NULL, NULL, LLVMGetUndef(ctx->i32)};
	unsigned vertices_per_prim = 3;

	switch (key->opt.cs_prim_type) {
	case PIPE_PRIM_TRIANGLES:
		for (unsigned i = 0; i < 3; i++) {
			index[i] = ac_build_imad(&ctx->ac, prim_id,
						 LLVMConstInt(ctx->i32, 3, 0),
						 LLVMConstInt(ctx->i32, i, 0));
		}
		break;
	case PIPE_PRIM_TRIANGLE_STRIP:
		for (unsigned i = 0; i < 3; i++) {
			index[i] = LLVMBuildAdd(builder, prim_id,
						LLVMConstInt(ctx->i32, i, 0), "");
		}
		break;
	case PIPE_PRIM_TRIANGLE_FAN:
		/* Vertex 1 is first and vertex 2 is last. This will go to the hw clipper
		 * and rasterizer as a normal triangle, so we need to put the provoking
		 * vertex into the correct index variable and preserve orientation at the same time.
		 * gl_VertexID is preserved, because it's equal to the index.
		 */
		if (key->opt.cs_provoking_vertex_first) {
			index[0] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->i32, 1, 0), "");
			index[1] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->i32, 2, 0), "");
			index[2] = ctx->i32_0;
		} else {
			index[0] = ctx->i32_0;
			index[1] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->i32, 1, 0), "");
			index[2] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->i32, 2, 0), "");
		}
		break;
	default:
		unreachable("unexpected primitive type");
	}

	/* Fetch indices. */
	if (key->opt.cs_indexed) {
		for (unsigned i = 0; i < 3; i++) {
			index[i] = ac_build_buffer_load_format(&ctx->ac, input_indexbuf,
							       index[i], ctx->i32_0, 1,
							       0, true);
			index[i] = ac_to_integer(&ctx->ac, index[i]);
		}
	}

	/* Extract the ordered wave ID. */
	if (VERTEX_COUNTER_GDS_MODE == 2) {
		ordered_wave_id = LLVMBuildLShr(builder, ordered_wave_id,
						LLVMConstInt(ctx->i32, 6, 0), "");
		ordered_wave_id = LLVMBuildAnd(builder, ordered_wave_id,
					       LLVMConstInt(ctx->i32, 0xfff, 0), "");
	}
	LLVMValueRef thread_id =
		LLVMBuildAnd(builder, local_id, LLVMConstInt(ctx->i32, 63, 0), "");

	/* Every other triangle in a strip has a reversed vertex order, so we
	 * need to swap vertices of odd primitives to get the correct primitive
	 * orientation when converting triangle strips to triangles. Primitive
	 * restart complicates it, because a strip can start anywhere.
	 */
	LLVMValueRef prim_restart_accepted = ctx->i1true;

	if (key->opt.cs_prim_type == PIPE_PRIM_TRIANGLE_STRIP) {
		/* Without primitive restart, odd primitives have reversed orientation.
		 * Only primitive restart can flip it with respect to the first vertex
		 * of the draw call.
		 */
		LLVMValueRef first_is_odd = ctx->i1false;

		/* Handle primitive restart. */
		if (key->opt.cs_primitive_restart) {
			/* Get the GDS primitive restart continue flag and clear
			 * the flag in vertex_counter. This flag is used when the draw
			 * call was split and we need to load the primitive orientation
			 * flag from GDS for the first wave too.
			 */
			LLVMValueRef gds_prim_restart_continue =
				LLVMBuildLShr(builder, vertex_counter,
					      LLVMConstInt(ctx->i32, 31, 0), "");
			gds_prim_restart_continue =
				LLVMBuildTrunc(builder, gds_prim_restart_continue, ctx->i1, "");
			vertex_counter = LLVMBuildAnd(builder, vertex_counter,
						      LLVMConstInt(ctx->i32, 0x7fffffff, 0), "");

			LLVMValueRef index0_is_reset;

			for (unsigned i = 0; i < 3; i++) {
				LLVMValueRef not_reset = LLVMBuildICmp(builder, LLVMIntNE, index[i],
								       restart_index, "");
				if (i == 0)
					index0_is_reset = LLVMBuildNot(builder, not_reset, "");
				prim_restart_accepted = LLVMBuildAnd(builder, prim_restart_accepted,
								     not_reset, "");
			}

			/* If the previous waves flip the primitive orientation
			 * of the current triangle strip, it will be stored in GDS.
			 *
			 * Sometimes the correct orientation is not needed, in which case
			 * we don't need to execute this.
			 */
			if (key->opt.cs_need_correct_orientation && VERTEX_COUNTER_GDS_MODE == 2) {
				/* If there are reset indices in this wave, get the thread index
				 * where the most recent strip starts relative to each thread.
				 */
				LLVMValueRef preceding_threads_mask =
					LLVMBuildSub(builder,
						     LLVMBuildShl(builder, ctx->ac.i64_1,
								  LLVMBuildZExt(builder, thread_id, ctx->i64, ""), ""),
						     ctx->ac.i64_1, "");

				LLVMValueRef reset_threadmask = ac_get_i1_sgpr_mask(&ctx->ac, index0_is_reset);
				LLVMValueRef preceding_reset_threadmask =
					LLVMBuildAnd(builder, reset_threadmask, preceding_threads_mask, "");
				LLVMValueRef strip_start =
					ac_build_umsb(&ctx->ac, preceding_reset_threadmask, NULL);
				strip_start = LLVMBuildAdd(builder, strip_start, ctx->i32_1, "");

				/* This flips the orientatino based on reset indices within this wave only. */
				first_is_odd = LLVMBuildTrunc(builder, strip_start, ctx->i1, "");

				LLVMValueRef last_strip_start, prev_wave_state, ret, tmp;
				LLVMValueRef is_first_wave, current_wave_resets_index;

				/* Get the thread index where the last strip starts in this wave.
				 *
				 * If the last strip doesn't start in this wave, the thread index
				 * will be 0.
				 *
				 * If the last strip starts in the next wave, the thread index will
				 * be 64.
				 */
				last_strip_start = ac_build_umsb(&ctx->ac, reset_threadmask, NULL);
				last_strip_start = LLVMBuildAdd(builder, last_strip_start, ctx->i32_1, "");

				struct si_thread0_section section;
				si_enter_thread0_section(ctx, &section, thread_id);

				/* This must be done in the thread 0 section, because
				 * we expect PrimID to be 0 for the whole first wave
				 * in this expression.
				 *
				 * NOTE: This will need to be different if we wanna support
				 * instancing with primitive restart.
				 */
				is_first_wave = LLVMBuildICmp(builder, LLVMIntEQ, prim_id, ctx->i32_0, "");
				is_first_wave = LLVMBuildAnd(builder, is_first_wave,
							     LLVMBuildNot(builder,
									  gds_prim_restart_continue, ""), "");
				current_wave_resets_index = LLVMBuildICmp(builder, LLVMIntNE,
									  last_strip_start, ctx->i32_0, "");

				ret = ac_build_alloca_undef(&ctx->ac, ctx->i32, "prev_state");

