aboutsummaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/radeonsi/si_compute_blit.c
blob: de020bfaf8c2e6a4656e9edc3dbc6017670ec507 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
/*
 * Copyright 2018 Advanced Micro Devices, Inc.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * on the rights to use, copy, modify, merge, publish, distribute, sub
 * license, and/or sell copies of the Software, and to permit persons to whom
 * the Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include "si_pipe.h"
#include "util/format/u_format.h"
#include "util/format_srgb.h"

/* Note: Compute shaders always use SI_COMPUTE_DST_CACHE_POLICY for dst
 * and L2_STREAM for src.
 */
static enum si_cache_policy get_cache_policy(struct si_context *sctx,
					     enum si_coherency coher,
					     uint64_t size)
{
	if ((sctx->chip_class >= GFX9 && (coher == SI_COHERENCY_CB_META ||
					  coher == SI_COHERENCY_CP)) ||
	    (sctx->chip_class >= GFX7 && coher == SI_COHERENCY_SHADER))
		return size <= 256 * 1024 ? L2_LRU : L2_STREAM;

	return L2_BYPASS;
}

unsigned si_get_flush_flags(struct si_context *sctx, enum si_coherency coher,
			    enum si_cache_policy cache_policy)
{
	switch (coher) {
	default:
	case SI_COHERENCY_NONE:
	case SI_COHERENCY_CP:
		return 0;
	case SI_COHERENCY_SHADER:
		return SI_CONTEXT_INV_SCACHE |
		       SI_CONTEXT_INV_VCACHE |
		       (cache_policy == L2_BYPASS ? SI_CONTEXT_INV_L2 : 0);
	case SI_COHERENCY_CB_META:
		return SI_CONTEXT_FLUSH_AND_INV_CB;
	}
}

static void si_launch_grid_internal(struct si_context *sctx,
				    struct pipe_grid_info *info)
{
	/* Set settings for driver-internal compute dispatches. */
	sctx->flags &= ~SI_CONTEXT_START_PIPELINE_STATS;
	sctx->flags |= SI_CONTEXT_STOP_PIPELINE_STATS;
	sctx->render_cond_force_off = true;
	/* Skip decompression to prevent infinite recursion. */
	sctx->blitter->running = true;

	/* Dispatch compute. */
	sctx->b.launch_grid(&sctx->b, info);

	/* Restore default settings. */
	sctx->flags &= ~SI_CONTEXT_STOP_PIPELINE_STATS;
	sctx->flags |= SI_CONTEXT_START_PIPELINE_STATS;
	sctx->render_cond_force_off = false;
	sctx->blitter->running = false;
}

static void si_compute_clear_12bytes_buffer(struct si_context *sctx,
					struct pipe_resource *dst,
					unsigned dst_offset,
					unsigned size,
					const uint32_t *clear_value,
					enum si_coherency coher)
{
	struct pipe_context *ctx = &sctx->b;

	assert(dst_offset % 4 == 0);
	assert(size % 4 == 0);
	unsigned size_12 = DIV_ROUND_UP(size, 12);

	unsigned data[4] = {0};
	memcpy(data, clear_value, 12);

	sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
		       SI_CONTEXT_CS_PARTIAL_FLUSH |
		       si_get_flush_flags(sctx, coher, SI_COMPUTE_DST_CACHE_POLICY);

	struct pipe_shader_buffer saved_sb = {0};
	si_get_shader_buffers(sctx, PIPE_SHADER_COMPUTE, 0, 1, &saved_sb);

	unsigned saved_writable_mask = 0;
	if (sctx->const_and_shader_buffers[PIPE_SHADER_COMPUTE].writable_mask &
	    (1u << si_get_shaderbuf_slot(0)))
		saved_writable_mask = 1;

	struct pipe_constant_buffer saved_cb = {};
	si_get_pipe_constant_buffer(sctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);

	void *saved_cs = sctx->cs_shader_state.program;

	struct pipe_constant_buffer cb = {};
	cb.buffer_size = sizeof(data);
	cb.user_buffer = data;
	ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &cb);

	struct pipe_shader_buffer sb = {0};
	sb.buffer = dst;
	sb.buffer_offset = dst_offset;
	sb.buffer_size = size;

	ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, 1, &sb, 0x1);

	struct pipe_grid_info info = {0};

	if (!sctx->cs_clear_12bytes_buffer)
		sctx->cs_clear_12bytes_buffer =
			si_clear_12bytes_buffer_shader(ctx);
	ctx->bind_compute_state(ctx, sctx->cs_clear_12bytes_buffer);
	info.block[0] = 64;
	info.last_block[0] = size_12 % 64;
	info.block[1] = 1;
	info.block[2] = 1;
	info.grid[0] = DIV_ROUND_UP(size_12, 64);
	info.grid[1] = 1;
	info.grid[2] = 1;

	si_launch_grid_internal(sctx, &info);

	ctx->bind_compute_state(ctx, saved_cs);
	ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, 1, &saved_sb, saved_writable_mask);
	ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);

	pipe_resource_reference(&saved_sb.buffer, NULL);
	pipe_resource_reference(&saved_cb.buffer, NULL);
}

static void si_compute_do_clear_or_copy(struct si_context *sctx,
					struct pipe_resource *dst,
					unsigned dst_offset,
					struct pipe_resource *src,
					unsigned src_offset,
					unsigned size,
					const uint32_t *clear_value,
					unsigned clear_value_size,
					enum si_coherency coher)
{
	struct pipe_context *ctx = &sctx->b;

	assert(src_offset % 4 == 0);
	assert(dst_offset % 4 == 0);
	assert(size % 4 == 0);

	assert(dst->target != PIPE_BUFFER || dst_offset + size <= dst->width0);
	assert(!src || src_offset + size <= src->width0);

	sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
		       SI_CONTEXT_CS_PARTIAL_FLUSH |
		       si_get_flush_flags(sctx, coher, SI_COMPUTE_DST_CACHE_POLICY);

	/* Save states. */
	void *saved_cs = sctx->cs_shader_state.program;
	struct pipe_shader_buffer saved_sb[2] = {};
	si_get_shader_buffers(sctx, PIPE_SHADER_COMPUTE, 0, src ? 2 : 1, saved_sb);

	unsigned saved_writable_mask = 0;
	for (unsigned i = 0; i < (src ? 2 : 1); i++) {
		if (sctx->const_and_shader_buffers[PIPE_SHADER_COMPUTE].writable_mask &
		    (1u << si_get_shaderbuf_slot(i)))
			saved_writable_mask |= 1 << i;
	}

	/* The memory accesses are coalesced, meaning that the 1st instruction writes
	 * the 1st contiguous block of data for the whole wave, the 2nd instruction
	 * writes the 2nd contiguous block of data, etc.
	 */
	unsigned dwords_per_thread = src ? SI_COMPUTE_COPY_DW_PER_THREAD :
					   SI_COMPUTE_CLEAR_DW_PER_THREAD;
	unsigned instructions_per_thread = MAX2(1, dwords_per_thread / 4);
	unsigned dwords_per_instruction = dwords_per_thread / instructions_per_thread;
	unsigned wave_size = sctx->screen->compute_wave_size;
	unsigned dwords_per_wave = dwords_per_thread * wave_size;

	unsigned num_dwords = size / 4;
	unsigned num_instructions = DIV_ROUND_UP(num_dwords, dwords_per_instruction);

	struct pipe_grid_info info = {};
	info.block[0] = MIN2(wave_size, num_instructions);
	info.block[1] = 1;
	info.block[2] = 1;
	info.grid[0] = DIV_ROUND_UP(num_dwords, dwords_per_wave);
	info.grid[1] = 1;
	info.grid[2] = 1;

	struct pipe_shader_buffer sb[2] = {};
	sb[0].buffer = dst;
	sb[0].buffer_offset = dst_offset;
	sb[0].buffer_size = size;

	bool shader_dst_stream_policy = SI_COMPUTE_DST_CACHE_POLICY != L2_LRU;

	if (src) {
		sb[1].buffer = src;
		sb[1].buffer_offset = src_offset;
		sb[1].buffer_size = size;

		ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, 2, sb, 0x1);

		if (!sctx->cs_copy_buffer) {
			sctx->cs_copy_buffer = si_create_dma_compute_shader(&sctx->b,
							     SI_COMPUTE_COPY_DW_PER_THREAD,
							     shader_dst_stream_policy, true);
		}
		ctx->bind_compute_state(ctx, sctx->cs_copy_buffer);
	} else {
		assert(clear_value_size >= 4 &&
		       clear_value_size <= 16 &&
		       util_is_power_of_two_or_zero(clear_value_size));

		for (unsigned i = 0; i < 4; i++)
			sctx->cs_user_data[i] = clear_value[i % (clear_value_size / 4)];

		ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, 1, sb, 0x1);

		if (!sctx->cs_clear_buffer) {
			sctx->cs_clear_buffer = si_create_dma_compute_shader(&sctx->b,
							     SI_COMPUTE_CLEAR_DW_PER_THREAD,
							     shader_dst_stream_policy, false);
		}
		ctx->bind_compute_state(ctx, sctx->cs_clear_buffer);
	}

	si_launch_grid_internal(sctx, &info);

	enum si_cache_policy cache_policy = get_cache_policy(sctx, coher, size);
	sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH |
		       (cache_policy == L2_BYPASS ? SI_CONTEXT_WB_L2 : 0);

	if (cache_policy != L2_BYPASS)
		si_resource(dst)->TC_L2_dirty = true;

	/* Restore states. */
	ctx->bind_compute_state(ctx, saved_cs);
	ctx->set_shader_buffers(ctx, PIPE_SHADER_COMPUTE, 0, src ? 2 : 1, saved_sb,
				saved_writable_mask);
	for (int i = 0; i < 2; i++)
		pipe_resource_reference(&saved_sb[i].buffer, NULL);
}

void si_clear_buffer(struct si_context *sctx, struct pipe_resource *dst,
		     uint64_t offset, uint64_t size, uint32_t *clear_value,
		     uint32_t clear_value_size, enum si_coherency coher,
		     bool force_cpdma)
{
	if (!size)
		return;

	ASSERTED unsigned clear_alignment = MIN2(clear_value_size, 4);

	assert(clear_value_size != 3 && clear_value_size != 6); /* 12 is allowed. */
	assert(offset % clear_alignment == 0);
	assert(size % clear_alignment == 0);
	assert(size < (UINT_MAX & ~0xf)); /* TODO: test 64-bit sizes in all codepaths */

	/* Reduce a large clear value size if possible. */
	if (clear_value_size > 4) {
		bool clear_dword_duplicated = true;

		/* See if we can lower large fills to dword fills. */
		for (unsigned i = 1; i < clear_value_size / 4; i++) {
			if (clear_value[0] != clear_value[i]) {
				clear_dword_duplicated = false;
				break;
			}
		}
		if (clear_dword_duplicated)
			clear_value_size = 4;
	}

	/* Expand a small clear value size. */
	uint32_t tmp_clear_value;
	if (clear_value_size <= 2) {
		if (clear_value_size == 1) {
			tmp_clear_value = *(uint8_t*)clear_value;
			tmp_clear_value |= (tmp_clear_value << 8) |
					   (tmp_clear_value << 16) |
					   (tmp_clear_value << 24);
		} else {
			tmp_clear_value = *(uint16_t*)clear_value;
			tmp_clear_value |= tmp_clear_value << 16;
		}
		clear_value = &tmp_clear_value;
		clear_value_size = 4;
	}

	if (clear_value_size == 12) {
		si_compute_clear_12bytes_buffer(sctx, dst, offset, size, clear_value, coher);
		return;
	}

