1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
|
/*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Adam Rak <adam.rak@streamnovation.com>
*/
#include "pipe/p_defines.h"
#include "pipe/p_state.h"
#include "pipe/p_context.h"
#include "util/u_blitter.h"
#include "util/list.h"
#include "util/u_transfer.h"
#include "util/u_surface.h"
#include "util/u_pack_color.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "util/u_inlines.h"
#include "util/u_framebuffer.h"
#include "r600_shader.h"
#include "r600_pipe.h"
#include "r600_formats.h"
#include "compute_memory_pool.h"
#include "evergreen_compute.h"
#include "evergreen_compute_internal.h"
#include <inttypes.h>
#define ITEM_ALIGNMENT 1024
/**
* Creates a new pool.
*/
struct compute_memory_pool* compute_memory_pool_new(
struct r600_screen * rscreen)
{
struct compute_memory_pool* pool = (struct compute_memory_pool*)
CALLOC(sizeof(struct compute_memory_pool), 1);
if (pool == NULL)
return NULL;
COMPUTE_DBG(rscreen, "* compute_memory_pool_new()\n");
pool->screen = rscreen;
pool->item_list = (struct list_head *)
CALLOC(sizeof(struct list_head), 1);
pool->unallocated_list = (struct list_head *)
CALLOC(sizeof(struct list_head), 1);
list_inithead(pool->item_list);
list_inithead(pool->unallocated_list);
return pool;
}
/**
* Initializes the pool with a size of \a initial_size_in_dw.
* \param pool The pool to be initialized.
* \param initial_size_in_dw The initial size.
* \see compute_memory_grow_defrag_pool
*/
static void compute_memory_pool_init(struct compute_memory_pool * pool,
unsigned initial_size_in_dw)
{
COMPUTE_DBG(pool->screen, "* compute_memory_pool_init() initial_size_in_dw = %u\n",
initial_size_in_dw);
pool->size_in_dw = initial_size_in_dw;
pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram(pool->screen,
pool->size_in_dw * 4);
}
/**
* Frees all stuff in the pool and the pool struct itself too.
*/
void compute_memory_pool_delete(struct compute_memory_pool* pool)
{
COMPUTE_DBG(pool->screen, "* compute_memory_pool_delete()\n");
free(pool->shadow);
if (pool->bo) {
pool->screen->b.b.resource_destroy((struct pipe_screen *)
pool->screen, (struct pipe_resource *)pool->bo);
}
/* In theory, all of the items were freed in compute_memory_free.
* Just delete the list heads
*/
free(pool->item_list);
free(pool->unallocated_list);
/* And then the pool itself */
free(pool);
}
/**
* Searches for an empty space in the pool, return with the pointer to the
* allocatable space in the pool.
* \param size_in_dw The size of the space we are looking for.
* \return -1 on failure
*/
int64_t compute_memory_prealloc_chunk(
struct compute_memory_pool* pool,
int64_t size_in_dw)
{
struct compute_memory_item *item;
int last_end = 0;
assert(size_in_dw <= pool->size_in_dw);
COMPUTE_DBG(pool->screen, "* compute_memory_prealloc_chunk() size_in_dw = %"PRIi64"\n",
size_in_dw);
LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
if (last_end + size_in_dw <= item->start_in_dw) {
return last_end;
}
last_end = item->start_in_dw + align(item->size_in_dw, ITEM_ALIGNMENT);
}
if (pool->size_in_dw - last_end < size_in_dw) {
return -1;
}
return last_end;
}
/**
* Search for the chunk where we can link our new chunk after it.
* \param start_in_dw The position of the item we want to add to the pool.
* \return The item that is just before the passed position
*/
struct list_head *compute_memory_postalloc_chunk(
struct compute_memory_pool* pool,
int64_t start_in_dw)
{
struct compute_memory_item *item;
struct compute_memory_item *next;
struct list_head *next_link;
COMPUTE_DBG(pool->screen, "* compute_memory_postalloc_chunck() start_in_dw = %"PRIi64"\n",
start_in_dw);
/* Check if we can insert it in the front of the list */
item = LIST_ENTRY(struct compute_memory_item, pool->item_list->next, link);
if (LIST_IS_EMPTY(pool->item_list) || item->start_in_dw > start_in_dw) {
return pool->item_list;
}
LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
next_link = item->link.next;
if (next_link != pool->item_list) {
next = container_of(next_link, item, link);
if (item->start_in_dw < start_in_dw
&& next->start_in_dw > start_in_dw) {
return &item->link;
}
}
else {
/* end of chain */
assert(item->start_in_dw < start_in_dw);
return &item->link;
}
}
assert(0 && "unreachable");
return NULL;
}
/**
* Reallocates and defragments the pool, conserves data.