				/* Save the last strip start primitive index in GDS and read
				 * the value that previous waves stored.
				 *
				 * if (is_first_wave || current_wave_resets_strip)
				 *    // Read the value that previous waves stored and store a new one.
				 *    first_is_odd = ds.ordered.swap(last_strip_start);
				 * else
				 *    // Just read the value that previous waves stored.
				 *    first_is_odd = ds.ordered.add(0);
				 */
				ac_build_ifcc(&ctx->ac,
					      LLVMBuildOr(builder, is_first_wave,
							  current_wave_resets_index, ""), 12602);
				{
					/* The GDS address is always 0 with ordered append. */
					tmp = si_build_ds_ordered_op(ctx, "swap",
								     ordered_wave_id, last_strip_start,
								     1, true, false);
					LLVMBuildStore(builder, tmp, ret);
				}
				ac_build_else(&ctx->ac, 12603);
				{
					/* Just read the value from GDS. */
					tmp = si_build_ds_ordered_op(ctx, "add",
								     ordered_wave_id, ctx->i32_0,
								     1, true, false);
					LLVMBuildStore(builder, tmp, ret);
				}
				ac_build_endif(&ctx->ac, 12602);

				prev_wave_state = LLVMBuildLoad(builder, ret, "");
				/* Ignore the return value if this is the first wave. */
				prev_wave_state = LLVMBuildSelect(builder, is_first_wave,
								  ctx->i32_0, prev_wave_state, "");
				si_exit_thread0_section(&section, &prev_wave_state);
				prev_wave_state = LLVMBuildTrunc(builder, prev_wave_state, ctx->i1, "");

				/* If the strip start appears to be on thread 0 for the current primitive
				 * (meaning the reset index is not present in this wave and might have
				 * appeared in previous waves), use the value from GDS to determine
				 * primitive orientation.
				 *
				 * If the strip start is in this wave for the current primitive, use
				 * the value from the current wave to determine primitive orientation.
				 */
				LLVMValueRef strip_start_is0 = LLVMBuildICmp(builder, LLVMIntEQ,
									     strip_start, ctx->i32_0, "");
				first_is_odd = LLVMBuildSelect(builder, strip_start_is0, prev_wave_state,
							       first_is_odd, "");
			}
		}
		/* prim_is_odd = (first_is_odd + current_is_odd) % 2. */
		LLVMValueRef prim_is_odd =
			LLVMBuildXor(builder, first_is_odd,
				     LLVMBuildTrunc(builder, thread_id, ctx->i1, ""), "");

		/* Determine the primitive orientation.
		 * Only swap the vertices that are not the provoking vertex. We need to keep
		 * the provoking vertex in place.
		 */
		if (key->opt.cs_provoking_vertex_first) {
			LLVMValueRef index1 = index[1];
			LLVMValueRef index2 = index[2];
			index[1] = LLVMBuildSelect(builder, prim_is_odd, index2, index1, "");
			index[2] = LLVMBuildSelect(builder, prim_is_odd, index1, index2, "");
		} else {
			LLVMValueRef index0 = index[0];
			LLVMValueRef index1 = index[1];
			index[0] = LLVMBuildSelect(builder, prim_is_odd, index1, index0, "");
			index[1] = LLVMBuildSelect(builder, prim_is_odd, index0, index1, "");
		}
	}

	/* Execute the vertex shader for each vertex to get vertex positions. */
	LLVMValueRef pos[3][4];
	for (unsigned i = 0; i < vertices_per_prim; i++) {
		vs_params[param_vertex_id] = index[i];
		vs_params[param_instance_id] = instance_id;

		LLVMValueRef ret = ac_build_call(&ctx->ac, vs, vs_params, num_vs_params);
		for (unsigned chan = 0; chan < 4; chan++)
			pos[i][chan] = LLVMBuildExtractValue(builder, ret, chan, "");
	}

	/* Divide XYZ by W. */
	for (unsigned i = 0; i < vertices_per_prim; i++) {
		for (unsigned chan = 0; chan < 3; chan++)
			pos[i][chan] = ac_build_fdiv(&ctx->ac, pos[i][chan], pos[i][3]);
	}

	/* Load the viewport state. */
	LLVMValueRef vp = ac_build_load_invariant(&ctx->ac, index_buffers_and_constants,
						  LLVMConstInt(ctx->i32, 2, 0));
	vp = LLVMBuildBitCast(builder, vp, ctx->v4f32, "");
	vp_scale[0] = ac_llvm_extract_elem(&ctx->ac, vp, 0);
	vp_scale[1] = ac_llvm_extract_elem(&ctx->ac, vp, 1);
	vp_translate[0] = ac_llvm_extract_elem(&ctx->ac, vp, 2);
	vp_translate[1] = ac_llvm_extract_elem(&ctx->ac, vp, 3);

	/* Do culling. */
	struct ac_cull_options options = {};
	options.cull_front = key->opt.cs_cull_front;
	options.cull_back = key->opt.cs_cull_back;
	options.cull_view_xy = true;
	options.cull_view_near_z = CULL_Z && key->opt.cs_cull_z;
	options.cull_view_far_z = CULL_Z && key->opt.cs_cull_z;
	options.cull_small_prims = true;
	options.cull_zero_area = true;
	options.cull_w = true;
	options.use_halfz_clip_space = key->opt.cs_halfz_clip_space;

	LLVMValueRef accepted =
		ac_cull_triangle(&ctx->ac, pos, prim_restart_accepted,
				 vp_scale, vp_translate, smallprim_precision,
				 &options);

	LLVMValueRef accepted_threadmask = ac_get_i1_sgpr_mask(&ctx->ac, accepted);

	/* Count the number of active threads by doing bitcount(accepted). */
	LLVMValueRef num_prims_accepted =
		ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i64", ctx->i64,
				   &accepted_threadmask, 1, AC_FUNC_ATTR_READNONE);
	num_prims_accepted = LLVMBuildTrunc(builder, num_prims_accepted, ctx->i32, "");

	LLVMValueRef start;