	uint64_t aligned_size = size & ~3ull;
	if (aligned_size >= 4) {
		/* Before GFX9, CP DMA was very slow when clearing GTT, so never
		 * use CP DMA clears on those chips, because we can't be certain
		 * about buffer placements.
		 */
		if (clear_value_size > 4 ||
		    (!force_cpdma &&
		     clear_value_size == 4 &&
		     offset % 4 == 0 &&
		     (size > 32*1024 || sctx->chip_class <= GFX9))) {
			si_compute_do_clear_or_copy(sctx, dst, offset, NULL, 0,
						    aligned_size, clear_value,
						    clear_value_size, coher);
		} else {
			assert(clear_value_size == 4);
			si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, dst, offset,
					       aligned_size, *clear_value, 0, coher,
					       get_cache_policy(sctx, coher, size));
		}

		offset += aligned_size;
		size -= aligned_size;
	}

	/* Handle non-dword alignment. */
	if (size) {
		assert(dst);
		assert(dst->target == PIPE_BUFFER);
		assert(size < 4);

		pipe_buffer_write(&sctx->b, dst, offset, size, clear_value);
	}
}

static void si_pipe_clear_buffer(struct pipe_context *ctx,
				 struct pipe_resource *dst,
				 unsigned offset, unsigned size,
				 const void *clear_value,
				 int clear_value_size)
{
	si_clear_buffer((struct si_context*)ctx, dst, offset, size, (uint32_t*)clear_value,
			clear_value_size, SI_COHERENCY_SHADER, false);
}

void si_copy_buffer(struct si_context *sctx,
		    struct pipe_resource *dst, struct pipe_resource *src,
		    uint64_t dst_offset, uint64_t src_offset, unsigned size)
{
	if (!size)
		return;

	enum si_coherency coher = SI_COHERENCY_SHADER;
	enum si_cache_policy cache_policy = get_cache_policy(sctx, coher, size);

	/* Only use compute for VRAM copies on dGPUs. */
	if (sctx->screen->info.has_dedicated_vram &&
	    si_resource(dst)->domains & RADEON_DOMAIN_VRAM &&
	    si_resource(src)->domains & RADEON_DOMAIN_VRAM &&
	    size > 32 * 1024 &&
	    dst_offset % 4 == 0 && src_offset % 4 == 0 && size % 4 == 0) {
		si_compute_do_clear_or_copy(sctx, dst, dst_offset, src, src_offset,
					    size, NULL, 0, coher);
	} else {
		si_cp_dma_copy_buffer(sctx, dst, src, dst_offset, src_offset, size,
				      0, coher, cache_policy);
	}
}

void si_compute_copy_image(struct si_context *sctx,
			   struct pipe_resource *dst,
			   unsigned dst_level,
			   struct pipe_resource *src,
			   unsigned src_level,
			   unsigned dstx, unsigned dsty, unsigned dstz,
			   const struct pipe_box *src_box)
{
	struct pipe_context *ctx = &sctx->b;
	unsigned width = src_box->width;
	unsigned height = src_box->height;
	unsigned depth = src_box->depth;
	enum pipe_format src_format = util_format_linear(src->format);
	enum pipe_format dst_format = util_format_linear(dst->format);

	assert(util_format_is_subsampled_422(src_format) ==
	       util_format_is_subsampled_422(dst_format));

	if (util_format_is_subsampled_422(src_format)) {
		src_format = dst_format = PIPE_FORMAT_R32_UINT;
		/* Interpreting 422 subsampled format (16 bpp) as 32 bpp
		 * should force us to divide src_box->x, dstx and width by 2.
		 * But given that ac_surface allocates this format as 32 bpp
		 * and that surf_size is then modified to pack the values
		 * we must keep the original values to get the correct results.
		 */
	}
	unsigned data[] = {src_box->x, src_box->y, src_box->z, 0,
	                   dstx, dsty, dstz, 0};

	if (width == 0 || height == 0)
		return;

	sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH |
		       si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_STREAM);

	/* The driver doesn't decompress resources automatically here. */
	si_decompress_subresource(ctx, dst, PIPE_MASK_RGBAZS, dst_level,
				  dstz, dstz + src_box->depth - 1);
	si_decompress_subresource(ctx, src, PIPE_MASK_RGBAZS, src_level,
				  src_box->z, src_box->z + src_box->depth - 1);