* \returns -1 if it fails, 0 otherwise
* \see compute_memory_finalize_pending
*/
int compute_memory_grow_defrag_pool(struct compute_memory_pool *pool,
struct pipe_context *pipe, int new_size_in_dw)
{
new_size_in_dw = align(new_size_in_dw, ITEM_ALIGNMENT);
COMPUTE_DBG(pool->screen, "* compute_memory_grow_defrag_pool() "
"new_size_in_dw = %d (%d bytes)\n",
new_size_in_dw, new_size_in_dw * 4);
assert(new_size_in_dw >= pool->size_in_dw);
if (!pool->bo) {
compute_memory_pool_init(pool, MAX2(new_size_in_dw, 1024 * 16));
} else {
struct r600_resource *temp = NULL;
temp = (struct r600_resource *)r600_compute_buffer_alloc_vram(
pool->screen, new_size_in_dw * 4);
if (temp != NULL) {
struct pipe_resource *src = (struct pipe_resource *)pool->bo;
struct pipe_resource *dst = (struct pipe_resource *)temp;
COMPUTE_DBG(pool->screen, " Growing and defragmenting the pool "
"using a temporary resource\n");
compute_memory_defrag(pool, src, dst, pipe);
pool->screen->b.b.resource_destroy(
(struct pipe_screen *)pool->screen,
src);
pool->bo = temp;
pool->size_in_dw = new_size_in_dw;
}
else {
COMPUTE_DBG(pool->screen, " The creation of the temporary resource failed\n"
" Falling back to using 'shadow'\n");
compute_memory_shadow(pool, pipe, 1);
pool->shadow = realloc(pool->shadow, new_size_in_dw * 4);
if (pool->shadow == NULL)
return -1;
pool->size_in_dw = new_size_in_dw;
pool->screen->b.b.resource_destroy(
(struct pipe_screen *)pool->screen,
(struct pipe_resource *)pool->bo);
pool->bo = (struct r600_resource*)r600_compute_buffer_alloc_vram(
pool->screen,
pool->size_in_dw * 4);
compute_memory_shadow(pool, pipe, 0);
if (pool->status & POOL_FRAGMENTED) {
struct pipe_resource *src = (struct pipe_resource *)pool->bo;
compute_memory_defrag(pool, src, src, pipe);
}
}
}
return 0;
}
/**
* Copy pool from device to host, or host to device.
* \param device_to_host 1 for device->host, 0 for host->device
* \see compute_memory_grow_defrag_pool
*/
void compute_memory_shadow(struct compute_memory_pool* pool,
struct pipe_context * pipe, int device_to_host)
{
struct compute_memory_item chunk;
COMPUTE_DBG(pool->screen, "* compute_memory_shadow() device_to_host = %d\n",
device_to_host);
chunk.id = 0;
chunk.start_in_dw = 0;
chunk.size_in_dw = pool->size_in_dw;
compute_memory_transfer(pool, pipe, device_to_host, &chunk,
pool->shadow, 0, pool->size_in_dw*4);
}
/**
* Moves all the items marked for promotion from the \a unallocated_list
* to the \a item_list.