	/* Execute atomic_add on the vertex count. */
	struct si_thread0_section section;
	si_enter_thread0_section(ctx, &section, thread_id);
	{
		if (VERTEX_COUNTER_GDS_MODE == 0) {
			LLVMValueRef num_indices = LLVMBuildMul(builder, num_prims_accepted,
						LLVMConstInt(ctx->i32, vertices_per_prim, 0), "");
			vertex_counter = si_expand_32bit_pointer(ctx, vertex_counter);
			start = LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpAdd,
						   vertex_counter, num_indices,
						   LLVMAtomicOrderingMonotonic, false);
		} else if (VERTEX_COUNTER_GDS_MODE == 1) {
			LLVMValueRef num_indices = LLVMBuildMul(builder, num_prims_accepted,
						LLVMConstInt(ctx->i32, vertices_per_prim, 0), "");
			vertex_counter = LLVMBuildIntToPtr(builder, vertex_counter,
							   LLVMPointerType(ctx->i32, AC_ADDR_SPACE_GDS), "");
			start = LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpAdd,
						   vertex_counter, num_indices,
						   LLVMAtomicOrderingMonotonic, false);
		} else if (VERTEX_COUNTER_GDS_MODE == 2) {
			LLVMValueRef tmp_store = ac_build_alloca_undef(&ctx->ac, ctx->i32, "");

			/* If the draw call was split into multiple subdraws, each using
			 * a separate draw packet, we need to start counting from 0 for
			 * the first compute wave of the subdraw.
			 *
			 * vertex_counter contains the primitive ID of the first thread
			 * in the first wave.
			 *
			 * This is only correct with VERTEX_COUNTER_GDS_MODE == 2:
			 */
			LLVMValueRef is_first_wave =
				LLVMBuildICmp(builder, LLVMIntEQ, global_thread_id,
					      vertex_counter, "");

			/* Store the primitive count for ordered append, not vertex count.
			 * The idea is to avoid GDS initialization via CP DMA. The shader
			 * effectively stores the first count using "swap".
			 *
			 * if (first_wave) {
			 *    ds.ordered.swap(num_prims_accepted); // store the first primitive count
			 *    previous = 0;
			 * } else {
			 *    previous = ds.ordered.add(num_prims_accepted) // add the primitive count
			 * }
			 */
			ac_build_ifcc(&ctx->ac, is_first_wave, 12604);
			{
				/* The GDS address is always 0 with ordered append. */
				si_build_ds_ordered_op(ctx, "swap", ordered_wave_id,
						       num_prims_accepted, 0, true, true);
				LLVMBuildStore(builder, ctx->i32_0, tmp_store);
			}
			ac_build_else(&ctx->ac, 12605);
			{
				LLVMBuildStore(builder,
					       si_build_ds_ordered_op(ctx, "add", ordered_wave_id,
								      num_prims_accepted, 0,
								      true, true),
					       tmp_store);
			}
			ac_build_endif(&ctx->ac, 12604);

			start = LLVMBuildLoad(builder, tmp_store, "");
		}
	}
	si_exit_thread0_section(&section, &start);

	/* Write the final vertex count to memory. An EOS/EOP event could do this,
	 * but those events are super slow and should be avoided if performance
	 * is a concern. Thanks to GDS ordered append, we can emulate a CS_DONE
	 * event like this.
	 */
	if (VERTEX_COUNTER_GDS_MODE == 2) {
		ac_build_ifcc(&ctx->ac,
			      LLVMBuildICmp(builder, LLVMIntEQ, global_thread_id,
					    last_wave_prim_id, ""), 12606);
		LLVMValueRef count = LLVMBuildAdd(builder, start, num_prims_accepted, "");
		count = LLVMBuildMul(builder, count,
				     LLVMConstInt(ctx->i32, vertices_per_prim, 0), "");

		/* GFX8 needs to disable caching, so that the CP can see the stored value.
		 * MTYPE=3 bypasses TC L2.
		 */
		if (ctx->screen->info.chip_class <= GFX8) {
			LLVMValueRef desc[] = {
				vertex_count_addr,
				LLVMConstInt(ctx->i32,
					S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0),
				LLVMConstInt(ctx->i32, 4, 0),
				LLVMConstInt(ctx->i32, S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
						       S_008F0C_MTYPE(3 /* uncached */), 0),
			};
			LLVMValueRef rsrc = ac_build_gather_values(&ctx->ac, desc, 4);
			ac_build_buffer_store_dword(&ctx->ac, rsrc, count, 1, ctx->i32_0,
						    ctx->i32_0, 0, ac_glc | ac_slc, false);
		} else {
			LLVMBuildStore(builder, count,
				       si_expand_32bit_pointer(ctx, vertex_count_addr));
		}
		ac_build_endif(&ctx->ac, 12606);
	} else {
		/* For unordered modes that increment a vertex count instead of
		 * primitive count, convert it into the primitive index.
		 */
		start = LLVMBuildUDiv(builder, start,
				      LLVMConstInt(ctx->i32, vertices_per_prim, 0), "");
	}

	/* Now we need to store the indices of accepted primitives into
	 * the output index buffer.
	 */
	ac_build_ifcc(&ctx->ac, accepted, 16607);
	{
		/* Get the number of bits set before the index of this thread. */
		LLVMValueRef prim_index = ac_build_mbcnt(&ctx->ac, accepted_threadmask);

		/* We have lowered instancing. Pack the instance ID into vertex ID. */
		if (key->opt.cs_instancing) {
			instance_id = LLVMBuildShl(builder, instance_id,
						   LLVMConstInt(ctx->i32, 16, 0), "");

			for (unsigned i = 0; i < vertices_per_prim; i++)
				index[i] = LLVMBuildOr(builder, index[i], instance_id, "");
		}

		if (VERTEX_COUNTER_GDS_MODE == 2) {
			/* vertex_counter contains the first primitive ID
			 * for this dispatch. If the draw call was split into
			 * multiple subdraws, the first primitive ID is > 0
			 * for subsequent subdraws. Each subdraw uses a different
			 * portion of the output index buffer. Offset the store
			 * vindex by the first primitive ID to get the correct
			 * store address for the subdraw.
			 */
			start = LLVMBuildAdd(builder, start, vertex_counter, "");
		}

		/* Write indices for accepted primitives. */
		LLVMValueRef vindex = LLVMBuildAdd(builder, start, prim_index, "");
		LLVMValueRef vdata = ac_build_gather_values(&ctx->ac, index, 3);

		if (!ac_has_vec3_support(ctx->ac.chip_class, true))
			vdata = ac_build_expand_to_vec4(&ctx->ac, vdata, 3);

		ac_build_buffer_store_format(&ctx->ac, output_indexbuf, vdata,
					     vindex, ctx->i32_0, 3,
					     ac_glc | (INDEX_STORES_USE_SLC ? ac_slc : 0));
	}
	ac_build_endif(&ctx->ac, 16607);

	LLVMBuildRetVoid(builder);
}

/* Return false if the shader isn't ready. */
static bool si_shader_select_prim_discard_cs(struct si_context *sctx,
					     const struct pipe_draw_info *info,
					     bool primitive_restart)
{
	struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
	struct si_shader_key key;