	/* src and dst have the same number of samples. */
	si_make_CB_shader_coherent(sctx, src->nr_samples, true,
				   /* Only src can have DCC.*/
				   ((struct si_texture*)src)->surface.u.gfx9.dcc.pipe_aligned);

	struct pipe_constant_buffer saved_cb = {};
	si_get_pipe_constant_buffer(sctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);

	struct si_images *images = &sctx->images[PIPE_SHADER_COMPUTE];
	struct pipe_image_view saved_image[2] = {0};
	util_copy_image_view(&saved_image[0], &images->views[0]);
	util_copy_image_view(&saved_image[1], &images->views[1]);

	void *saved_cs = sctx->cs_shader_state.program;

	struct pipe_constant_buffer cb = {};
	cb.buffer_size = sizeof(data);
	cb.user_buffer = data;
	ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &cb);

	struct pipe_image_view image[2] = {0};
	image[0].resource = src;
	image[0].shader_access = image[0].access = PIPE_IMAGE_ACCESS_READ;
	image[0].format = src_format;
	image[0].u.tex.level = src_level;
	image[0].u.tex.first_layer = 0;
	image[0].u.tex.last_layer =
		src->target == PIPE_TEXTURE_3D ? u_minify(src->depth0, src_level) - 1
						: (unsigned)(src->array_size - 1);
	image[1].resource = dst;
	image[1].shader_access = image[1].access = PIPE_IMAGE_ACCESS_WRITE;
	image[1].format = dst_format;
	image[1].u.tex.level = dst_level;
	image[1].u.tex.first_layer = 0;
	image[1].u.tex.last_layer =
		dst->target == PIPE_TEXTURE_3D ? u_minify(dst->depth0, dst_level) - 1
						: (unsigned)(dst->array_size - 1);

	if (src->format == PIPE_FORMAT_R9G9B9E5_FLOAT)
		image[0].format = image[1].format = PIPE_FORMAT_R32_UINT;

	/* SNORM8 blitting has precision issues on some chips. Use the SINT
	 * equivalent instead, which doesn't force DCC decompression.
	 * Note that some chips avoid this issue by using SDMA.
	 */
	if (util_format_is_snorm8(dst->format)) {
		image[0].format = image[1].format =
			util_format_snorm8_to_sint8(dst->format);
	}

	ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 2, image);

	struct pipe_grid_info info = {0};

	if (dst->target == PIPE_TEXTURE_1D_ARRAY && src->target == PIPE_TEXTURE_1D_ARRAY) {
		if (!sctx->cs_copy_image_1d_array)
			sctx->cs_copy_image_1d_array =
				si_create_copy_image_compute_shader_1d_array(ctx);
		ctx->bind_compute_state(ctx, sctx->cs_copy_image_1d_array);
		info.block[0] = 64;
		info.last_block[0] = width % 64;
		info.block[1] = 1;
		info.block[2] = 1;
		info.grid[0] = DIV_ROUND_UP(width, 64);
		info.grid[1] = depth;
		info.grid[2] = 1;
	} else {
		if (!sctx->cs_copy_image)
			sctx->cs_copy_image = si_create_copy_image_compute_shader(ctx);
		ctx->bind_compute_state(ctx, sctx->cs_copy_image);
		info.block[0] = 8;
		info.last_block[0] = width % 8;
		info.block[1] = 8;
		info.last_block[1] = height % 8;
		info.block[2] = 1;
		info.grid[0] = DIV_ROUND_UP(width, 8);
		info.grid[1] = DIV_ROUND_UP(height, 8);
		info.grid[2] = depth;
	}

	si_launch_grid_internal(sctx, &info);

	sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH |
		       (sctx->chip_class <= GFX8 ? SI_CONTEXT_WB_L2 : 0) |
		       si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_STREAM);
	ctx->bind_compute_state(ctx, saved_cs);
	ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 2, saved_image);
	ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);
	for (int i = 0; i < 2; i++)
		pipe_resource_reference(&saved_image[i].resource, NULL);
	pipe_resource_reference(&saved_cb.buffer, NULL);
}

void si_retile_dcc(struct si_context *sctx, struct si_texture *tex)
{
	struct pipe_context *ctx = &sctx->b;

	sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
		       SI_CONTEXT_CS_PARTIAL_FLUSH |
		       si_get_flush_flags(sctx, SI_COHERENCY_CB_META, L2_LRU) |
		       si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_LRU);
	sctx->emit_cache_flush(sctx);