* \return -1 if it fails, 0 otherwise
* \see evergreen_set_global_binding
*/
int compute_memory_finalize_pending(struct compute_memory_pool* pool,
struct pipe_context * pipe)
{
struct compute_memory_item *item, *next;
int64_t allocated = 0;
int64_t unallocated = 0;
int64_t last_pos;
int err = 0;
COMPUTE_DBG(pool->screen, "* compute_memory_finalize_pending()\n");
LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
COMPUTE_DBG(pool->screen, " + list: offset = %"PRIi64" id = %"PRIi64" size = %"PRIi64" "
"(%"PRIi64" bytes)\n", item->start_in_dw, item->id,
item->size_in_dw, item->size_in_dw * 4);
}
/* Calculate the total allocated size */
LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
allocated += align(item->size_in_dw, ITEM_ALIGNMENT);
}
/* Calculate the total unallocated size of the items that
* will be promoted to the pool */
LIST_FOR_EACH_ENTRY(item, pool->unallocated_list, link) {
if (item->status & ITEM_FOR_PROMOTING)
unallocated += align(item->size_in_dw, ITEM_ALIGNMENT);
}
if (unallocated == 0) {
return 0;
}
if (pool->size_in_dw < allocated + unallocated) {
err = compute_memory_grow_defrag_pool(pool, pipe, allocated + unallocated);
if (err == -1)
return -1;
}
else if (pool->status & POOL_FRAGMENTED) {
struct pipe_resource *src = (struct pipe_resource *)pool->bo;
compute_memory_defrag(pool, src, src, pipe);
}
/* After defragmenting the pool, allocated is equal to the first available
* position for new items in the pool */
last_pos = allocated;
/* Loop through all the unallocated items, check if they are marked
* for promoting, allocate space for them and add them to the item_list. */
LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->unallocated_list, link) {
if (item->status & ITEM_FOR_PROMOTING) {
err = compute_memory_promote_item(pool, item, pipe, last_pos);
item->status &= ~ITEM_FOR_PROMOTING;
last_pos += align(item->size_in_dw, ITEM_ALIGNMENT);
if (err == -1)
return -1;
}
}
return 0;
}
/**
* Defragments the pool, so that there's no gap between items.
* \param pool The pool to be defragmented
* \param src The origin resource
* \param dst The destination resource
* \see compute_memory_grow_defrag_pool and compute_memory_finalize_pending
*/
void compute_memory_defrag(struct compute_memory_pool *pool,
struct pipe_resource *src, struct pipe_resource *dst,
struct pipe_context *pipe)
{
struct compute_memory_item *item;
int64_t last_pos;
COMPUTE_DBG(pool->screen, "* compute_memory_defrag()\n");
last_pos = 0;
LIST_FOR_EACH_ENTRY(item, pool->item_list, link) {
if (src != dst || item->start_in_dw != last_pos) {
assert(last_pos <= item->start_in_dw);
compute_memory_move_item(pool, src, dst,
item, last_pos, pipe);
}
last_pos += align(item->size_in_dw, ITEM_ALIGNMENT);
}
pool->status &= ~POOL_FRAGMENTED;
}
/**
* Moves an item from the \a unallocated_list to the \a item_list.
* \param item The item that will be promoted.
* \return -1 if it fails, 0 otherwise
* \see compute_memory_finalize_pending
*/
int compute_memory_promote_item(struct compute_memory_pool *pool,
struct compute_memory_item *item, struct pipe_context *pipe,
int64_t start_in_dw)
{
struct pipe_screen *screen = (struct pipe_screen *)pool->screen;
struct r600_context *rctx = (struct r600_context *)pipe;
struct pipe_resource *src = (struct pipe_resource *)item->real_buffer;
struct pipe_resource *dst = (struct pipe_resource *)pool->bo;
struct pipe_box box;
COMPUTE_DBG(pool->screen, "* compute_memory_promote_item()\n"
" + Promoting Item: %"PRIi64" , starting at: %"PRIi64" (%"PRIi64" bytes) "
"size: %"PRIi64" (%"PRIi64" bytes)\n\t\t\tnew start: %"PRIi64" (%"PRIi64" bytes)\n",
item->id, item->start_in_dw, item->start_in_dw * 4,
item->size_in_dw, item->size_in_dw * 4,
start_in_dw, start_in_dw * 4);
/* Remove the item from the unallocated list */
list_del(&item->link);
/* Add it back to the item_list */
list_addtail(&item->link, pool->item_list);
item->start_in_dw = start_in_dw;
if (src != NULL) {
u_box_1d(0, item->size_in_dw * 4, &box);
rctx->b.b.resource_copy_region(pipe,
dst, 0, item->start_in_dw * 4, 0 ,0,
src, 0, &box);
/* We check if the item is mapped for reading.
* In this case, we need to keep the temporary buffer 'alive'
* because it is possible to keep a map active for reading
* while a kernel (that reads from it) executes */
if (!(item->status & ITEM_MAPPED_FOR_READING)) {
pool->screen->b.b.resource_destroy(screen, src);
item->real_buffer = NULL;
}
}
return 0;
}
/**
* Moves an item from the \a item_list to the \a unallocated_list.