	/* Primitive restart needs ordered counters. */
	assert(!primitive_restart || VERTEX_COUNTER_GDS_MODE == 2);
	assert(!primitive_restart || info->instance_count == 1);

	memset(&key, 0, sizeof(key));
	si_shader_selector_key_vs(sctx, sctx->vs_shader.cso, &key, &key.part.vs.prolog);
	assert(!key.part.vs.prolog.instance_divisor_is_fetched);

	key.part.vs.prolog.unpack_instance_id_from_vertex_id = 0;
	key.opt.vs_as_prim_discard_cs = 1;
	key.opt.cs_prim_type = info->mode;
	key.opt.cs_indexed = info->index_size != 0;
	key.opt.cs_instancing = info->instance_count > 1;
	key.opt.cs_primitive_restart = primitive_restart;
	key.opt.cs_provoking_vertex_first = rs->provoking_vertex_first;

	/* Primitive restart with triangle strips needs to preserve primitive
	 * orientation for cases where front and back primitive orientation matters.
	 */
	if (primitive_restart) {
		struct si_shader_selector *ps = sctx->ps_shader.cso;

		key.opt.cs_need_correct_orientation =
			rs->cull_front != rs->cull_back ||
			ps->info.uses_frontface ||
			(rs->two_side && ps->info.colors_read);
	}

	if (rs->rasterizer_discard) {
		/* Just for performance testing and analysis of trivial bottlenecks.
		 * This should result in a very short compute shader. */
		key.opt.cs_cull_front = 1;
		key.opt.cs_cull_back = 1;
	} else {
		key.opt.cs_cull_front =
			sctx->viewports.y_inverted ? rs->cull_back : rs->cull_front;
		key.opt.cs_cull_back =
			sctx->viewports.y_inverted ? rs->cull_front : rs->cull_back;
	}

	if (!rs->depth_clamp_any && CULL_Z) {
		key.opt.cs_cull_z = 1;
		key.opt.cs_halfz_clip_space = rs->clip_halfz;
	}

	sctx->cs_prim_discard_state.cso = sctx->vs_shader.cso;
	sctx->cs_prim_discard_state.current = NULL;

	struct si_compiler_ctx_state compiler_state;
	compiler_state.compiler = &sctx->compiler;
	compiler_state.debug = sctx->debug;
	compiler_state.is_debug_context = sctx->is_debug;

	return si_shader_select_with_key(sctx->screen, &sctx->cs_prim_discard_state,
					 &compiler_state, &key, -1, true) == 0 &&
	       /* Disallow compute shaders using the scratch buffer. */
	       sctx->cs_prim_discard_state.current->config.scratch_bytes_per_wave == 0;
}

static bool si_initialize_prim_discard_cmdbuf(struct si_context *sctx)
{
	if (sctx->index_ring)
		return true;

	if (!sctx->prim_discard_compute_cs) {
		struct radeon_winsys *ws = sctx->ws;
		unsigned gds_size = VERTEX_COUNTER_GDS_MODE == 1 ? GDS_SIZE_UNORDERED :
				    VERTEX_COUNTER_GDS_MODE == 2 ? 8 : 0;
		unsigned num_oa_counters = VERTEX_COUNTER_GDS_MODE == 2 ? 2 : 0;

		if (gds_size) {
			sctx->gds = ws->buffer_create(ws, gds_size, 4,
						      RADEON_DOMAIN_GDS, 0);
			if (!sctx->gds)
				return false;

			ws->cs_add_buffer(sctx->gfx_cs, sctx->gds,
					  RADEON_USAGE_READWRITE, 0, 0);
		}
		if (num_oa_counters) {
			assert(gds_size);
			sctx->gds_oa = ws->buffer_create(ws, num_oa_counters,
							 1, RADEON_DOMAIN_OA, 0);
			if (!sctx->gds_oa)
				return false;

			ws->cs_add_buffer(sctx->gfx_cs, sctx->gds_oa,
					  RADEON_USAGE_READWRITE, 0, 0);
		}

		sctx->prim_discard_compute_cs =
			ws->cs_add_parallel_compute_ib(sctx->gfx_cs,
						       num_oa_counters > 0);
		if (!sctx->prim_discard_compute_cs)
			return false;
	}

	if (!sctx->index_ring) {
		sctx->index_ring =
			si_aligned_buffer_create(sctx->b.screen,
						 SI_RESOURCE_FLAG_UNMAPPABLE,
						 PIPE_USAGE_DEFAULT,
						 sctx->index_ring_size_per_ib * 2,
						 2 * 1024 * 1024);
		if (!sctx->index_ring)
			return false;
	}
	return true;
}

static bool si_check_ring_space(struct si_context *sctx, unsigned out_indexbuf_size)
{
	return sctx->index_ring_offset +
	       align(out_indexbuf_size, sctx->screen->info.tcc_cache_line_size) <=
	       sctx->index_ring_size_per_ib;
}

enum si_prim_discard_outcome
si_prepare_prim_discard_or_split_draw(struct si_context *sctx,
				      const struct pipe_draw_info *info,
				      bool primitive_restart)
{
	/* If the compute shader compilation isn't finished, this returns false. */
	if (!si_shader_select_prim_discard_cs(sctx, info, primitive_restart))
		return SI_PRIM_DISCARD_DISABLED;

	if (!si_initialize_prim_discard_cmdbuf(sctx))
		return SI_PRIM_DISCARD_DISABLED;

	struct radeon_cmdbuf *gfx_cs = sctx->gfx_cs;
	unsigned prim = info->mode;
	unsigned count = info->count;
	unsigned instance_count = info->instance_count;
	unsigned num_prims_per_instance = u_decomposed_prims_for_vertices(prim, count);
	unsigned num_prims = num_prims_per_instance * instance_count;
	unsigned out_indexbuf_size = num_prims * 12;
	bool ring_full = !si_check_ring_space(sctx, out_indexbuf_size);
	const unsigned split_prims_draw_level = SPLIT_PRIMS_DRAW_LEVEL;