	/* Save states. */
	void *saved_cs = sctx->cs_shader_state.program;
	struct pipe_image_view saved_img[3] = {};

	for (unsigned i = 0; i < 3; i++) {
		util_copy_image_view(&saved_img[i],
				     &sctx->images[PIPE_SHADER_COMPUTE].views[i]);
	}

	/* Set images. */
	bool use_uint16 = tex->surface.u.gfx9.dcc_retile_use_uint16;
	unsigned num_elements = tex->surface.u.gfx9.dcc_retile_num_elements;
	struct pipe_image_view img[3];

	assert(tex->surface.dcc_retile_map_offset && tex->surface.dcc_retile_map_offset <= UINT_MAX);
	assert(tex->surface.dcc_offset && tex->surface.dcc_offset <= UINT_MAX);
	assert(tex->surface.display_dcc_offset && tex->surface.display_dcc_offset <= UINT_MAX);

	for (unsigned i = 0; i < 3; i++) {
		img[i].resource = &tex->buffer.b.b;
		img[i].access = i == 2 ? PIPE_IMAGE_ACCESS_WRITE : PIPE_IMAGE_ACCESS_READ;
		img[i].shader_access = SI_IMAGE_ACCESS_AS_BUFFER;
	}

	img[0].format = use_uint16 ? PIPE_FORMAT_R16G16B16A16_UINT :
				     PIPE_FORMAT_R32G32B32A32_UINT;
	img[0].u.buf.offset = tex->surface.dcc_retile_map_offset;
	img[0].u.buf.size = num_elements * (use_uint16 ? 2 : 4);

	img[1].format = PIPE_FORMAT_R8_UINT;
	img[1].u.buf.offset = tex->surface.dcc_offset;
	img[1].u.buf.size = tex->surface.dcc_size;

	img[2].format = PIPE_FORMAT_R8_UINT;
	img[2].u.buf.offset = tex->surface.display_dcc_offset;
	img[2].u.buf.size = tex->surface.u.gfx9.display_dcc_size;

	ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 3, img);

	/* Bind the compute shader. */
	if (!sctx->cs_dcc_retile)
		sctx->cs_dcc_retile = si_create_dcc_retile_cs(ctx);
	ctx->bind_compute_state(ctx, sctx->cs_dcc_retile);

	/* Dispatch compute. */
	/* img[0] has 4 channels per element containing 2 pairs of DCC offsets. */
	unsigned num_threads = num_elements / 4;

	struct pipe_grid_info info = {};
	info.block[0] = 64;
	info.block[1] = 1;
	info.block[2] = 1;
	info.grid[0] = DIV_ROUND_UP(num_threads, 64); /* includes the partial block */
	info.grid[1] = 1;
	info.grid[2] = 1;
	info.last_block[0] = num_threads % 64;

	si_launch_grid_internal(sctx, &info);

	/* Don't flush caches or wait. The driver will wait at the end of this IB,
	 * and L2 will be flushed by the kernel fence.
	 */

	/* Restore states. */
	ctx->bind_compute_state(ctx, saved_cs);
	ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 3, saved_img);

	for (unsigned i = 0; i < 3; i++) {
		pipe_resource_reference(&saved_img[i].resource, NULL);
	}
}

/* Expand FMASK to make it identity, so that image stores can ignore it. */
void si_compute_expand_fmask(struct pipe_context *ctx, struct pipe_resource *tex)
{
	struct si_context *sctx = (struct si_context *)ctx;
	bool is_array = tex->target == PIPE_TEXTURE_2D_ARRAY;
	unsigned log_fragments = util_logbase2(tex->nr_storage_samples);
	unsigned log_samples = util_logbase2(tex->nr_samples);
	assert(tex->nr_samples >= 2);