* \param item The item that will be demoted
* \see r600_compute_global_transfer_map
*/
void compute_memory_demote_item(struct compute_memory_pool *pool,
struct compute_memory_item *item, struct pipe_context *pipe)
{
struct r600_context *rctx = (struct r600_context *)pipe;
struct pipe_resource *src = (struct pipe_resource *)pool->bo;
struct pipe_resource *dst;
struct pipe_box box;
COMPUTE_DBG(pool->screen, "* compute_memory_demote_item()\n"
" + Demoting Item: %"PRIi64", starting at: %"PRIi64" (%"PRIi64" bytes) "
"size: %"PRIi64" (%"PRIi64" bytes)\n", item->id, item->start_in_dw,
item->start_in_dw * 4, item->size_in_dw, item->size_in_dw * 4);
/* First, we remove the item from the item_list */
list_del(&item->link);
/* Now we add it to the unallocated list */
list_addtail(&item->link, pool->unallocated_list);
/* We check if the intermediate buffer exists, and if it
* doesn't, we create it again */
if (item->real_buffer == NULL) {
item->real_buffer = (struct r600_resource*)r600_compute_buffer_alloc_vram(
pool->screen, item->size_in_dw * 4);
}
dst = (struct pipe_resource *)item->real_buffer;
/* We transfer the memory from the item in the pool to the
* temporary buffer */
u_box_1d(item->start_in_dw * 4, item->size_in_dw * 4, &box);
rctx->b.b.resource_copy_region(pipe,
dst, 0, 0, 0, 0,
src, 0, &box);
/* Remember to mark the buffer as 'pending' by setting start_in_dw to -1 */
item->start_in_dw = -1;
if (item->link.next != pool->item_list) {
pool->status |= POOL_FRAGMENTED;
}
}
/**
* Moves the item \a item forward from the resource \a src to the
* resource \a dst at \a new_start_in_dw
*
* This function assumes two things:
* 1) The item is \b only moved forward, unless src is different from dst
* 2) The item \b won't change it's position inside the \a item_list
*
* \param item The item that will be moved
* \param new_start_in_dw The new position of the item in \a item_list
* \see compute_memory_defrag
*/
void compute_memory_move_item(struct compute_memory_pool *pool,
struct pipe_resource *src, struct pipe_resource *dst,
struct compute_memory_item *item, uint64_t new_start_in_dw,
struct pipe_context *pipe)
{
struct pipe_screen *screen = (struct pipe_screen *)pool->screen;
struct r600_context *rctx = (struct r600_context *)pipe;
struct pipe_box box;
struct compute_memory_item *prev;
COMPUTE_DBG(pool->screen, "* compute_memory_move_item()\n"
" + Moving item %"PRIi64" from %"PRIi64" (%"PRIi64" bytes) to %"PRIu64" (%"PRIu64" bytes)\n",
item->id, item->start_in_dw, item->start_in_dw * 4,
new_start_in_dw, new_start_in_dw * 4);
if (pool->item_list != item->link.prev) {
prev = container_of(item->link.prev, item, link);
assert(prev->start_in_dw + prev->size_in_dw <= new_start_in_dw);
}
u_box_1d(item->start_in_dw * 4, item->size_in_dw * 4, &box);
/* If the ranges don't overlap, or we are copying from one resource
* to another, we can just copy the item directly */
if (src != dst || new_start_in_dw + item->size_in_dw <= item->start_in_dw) {
rctx->b.b.resource_copy_region(pipe,
dst, 0, new_start_in_dw * 4, 0, 0,
src, 0, &box);
} else {
/* The ranges overlap, we will try first to use an intermediate
* resource to move the item */
struct pipe_resource *tmp = (struct pipe_resource *)
r600_compute_buffer_alloc_vram(pool->screen, item->size_in_dw * 4);
if (tmp != NULL) {
rctx->b.b.resource_copy_region(pipe,
tmp, 0, 0, 0, 0,
src, 0, &box);
box.x = 0;
rctx->b.b.resource_copy_region(pipe,
dst, 0, new_start_in_dw * 4, 0, 0,
tmp, 0, &box);
pool->screen->b.b.resource_destroy(screen, tmp);
} else {
/* The allocation of the temporary resource failed,
* falling back to use mappings */
uint32_t *map;
int64_t offset;
struct pipe_transfer *trans;
offset = item->start_in_dw - new_start_in_dw;
u_box_1d(new_start_in_dw * 4, (offset + item->size_in_dw) * 4, &box);
map = pipe->transfer_map(pipe, src, 0, PIPE_TRANSFER_READ_WRITE,
&box, &trans);
assert(map);
assert(trans);
memmove(map, map + offset, item->size_in_dw * 4);
pipe->transfer_unmap(pipe, trans);
}
}
item->start_in_dw = new_start_in_dw;
}
/**
* Frees the memory asociated to the item with id \a id from the pool.