	/* Split draws at the draw call level if the ring is full. This makes
	 * better use of the ring space.
	 */
	if (ring_full &&
	    num_prims > split_prims_draw_level &&
	    instance_count == 1 && /* TODO: support splitting instanced draws */
	    (1 << prim) & ((1 << PIPE_PRIM_TRIANGLES) |
			   (1 << PIPE_PRIM_TRIANGLE_STRIP))) {
		/* Split draws. */
		struct pipe_draw_info split_draw = *info;
		split_draw.primitive_restart = primitive_restart;

		unsigned base_start = split_draw.start;

		if (prim == PIPE_PRIM_TRIANGLES) {
			unsigned vert_count_per_subdraw = split_prims_draw_level * 3;
			assert(vert_count_per_subdraw < count);

			for (unsigned start = 0; start < count; start += vert_count_per_subdraw) {
				split_draw.start = base_start + start;
				split_draw.count = MIN2(count - start, vert_count_per_subdraw);

				sctx->b.draw_vbo(&sctx->b, &split_draw);
			}
		} else if (prim == PIPE_PRIM_TRIANGLE_STRIP) {
			/* No primitive pair can be split, because strips reverse orientation
			 * for odd primitives. */
			STATIC_ASSERT(split_prims_draw_level % 2 == 0);

			unsigned vert_count_per_subdraw = split_prims_draw_level;

			for (unsigned start = 0; start < count - 2; start += vert_count_per_subdraw) {
				split_draw.start = base_start + start;
				split_draw.count = MIN2(count - start, vert_count_per_subdraw + 2);

				sctx->b.draw_vbo(&sctx->b, &split_draw);

				if (start == 0 &&
				    primitive_restart &&
				    sctx->cs_prim_discard_state.current->key.opt.cs_need_correct_orientation)
					sctx->preserve_prim_restart_gds_at_flush = true;
			}
			sctx->preserve_prim_restart_gds_at_flush = false;
		} else {
			assert(0);
		}

		return SI_PRIM_DISCARD_DRAW_SPLIT;
	}

	/* Just quit if the draw call doesn't fit into the ring and can't be split. */
	if (out_indexbuf_size > sctx->index_ring_size_per_ib) {
		if (SI_PRIM_DISCARD_DEBUG)
			puts("PD failed: draw call too big, can't be split");
		return SI_PRIM_DISCARD_DISABLED;
	}

	unsigned num_subdraws = DIV_ROUND_UP(num_prims, SPLIT_PRIMS_PACKET_LEVEL);
	unsigned need_compute_dw = 11 /* shader */ + 34 /* first draw */ +
				   24 * (num_subdraws - 1) + /* subdraws */
				   20; /* leave some space at the end */
	unsigned need_gfx_dw = si_get_minimum_num_gfx_cs_dwords(sctx);

	if (sctx->chip_class <= GFX7 || FORCE_REWIND_EMULATION)
		need_gfx_dw += 9; /* NOP(2) + WAIT_REG_MEM(7), then chain */
	else
		need_gfx_dw += num_subdraws * 8; /* use REWIND(2) + DRAW(6) */

	if (ring_full ||
	    (VERTEX_COUNTER_GDS_MODE == 1 && sctx->compute_gds_offset + 8 > GDS_SIZE_UNORDERED) ||
	    !sctx->ws->cs_check_space(gfx_cs, need_gfx_dw, false)) {
		/* If the current IB is empty but the size is too small, add a NOP
		 * packet to force a flush and get a bigger IB.
		 */
		if (!radeon_emitted(gfx_cs, sctx->initial_gfx_cs_size) &&
		    gfx_cs->current.cdw + need_gfx_dw > gfx_cs->current.max_dw) {
			radeon_emit(gfx_cs, PKT3(PKT3_NOP, 0, 0));
			radeon_emit(gfx_cs, 0);
		}

		si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
	}

	/* The compute IB is always chained, but we need to call cs_check_space to add more space. */
	struct radeon_cmdbuf *cs = sctx->prim_discard_compute_cs;
	ASSERTED bool compute_has_space = sctx->ws->cs_check_space(cs, need_compute_dw, false);
	assert(compute_has_space);
	assert(si_check_ring_space(sctx, out_indexbuf_size));
	return SI_PRIM_DISCARD_ENABLED;
}

void si_compute_signal_gfx(struct si_context *sctx)
{
	struct radeon_cmdbuf *cs = sctx->prim_discard_compute_cs;
	unsigned writeback_L2_flags = 0;

	/* The writeback L2 flags vary with each chip generation. */
	/* CI needs to flush vertex indices to memory. */
	if (sctx->chip_class <= GFX7)
		writeback_L2_flags = EVENT_TC_WB_ACTION_ENA;
	else if (sctx->chip_class == GFX8 && VERTEX_COUNTER_GDS_MODE == 0)
		writeback_L2_flags = EVENT_TC_WB_ACTION_ENA | EVENT_TC_NC_ACTION_ENA;

	if (!sctx->compute_num_prims_in_batch)
		return;

	assert(sctx->compute_rewind_va);

	/* After the queued dispatches are done and vertex counts are written to
	 * the gfx IB, signal the gfx IB to continue. CP doesn't wait for
	 * the dispatches to finish, it only adds the CS_DONE event into the event
	 * queue.
	 */
	si_cp_release_mem(sctx, cs, V_028A90_CS_DONE, writeback_L2_flags,
			  sctx->chip_class <= GFX8 ? EOP_DST_SEL_MEM : EOP_DST_SEL_TC_L2,
			  writeback_L2_flags ? EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM :
					       EOP_INT_SEL_NONE,
			  EOP_DATA_SEL_VALUE_32BIT,
			  NULL,
			  sctx->compute_rewind_va |
			  ((uint64_t)sctx->screen->info.address32_hi << 32),
			  REWIND_SIGNAL_BIT, /* signaling value for the REWIND packet */
			  SI_NOT_QUERY);

	sctx->compute_rewind_va = 0;
	sctx->compute_num_prims_in_batch = 0;
}

/* Dispatch a primitive discard compute shader. */
void si_dispatch_prim_discard_cs_and_draw(struct si_context *sctx,
					  const struct pipe_draw_info *info,
					  unsigned index_size,
					  unsigned base_vertex,
					  uint64_t input_indexbuf_va,
					  unsigned input_indexbuf_num_elements)
{
	struct radeon_cmdbuf *gfx_cs = sctx->gfx_cs;
	struct radeon_cmdbuf *cs = sctx->prim_discard_compute_cs;
	unsigned num_prims_per_instance = u_decomposed_prims_for_vertices(info->mode, info->count);
	if (!num_prims_per_instance)
		return;

	unsigned num_prims = num_prims_per_instance * info->instance_count;
	unsigned vertices_per_prim, output_indexbuf_format;

	switch (info->mode) {
	case PIPE_PRIM_TRIANGLES:
	case PIPE_PRIM_TRIANGLE_STRIP:
	case PIPE_PRIM_TRIANGLE_FAN:
		vertices_per_prim = 3;
		output_indexbuf_format = V_008F0C_BUF_DATA_FORMAT_32_32_32;
		break;
	default:
		unreachable("unsupported primitive type");
		return;
	}

	unsigned out_indexbuf_offset;
	uint64_t output_indexbuf_size = num_prims * vertices_per_prim * 4;
	bool first_dispatch = !sctx->prim_discard_compute_ib_initialized;