	/* EQAA FMASK expansion is unimplemented. */
	if (tex->nr_samples != tex->nr_storage_samples)
		return;

	/* Flush caches and sync engines. */
	sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH |
		       si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_STREAM);
	si_make_CB_shader_coherent(sctx, tex->nr_samples, true,
				   true /* DCC is not possible with image stores */);

	/* Save states. */
	void *saved_cs = sctx->cs_shader_state.program;
	struct pipe_image_view saved_image = {0};
	util_copy_image_view(&saved_image, &sctx->images[PIPE_SHADER_COMPUTE].views[0]);

	/* Bind the image. */
	struct pipe_image_view image = {0};
	image.resource = tex;
	/* Don't set WRITE so as not to trigger FMASK expansion, causing
	 * an infinite loop. */
	image.shader_access = image.access = PIPE_IMAGE_ACCESS_READ;
	image.format = util_format_linear(tex->format);
	if (is_array)
		image.u.tex.last_layer = tex->array_size - 1;

	ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, &image);

	/* Bind the shader. */
	void **shader = &sctx->cs_fmask_expand[log_samples - 1][is_array];
	if (!*shader)
		*shader = si_create_fmask_expand_cs(ctx, tex->nr_samples, is_array);
	ctx->bind_compute_state(ctx, *shader);

	/* Dispatch compute. */
	struct pipe_grid_info info = {0};
	info.block[0] = 8;
	info.last_block[0] = tex->width0 % 8;
	info.block[1] = 8;
	info.last_block[1] = tex->height0 % 8;
	info.block[2] = 1;
	info.grid[0] = DIV_ROUND_UP(tex->width0, 8);
	info.grid[1] = DIV_ROUND_UP(tex->height0, 8);
	info.grid[2] = is_array ? tex->array_size : 1;

	si_launch_grid_internal(sctx, &info);

	/* Flush caches and sync engines. */
	sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH |
		       (sctx->chip_class <= GFX8 ? SI_CONTEXT_WB_L2 : 0) |
		       si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_STREAM);

	/* Restore previous states. */
	ctx->bind_compute_state(ctx, saved_cs);
	ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, &saved_image);
	pipe_resource_reference(&saved_image.resource, NULL);

	/* Array of fully expanded FMASK values, arranged by [log2(fragments)][log2(samples)-1]. */
#define INVALID 0 /* never used */
	static const uint64_t fmask_expand_values[][4] = {
		/* samples */
		/* 2 (8 bpp) 4 (8 bpp)   8 (8-32bpp) 16 (16-64bpp)      fragments */
		{0x02020202, 0x0E0E0E0E, 0xFEFEFEFE, 0xFFFEFFFE},         /* 1 */
		{0x02020202, 0xA4A4A4A4, 0xAAA4AAA4, 0xAAAAAAA4},         /* 2 */
		{INVALID,    0xE4E4E4E4, 0x44443210, 0x4444444444443210}, /* 4 */
		{INVALID,    INVALID,    0x76543210, 0x8888888876543210}, /* 8 */
	};

	/* Clear FMASK to identity. */
	struct si_texture *stex = (struct si_texture*)tex;
	si_clear_buffer(sctx, tex, stex->surface.fmask_offset, stex->surface.fmask_size,
			(uint32_t*)&fmask_expand_values[log_fragments][log_samples - 1],
			4, SI_COHERENCY_SHADER, false);
}

void si_init_compute_blit_functions(struct si_context *sctx)
{
	sctx->b.clear_buffer = si_pipe_clear_buffer;
}

/* Clear a region of a color surface to a constant value. */
void si_compute_clear_render_target(struct pipe_context *ctx,
				    struct pipe_surface *dstsurf,
				    const union pipe_color_union *color,
				    unsigned dstx, unsigned dsty,
				    unsigned width, unsigned height,
				    bool render_condition_enabled)
{
	struct si_context *sctx = (struct si_context *)ctx;
	unsigned num_layers = dstsurf->u.tex.last_layer - dstsurf->u.tex.first_layer + 1;
	unsigned data[4 + sizeof(color->ui)] = {dstx, dsty, dstsurf->u.tex.first_layer, 0};

	if (width == 0 || height == 0)
		return;