* \param id The id of the item to be freed.
*/
void compute_memory_free(struct compute_memory_pool* pool, int64_t id)
{
struct compute_memory_item *item, *next;
struct pipe_screen *screen = (struct pipe_screen *)pool->screen;
struct pipe_resource *res;
COMPUTE_DBG(pool->screen, "* compute_memory_free() id + %"PRIi64" \n", id);
LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->item_list, link) {
if (item->id == id) {
if (item->link.next != pool->item_list) {
pool->status |= POOL_FRAGMENTED;
}
list_del(&item->link);
if (item->real_buffer) {
res = (struct pipe_resource *)item->real_buffer;
pool->screen->b.b.resource_destroy(
screen, res);
}
free(item);
return;
}
}
LIST_FOR_EACH_ENTRY_SAFE(item, next, pool->unallocated_list, link) {
if (item->id == id) {
list_del(&item->link);
if (item->real_buffer) {
res = (struct pipe_resource *)item->real_buffer;
pool->screen->b.b.resource_destroy(
screen, res);
}
free(item);
return;
}
}
fprintf(stderr, "Internal error, invalid id %"PRIi64" "
"for compute_memory_free\n", id);
assert(0 && "error");
}
/**
* Creates pending allocations for new items, these items are
* placed in the unallocated_list.
* \param size_in_dw The size, in double words, of the new item.
* \return The new item
* \see r600_compute_global_buffer_create
*/
struct compute_memory_item* compute_memory_alloc(
struct compute_memory_pool* pool,
int64_t size_in_dw)
{
struct compute_memory_item *new_item = NULL;
COMPUTE_DBG(pool->screen, "* compute_memory_alloc() size_in_dw = %"PRIi64" (%"PRIi64" bytes)\n",
size_in_dw, 4 * size_in_dw);
new_item = (struct compute_memory_item *)
CALLOC(sizeof(struct compute_memory_item), 1);
if (new_item == NULL)
return NULL;
new_item->size_in_dw = size_in_dw;
new_item->start_in_dw = -1; /* mark pending */
new_item->id = pool->next_id++;
new_item->pool = pool;
new_item->real_buffer = NULL;
list_addtail(&new_item->link, pool->unallocated_list);
COMPUTE_DBG(pool->screen, " + Adding item %p id = %"PRIi64" size = %"PRIi64" (%"PRIi64" bytes)\n",
new_item, new_item->id, new_item->size_in_dw,
new_item->size_in_dw * 4);
return new_item;
}
/**
* Transfer data host<->device, offset and size is in bytes.
* \param device_to_host 1 for device->host, 0 for host->device.
* \see compute_memory_shadow
*/
void compute_memory_transfer(
struct compute_memory_pool* pool,
struct pipe_context * pipe,
int device_to_host,
struct compute_memory_item* chunk,
void* data,
int offset_in_chunk,
int size)
{
int64_t aligned_size = pool->size_in_dw;
struct pipe_resource* gart = (struct pipe_resource*)pool->bo;
int64_t internal_offset = chunk->start_in_dw*4 + offset_in_chunk;
struct pipe_transfer *xfer;
uint32_t *map;
assert(gart);
COMPUTE_DBG(pool->screen, "* compute_memory_transfer() device_to_host = %d, "
"offset_in_chunk = %d, size = %d\n", device_to_host,
offset_in_chunk, size);
if (device_to_host) {
map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_READ,
&(struct pipe_box) { .width = aligned_size * 4,
.height = 1, .depth = 1 }, &xfer);
assert(xfer);
assert(map);
memcpy(data, map + internal_offset, size);
pipe->transfer_unmap(pipe, xfer);
} else {
map = pipe->transfer_map(pipe, gart, 0, PIPE_TRANSFER_WRITE,
&(struct pipe_box) { .width = aligned_size * 4,
.height = 1, .depth = 1 }, &xfer);
assert(xfer);
assert(map);
memcpy(map + internal_offset, data, size);
pipe->transfer_unmap(pipe, xfer);
}
}
/**
* Transfer data between chunk<->data, it is for VRAM<->GART transfers
*/
void compute_memory_transfer_direct(
struct compute_memory_pool* pool,
int chunk_to_data,
struct compute_memory_item* chunk,
struct r600_resource* data,
int offset_in_chunk,
int offset_in_data,
int size)
{
///TODO: DMA
}
|