	/* Initialize the compute IB if it's empty. */
	if (!sctx->prim_discard_compute_ib_initialized) {
		/* 1) State initialization. */
		sctx->compute_gds_offset = 0;
		sctx->compute_ib_last_shader = NULL;

		if (sctx->last_ib_barrier_fence) {
			assert(!sctx->last_ib_barrier_buf);
			sctx->ws->cs_add_fence_dependency(gfx_cs,
							  sctx->last_ib_barrier_fence,
							  RADEON_DEPENDENCY_PARALLEL_COMPUTE_ONLY);
		}

		/* 2) IB initialization. */

		/* This needs to be done at the beginning of IBs due to possible
		 * TTM buffer moves in the kernel.
		 *
		 * TODO: update for GFX10
		 */
		si_emit_surface_sync(sctx, cs,
				     S_0085F0_TC_ACTION_ENA(1) |
				     S_0085F0_TCL1_ACTION_ENA(1) |
				     S_0301F0_TC_WB_ACTION_ENA(sctx->chip_class >= GFX8) |
				     S_0085F0_SH_ICACHE_ACTION_ENA(1) |
				     S_0085F0_SH_KCACHE_ACTION_ENA(1));

		/* Restore the GDS prim restart counter if needed. */
		if (sctx->preserve_prim_restart_gds_at_flush) {
			si_cp_copy_data(sctx, cs,
					COPY_DATA_GDS, NULL, 4,
					COPY_DATA_SRC_MEM, sctx->wait_mem_scratch, 4);
		}

		si_emit_initial_compute_regs(sctx, cs);

		radeon_set_sh_reg(cs, R_00B860_COMPUTE_TMPRING_SIZE,
				  S_00B860_WAVES(sctx->scratch_waves) |
				  S_00B860_WAVESIZE(0)); /* no scratch */

		/* Only 1D grids are launched. */
		radeon_set_sh_reg_seq(cs, R_00B820_COMPUTE_NUM_THREAD_Y, 2);
		radeon_emit(cs, S_00B820_NUM_THREAD_FULL(1) |
				S_00B820_NUM_THREAD_PARTIAL(1));
		radeon_emit(cs, S_00B824_NUM_THREAD_FULL(1) |
				S_00B824_NUM_THREAD_PARTIAL(1));

		radeon_set_sh_reg_seq(cs, R_00B814_COMPUTE_START_Y, 2);
		radeon_emit(cs, 0);
		radeon_emit(cs, 0);

		/* Disable ordered alloc for OA resources. */
		for (unsigned i = 0; i < 2; i++) {
			radeon_set_uconfig_reg_seq(cs, R_031074_GDS_OA_CNTL, 3);
			radeon_emit(cs, S_031074_INDEX(i));
			radeon_emit(cs, 0);
			radeon_emit(cs, S_03107C_ENABLE(0));
		}

		if (sctx->last_ib_barrier_buf) {
			assert(!sctx->last_ib_barrier_fence);
			radeon_add_to_buffer_list(sctx, gfx_cs, sctx->last_ib_barrier_buf,
						  RADEON_USAGE_READ, RADEON_PRIO_FENCE);
			si_cp_wait_mem(sctx, cs,
				       sctx->last_ib_barrier_buf->gpu_address +
				       sctx->last_ib_barrier_buf_offset, 1, 1,
				       WAIT_REG_MEM_EQUAL);
		}

		sctx->prim_discard_compute_ib_initialized = true;
	}

	/* Allocate the output index buffer. */
	output_indexbuf_size = align(output_indexbuf_size,
				     sctx->screen->info.tcc_cache_line_size);
	assert(sctx->index_ring_offset + output_indexbuf_size <= sctx->index_ring_size_per_ib);
	out_indexbuf_offset = sctx->index_ring_base + sctx->index_ring_offset;
	sctx->index_ring_offset += output_indexbuf_size;

	radeon_add_to_buffer_list(sctx, gfx_cs, sctx->index_ring, RADEON_USAGE_READWRITE,
				  RADEON_PRIO_SHADER_RW_BUFFER);
	uint64_t out_indexbuf_va = sctx->index_ring->gpu_address + out_indexbuf_offset;

	/* Prepare index buffer descriptors. */
	struct si_resource *indexbuf_desc = NULL;
	unsigned indexbuf_desc_offset;
	unsigned desc_size = 12 * 4;
	uint32_t *desc;

	u_upload_alloc(sctx->b.const_uploader, 0, desc_size,
		       si_optimal_tcc_alignment(sctx, desc_size),
		       &indexbuf_desc_offset, (struct pipe_resource**)&indexbuf_desc,
		       (void**)&desc);
	radeon_add_to_buffer_list(sctx, gfx_cs, indexbuf_desc, RADEON_USAGE_READ,
				  RADEON_PRIO_DESCRIPTORS);

	/* Input index buffer. */
	desc[0] = input_indexbuf_va;
	desc[1] = S_008F04_BASE_ADDRESS_HI(input_indexbuf_va >> 32) |
		  S_008F04_STRIDE(index_size);
	desc[2] = input_indexbuf_num_elements * (sctx->chip_class == GFX8 ? index_size : 1);
	desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
		  S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_UINT) |
		  S_008F0C_DATA_FORMAT(index_size == 1 ? V_008F0C_BUF_DATA_FORMAT_8 :
				       index_size == 2 ? V_008F0C_BUF_DATA_FORMAT_16 :
							 V_008F0C_BUF_DATA_FORMAT_32);

	/* Output index buffer. */
	desc[4] = out_indexbuf_va;
	desc[5] = S_008F04_BASE_ADDRESS_HI(out_indexbuf_va >> 32) |
		  S_008F04_STRIDE(vertices_per_prim * 4);
	desc[6] = num_prims * (sctx->chip_class == GFX8 ? vertices_per_prim * 4 : 1);
	desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
		  S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
		  S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
		  S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_0) |
		  S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_UINT) |
		  S_008F0C_DATA_FORMAT(output_indexbuf_format);

	/* Viewport state.
	 * This is needed by the small primitive culling, because it's done
	 * in screen space.
	 */
	float scale[2], translate[2];

	scale[0] = sctx->viewports.states[0].scale[0];
	scale[1] = sctx->viewports.states[0].scale[1];
	translate[0] = sctx->viewports.states[0].translate[0];
	translate[1] = sctx->viewports.states[0].translate[1];

	/* The viewport shouldn't flip the X axis for the small prim culling to work. */
	assert(-scale[0] + translate[0] <= scale[0] + translate[0]);

	/* If the Y axis is inverted (OpenGL default framebuffer), reverse it.
	 * This is because the viewport transformation inverts the clip space
	 * bounding box, so min becomes max, which breaks small primitive
	 * culling.
	 */
	if (sctx->viewports.y_inverted) {
		scale[1] = -scale[1];
		translate[1] = -translate[1];
	}