	/* The driver doesn't decompress resources automatically here. */
	si_decompress_subresource(ctx, dstsurf->texture, PIPE_MASK_RGBA,
				  dstsurf->u.tex.level, dstsurf->u.tex.first_layer,
				  dstsurf->u.tex.last_layer);

	if (util_format_is_srgb(dstsurf->format)) {
		union pipe_color_union color_srgb;
		for (int i = 0; i < 3; i++)
			color_srgb.f[i] = util_format_linear_to_srgb_float(color->f[i]);
		color_srgb.f[3] = color->f[3];
		memcpy(data + 4, color_srgb.ui, sizeof(color->ui));
	} else {
		memcpy(data + 4, color->ui, sizeof(color->ui));
	}

	sctx->render_cond_force_off = !render_condition_enabled;

	sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH |
		       si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_STREAM);
	si_make_CB_shader_coherent(sctx, dstsurf->texture->nr_samples, true,
				   true /* DCC is not possible with image stores */);

	struct pipe_constant_buffer saved_cb = {};
	si_get_pipe_constant_buffer(sctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);

	struct si_images *images = &sctx->images[PIPE_SHADER_COMPUTE];
	struct pipe_image_view saved_image = {0};
	util_copy_image_view(&saved_image, &images->views[0]);

	void *saved_cs = sctx->cs_shader_state.program;

	struct pipe_constant_buffer cb = {};
	cb.buffer_size = sizeof(data);
	cb.user_buffer = data;
	ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &cb);

	struct pipe_image_view image = {0};
	image.resource = dstsurf->texture;
	image.shader_access = image.access = PIPE_IMAGE_ACCESS_WRITE;
	image.format = util_format_linear(dstsurf->format);
	image.u.tex.level = dstsurf->u.tex.level;
	image.u.tex.first_layer = 0; /* 3D images ignore first_layer (BASE_ARRAY) */
	image.u.tex.last_layer = dstsurf->u.tex.last_layer;

	ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, &image);

	struct pipe_grid_info info = {0};

	if (dstsurf->texture->target != PIPE_TEXTURE_1D_ARRAY) {
		if (!sctx->cs_clear_render_target)
			sctx->cs_clear_render_target = si_clear_render_target_shader(ctx);
		ctx->bind_compute_state(ctx, sctx->cs_clear_render_target);
		info.block[0] = 8;
		info.last_block[0] = width % 8;
		info.block[1] = 8;
		info.last_block[1] = height % 8;
		info.block[2] = 1;
		info.grid[0] = DIV_ROUND_UP(width, 8);
		info.grid[1] = DIV_ROUND_UP(height, 8);
		info.grid[2] = num_layers;
	} else {
		if (!sctx->cs_clear_render_target_1d_array)
			sctx->cs_clear_render_target_1d_array =
				si_clear_render_target_shader_1d_array(ctx);
		ctx->bind_compute_state(ctx, sctx->cs_clear_render_target_1d_array);
		info.block[0] = 64;
		info.last_block[0] = width % 64;
		info.block[1] = 1;
		info.block[2] = 1;
		info.grid[0] = DIV_ROUND_UP(width, 64);
		info.grid[1] = num_layers;
		info.grid[2] = 1;
	}

	si_launch_grid_internal(sctx, &info);

	sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH |
		       (sctx->chip_class <= GFX8 ? SI_CONTEXT_WB_L2 : 0) |
		       si_get_flush_flags(sctx, SI_COHERENCY_SHADER, L2_STREAM);
	ctx->bind_compute_state(ctx, saved_cs);
	ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, &saved_image);
	ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);
	pipe_resource_reference(&saved_image.resource, NULL);
	pipe_resource_reference(&saved_cb.buffer, NULL);
}