	/* Scale the framebuffer up, so that samples become pixels and small
	 * primitive culling is the same for all sample counts.
	 * This only works with the standard DX sample positions, because
	 * the samples are evenly spaced on both X and Y axes.
	 */
	unsigned num_samples = sctx->framebuffer.nr_samples;
	assert(num_samples >= 1);

	for (unsigned i = 0; i < 2; i++) {
		scale[i] *= num_samples;
		translate[i] *= num_samples;
	}

	desc[8] = fui(scale[0]);
	desc[9] = fui(scale[1]);
	desc[10] = fui(translate[0]);
	desc[11] = fui(translate[1]);

	/* Better subpixel precision increases the efficiency of small
	 * primitive culling. */
	unsigned quant_mode = sctx->viewports.as_scissor[0].quant_mode;
	float small_prim_cull_precision;

	if (quant_mode == SI_QUANT_MODE_12_12_FIXED_POINT_1_4096TH)
		small_prim_cull_precision = num_samples / 4096.0;
	else if (quant_mode == SI_QUANT_MODE_14_10_FIXED_POINT_1_1024TH)
		small_prim_cull_precision = num_samples / 1024.0;
	else
		small_prim_cull_precision = num_samples / 256.0;

	/* Set user data SGPRs. */
	/* This can't be greater than 14 if we want the fastest launch rate. */
	unsigned user_sgprs = 13;

	uint64_t index_buffers_va = indexbuf_desc->gpu_address + indexbuf_desc_offset;
	unsigned vs_const_desc = si_const_and_shader_buffer_descriptors_idx(PIPE_SHADER_VERTEX);
	unsigned vs_sampler_desc = si_sampler_and_image_descriptors_idx(PIPE_SHADER_VERTEX);
	uint64_t vs_const_desc_va = sctx->descriptors[vs_const_desc].gpu_address;
	uint64_t vs_sampler_desc_va = sctx->descriptors[vs_sampler_desc].gpu_address;
	uint64_t vb_desc_va = sctx->vb_descriptors_buffer ?
				      sctx->vb_descriptors_buffer->gpu_address +
				      sctx->vb_descriptors_offset : 0;
	unsigned gds_offset, gds_size;
	struct si_fast_udiv_info32 num_prims_udiv = {};

	if (info->instance_count > 1)
		num_prims_udiv = si_compute_fast_udiv_info32(num_prims_per_instance, 31);

	/* Limitations on how these two are packed in the user SGPR. */
	assert(num_prims_udiv.post_shift < 32);
	assert(num_prims_per_instance < 1 << 27);

	si_resource_reference(&indexbuf_desc, NULL);

	bool primitive_restart = sctx->cs_prim_discard_state.current->key.opt.cs_primitive_restart;

	if (VERTEX_COUNTER_GDS_MODE == 1) {
		gds_offset = sctx->compute_gds_offset;
		gds_size = primitive_restart ? 8 : 4;
		sctx->compute_gds_offset += gds_size;

		/* Reset the counters in GDS for the first dispatch using WRITE_DATA.
		 * The remainder of the GDS will be cleared after the dispatch packet
		 * in parallel with compute shaders.
		 */
		if (first_dispatch) {
			radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + gds_size/4, 0));
			radeon_emit(cs, S_370_DST_SEL(V_370_GDS) | S_370_WR_CONFIRM(1));
			radeon_emit(cs, gds_offset);
			radeon_emit(cs, 0);
			radeon_emit(cs, 0); /* value to write */
			if (gds_size == 8)
				radeon_emit(cs, 0);
		}
	}

	/* Set shader registers. */
	struct si_shader *shader = sctx->cs_prim_discard_state.current;

	if (shader != sctx->compute_ib_last_shader) {
		radeon_add_to_buffer_list(sctx, gfx_cs, shader->bo, RADEON_USAGE_READ,
					  RADEON_PRIO_SHADER_BINARY);
		uint64_t shader_va = shader->bo->gpu_address;

		assert(shader->config.scratch_bytes_per_wave == 0);
		assert(shader->config.num_vgprs * WAVES_PER_TG <= 256 * 4);

		radeon_set_sh_reg_seq(cs, R_00B830_COMPUTE_PGM_LO, 2);
		radeon_emit(cs, shader_va >> 8);
		radeon_emit(cs, S_00B834_DATA(shader_va >> 40));

		radeon_set_sh_reg_seq(cs, R_00B848_COMPUTE_PGM_RSRC1, 2);
		radeon_emit(cs, S_00B848_VGPRS((shader->config.num_vgprs - 1) / 4) |
				S_00B848_SGPRS((shader->config.num_sgprs - 1) / 8) |
				S_00B848_FLOAT_MODE(shader->config.float_mode) |
				S_00B848_DX10_CLAMP(1));
		radeon_emit(cs, S_00B84C_SCRATCH_EN(0 /* no scratch */) |
				S_00B84C_USER_SGPR(user_sgprs) |
				S_00B84C_TGID_X_EN(1 /* only blockID.x is used */) |
				S_00B84C_TG_SIZE_EN(VERTEX_COUNTER_GDS_MODE == 2 /* need the wave ID */) |
				S_00B84C_TIDIG_COMP_CNT(0 /* only threadID.x is used */) |
				S_00B84C_LDS_SIZE(shader->config.lds_size));

		radeon_set_sh_reg(cs, R_00B854_COMPUTE_RESOURCE_LIMITS,
			ac_get_compute_resource_limits(&sctx->screen->info,
						       WAVES_PER_TG,
						       MAX_WAVES_PER_SH,
						       THREADGROUPS_PER_CU));
		sctx->compute_ib_last_shader = shader;
	}

	STATIC_ASSERT(SPLIT_PRIMS_PACKET_LEVEL % THREADGROUP_SIZE == 0);

	/* Big draw calls are split into smaller dispatches and draw packets. */
	for (unsigned start_prim = 0; start_prim < num_prims; start_prim += SPLIT_PRIMS_PACKET_LEVEL) {
		unsigned num_subdraw_prims;

		if (start_prim + SPLIT_PRIMS_PACKET_LEVEL < num_prims)
			num_subdraw_prims = SPLIT_PRIMS_PACKET_LEVEL;
		else
			num_subdraw_prims = num_prims - start_prim;

		/* Small dispatches are executed back to back until a specific primitive
		 * count is reached. Then, a CS_DONE is inserted to signal the gfx IB
		 * to start drawing the batch. This batching adds latency to the gfx IB,
		 * but CS_DONE and REWIND are too slow.
		 */
		if (sctx->compute_num_prims_in_batch + num_subdraw_prims > PRIMS_PER_BATCH)
			si_compute_signal_gfx(sctx);

		if (sctx->compute_num_prims_in_batch == 0) {
			assert((gfx_cs->gpu_address >> 32) == sctx->screen->info.address32_hi);
			sctx->compute_rewind_va = gfx_cs->gpu_address + (gfx_cs->current.cdw + 1) * 4;

			if (sctx->chip_class <= GFX7 || FORCE_REWIND_EMULATION) {
				radeon_emit(gfx_cs, PKT3(PKT3_NOP, 0, 0));
				radeon_emit(gfx_cs, 0);

				si_cp_wait_mem(sctx, gfx_cs,
					       sctx->compute_rewind_va |
					       (uint64_t)sctx->screen->info.address32_hi << 32,
					       REWIND_SIGNAL_BIT, REWIND_SIGNAL_BIT,
					       WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_PFP);

				/* Use INDIRECT_BUFFER to chain to a different buffer
				 * to discard the CP prefetch cache.
				 */
				sctx->ws->cs_check_space(gfx_cs, 0, true);
			} else {
				radeon_emit(gfx_cs, PKT3(PKT3_REWIND, 0, 0));
				radeon_emit(gfx_cs, 0);
			}
		}

		sctx->compute_num_prims_in_batch += num_subdraw_prims;

		uint32_t count_va = gfx_cs->gpu_address + (gfx_cs->current.cdw + 4) * 4;
		uint64_t index_va = out_indexbuf_va + start_prim * 12;

		/* Emit the draw packet into the gfx IB. */
		radeon_emit(gfx_cs, PKT3(PKT3_DRAW_INDEX_2, 4, 0));
		radeon_emit(gfx_cs, num_prims * vertices_per_prim);
		radeon_emit(gfx_cs, index_va);
		radeon_emit(gfx_cs, index_va >> 32);
		radeon_emit(gfx_cs, 0);
		radeon_emit(gfx_cs, V_0287F0_DI_SRC_SEL_DMA);

		/* Continue with the compute IB. */
		if (start_prim == 0) {
			uint32_t gds_prim_restart_continue_bit = 0;

			if (sctx->preserve_prim_restart_gds_at_flush) {
				assert(primitive_restart &&
				       info->mode == PIPE_PRIM_TRIANGLE_STRIP);
				assert(start_prim < 1 << 31);
				gds_prim_restart_continue_bit = 1 << 31;
			}

			radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0, user_sgprs);
			radeon_emit(cs, index_buffers_va);
			radeon_emit(cs,
				    VERTEX_COUNTER_GDS_MODE == 0 ? count_va :
				    VERTEX_COUNTER_GDS_MODE == 1 ? gds_offset :
								   start_prim |
								   gds_prim_restart_continue_bit);
			radeon_emit(cs, start_prim + num_subdraw_prims - 1);
			radeon_emit(cs, count_va);
			radeon_emit(cs, vb_desc_va);
			radeon_emit(cs, vs_const_desc_va);
			radeon_emit(cs, vs_sampler_desc_va);
			radeon_emit(cs, base_vertex);
			radeon_emit(cs, info->start_instance);
			radeon_emit(cs, num_prims_udiv.multiplier);
			radeon_emit(cs, num_prims_udiv.post_shift |
					(num_prims_per_instance << 5));
			radeon_emit(cs, info->restart_index);
			/* small-prim culling precision (same as rasterizer precision = QUANT_MODE) */
			radeon_emit(cs, fui(small_prim_cull_precision));
		} else {
			assert(VERTEX_COUNTER_GDS_MODE == 2);
			/* Only update the SGPRs that changed. */
			radeon_set_sh_reg_seq(cs, R_00B904_COMPUTE_USER_DATA_1, 3);
			radeon_emit(cs, start_prim);
			radeon_emit(cs, start_prim + num_subdraw_prims - 1);
			radeon_emit(cs, count_va);
		}

		/* Set grid dimensions. */
		unsigned start_block = start_prim / THREADGROUP_SIZE;
		unsigned num_full_blocks = num_subdraw_prims / THREADGROUP_SIZE;
		unsigned partial_block_size = num_subdraw_prims % THREADGROUP_SIZE;

		radeon_set_sh_reg(cs, R_00B810_COMPUTE_START_X, start_block);
		radeon_set_sh_reg(cs, R_00B81C_COMPUTE_NUM_THREAD_X,
				  S_00B81C_NUM_THREAD_FULL(THREADGROUP_SIZE) |
				  S_00B81C_NUM_THREAD_PARTIAL(partial_block_size));

		radeon_emit(cs, PKT3(PKT3_DISPATCH_DIRECT, 3, 0) |
				PKT3_SHADER_TYPE_S(1));
		radeon_emit(cs, start_block + num_full_blocks + !!partial_block_size);
		radeon_emit(cs, 1);
		radeon_emit(cs, 1);
		radeon_emit(cs, S_00B800_COMPUTE_SHADER_EN(1) |
				S_00B800_PARTIAL_TG_EN(!!partial_block_size) |
				S_00B800_ORDERED_APPEND_ENBL(VERTEX_COUNTER_GDS_MODE == 2) |
				S_00B800_ORDER_MODE(0 /* launch in order */));

		/* This is only for unordered append. Ordered append writes this from
		 * the shader.
		 *
		 * Note that EOP and EOS events are super slow, so emulating the event
		 * in a shader is an important optimization.
		 */
		if (VERTEX_COUNTER_GDS_MODE == 1) {
			si_cp_release_mem(sctx, cs, V_028A90_CS_DONE, 0,
					  sctx->chip_class <= GFX8 ? EOP_DST_SEL_MEM : EOP_DST_SEL_TC_L2,
					  EOP_INT_SEL_NONE,
					  EOP_DATA_SEL_GDS,
					  NULL,
					  count_va | ((uint64_t)sctx->screen->info.address32_hi << 32),
					  EOP_DATA_GDS(gds_offset / 4, 1),
					  SI_NOT_QUERY);

			/* Now that compute shaders are running, clear the remainder of GDS. */
			if (first_dispatch) {
				unsigned offset = gds_offset + gds_size;
				si_cp_dma_clear_buffer(sctx, cs, NULL, offset,
						       GDS_SIZE_UNORDERED - offset,
						       0,
						       SI_CPDMA_SKIP_CHECK_CS_SPACE |
						       SI_CPDMA_SKIP_GFX_SYNC |
						       SI_CPDMA_SKIP_SYNC_BEFORE,
						       SI_COHERENCY_NONE, L2_BYPASS);
			}
		}
		first_dispatch = false;

		assert(cs->current.cdw <= cs->current.max_dw);
		assert(gfx_cs->current.cdw <= gfx_cs->current.max_dw);
	}
}