1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
|
/*
* Copyright (C) 2009 Nicolai Haehnle.
* Copyright 2011 Tom Stellard <tstellar@gmail.com>
*
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "radeon_program_pair.h"
#include <stdio.h>
#include "main/glheader.h"
#include "util/register_allocate.h"
#include "util/u_memory.h"
#include "util/ralloc.h"
#include "r300_fragprog_swizzle.h"
#include "radeon_compiler.h"
#include "radeon_compiler_util.h"
#include "radeon_dataflow.h"
#include "radeon_list.h"
#include "radeon_regalloc.h"
#include "radeon_variable.h"
#define VERBOSE 0
#define DBG(...) do { if (VERBOSE) fprintf(stderr, __VA_ARGS__); } while(0)
struct register_info {
struct live_intervals Live[4];
unsigned int Used:1;
unsigned int Allocated:1;
unsigned int File:3;
unsigned int Index:RC_REGISTER_INDEX_BITS;
unsigned int Writemask;
};
struct regalloc_state {
struct radeon_compiler * C;
struct register_info * Input;
unsigned int NumInputs;
struct register_info * Temporary;
unsigned int NumTemporaries;
unsigned int Simple;
int LoopEnd;
};
struct rc_class {
enum rc_reg_class ID;
unsigned int WritemaskCount;
/** List of writemasks that belong to this class */
unsigned int Writemasks[3];
};
static const struct rc_class rc_class_list [] = {
{RC_REG_CLASS_SINGLE, 3,
{RC_MASK_X,
RC_MASK_Y,
RC_MASK_Z}},
{RC_REG_CLASS_DOUBLE, 3,
{RC_MASK_X | RC_MASK_Y,
RC_MASK_X | RC_MASK_Z,
RC_MASK_Y | RC_MASK_Z}},
{RC_REG_CLASS_TRIPLE, 1,
{RC_MASK_X | RC_MASK_Y | RC_MASK_Z,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_ALPHA, 1,
{RC_MASK_W,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_SINGLE_PLUS_ALPHA, 3,
{RC_MASK_X | RC_MASK_W,
RC_MASK_Y | RC_MASK_W,
RC_MASK_Z | RC_MASK_W}},
{RC_REG_CLASS_DOUBLE_PLUS_ALPHA, 3,
{RC_MASK_X | RC_MASK_Y | RC_MASK_W,
RC_MASK_X | RC_MASK_Z | RC_MASK_W,
RC_MASK_Y | RC_MASK_Z | RC_MASK_W}},
{RC_REG_CLASS_TRIPLE_PLUS_ALPHA, 1,
{RC_MASK_X | RC_MASK_Y | RC_MASK_Z | RC_MASK_W,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_X, 1,
{RC_MASK_X,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_Y, 1,
{RC_MASK_Y,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_Z, 1,
{RC_MASK_Z,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_XY, 1,
{RC_MASK_X | RC_MASK_Y,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_YZ, 1,
{RC_MASK_Y | RC_MASK_Z,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_XZ, 1,
{RC_MASK_X | RC_MASK_Z,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_XW, 1,
{RC_MASK_X | RC_MASK_W,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_YW, 1,
{RC_MASK_Y | RC_MASK_W,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_ZW, 1,
{RC_MASK_Z | RC_MASK_W,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_XYW, 1,
{RC_MASK_X | RC_MASK_Y | RC_MASK_W,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_YZW, 1,
{RC_MASK_Y | RC_MASK_Z | RC_MASK_W,
RC_MASK_NONE,
RC_MASK_NONE}},
{RC_REG_CLASS_XZW, 1,
{RC_MASK_X | RC_MASK_Z | RC_MASK_W,
RC_MASK_NONE,
RC_MASK_NONE}}
};
static void print_live_intervals(struct live_intervals * src)
{
if (!src || !src->Used) {
DBG("(null)");
return;
}
DBG("(%i,%i)", src->Start, src->End);
}
static int overlap_live_intervals(struct live_intervals * a, struct live_intervals * b)
{
if (VERBOSE) {
DBG("overlap_live_intervals: ");
print_live_intervals(a);
DBG(" to ");
print_live_intervals(b);
DBG("\n");
}
if (!a->Used || !b->Used) {
DBG(" unused interval\n");
return 0;
}
if (a->Start > b->Start) {
if (a->Start < b->End) {
DBG(" overlap\n");
return 1;
}
} else if (b->Start > a->Start) {
if (b->Start < a->End) {
DBG(" overlap\n");
return 1;
}
} else { /* a->Start == b->Start */
if (a->Start != a->End && b->Start != b->End) {
DBG(" overlap\n");
return 1;
}
}
DBG(" no overlap\n");
return 0;
}
static void scan_read_callback(void * data, struct rc_instruction * inst,
rc_register_file file, unsigned int index, unsigned int mask)
{
struct regalloc_state * s = data;
struct register_info * reg;
unsigned int i;
if (file != RC_FILE_INPUT)
return;
s->Input[index].Used = 1;
reg = &s->Input[index];
for (i = 0; i < 4; i++) {
if (!((mask >> i) & 0x1)) {
continue;
}
reg->Live[i].Used = 1;
reg->Live[i].Start = 0;
reg->Live[i].End =
s->LoopEnd > inst->IP ? s->LoopEnd : inst->IP;
}
}
static void remap_register(void * data, struct rc_instruction * inst,
rc_register_file * file, unsigned int * index)
{
struct regalloc_state * s = data;
const struct register_info * reg;
if (*file == RC_FILE_TEMPORARY && s->Simple)
reg = &s->Temporary[*index];
else if (*file == RC_FILE_INPUT)
reg = &s->Input[*index];
else
return;
if (reg->Allocated) {
*index = reg->Index;
}
}
static void alloc_input_simple(void * data, unsigned int input,
unsigned int hwreg)
{
struct regalloc_state * s = data;
if (input >= s->NumInputs)
return;
s->Input[input].Allocated = 1;
s->Input[input].File = RC_FILE_TEMPORARY;
s->Input[input].Index = hwreg;
}
/* This functions offsets the temporary register indices by the number
* of input registers, because input registers are actually temporaries and
* should not occupy the same space.
*
* This pass is supposed to be used to maintain correct allocation of inputs
* if the standard register allocation is disabled. */
static void do_regalloc_inputs_only(struct regalloc_state * s)
{
for (unsigned i = 0; i < s->NumTemporaries; i++) {
s->Temporary[i].Allocated = 1;
s->Temporary[i].File = RC_FILE_TEMPORARY;
s->Temporary[i].Index = i + s->NumInputs;
}
}
static unsigned int is_derivative(rc_opcode op)
{
return (op == RC_OPCODE_DDX || op == RC_OPCODE_DDY);
}
static int find_class(
const struct rc_class * classes,
unsigned int writemask,
unsigned int max_writemask_count)
{
unsigned int i;
for (i = 0; i < RC_REG_CLASS_COUNT; i++) {
unsigned int j;
if (classes[i].WritemaskCount > max_writemask_count) {
continue;
}
for (j = 0; j < 3; j++) {
if (classes[i].Writemasks[j] == writemask) {
return i;
}
}
}
return -1;
}
struct variable_get_class_cb_data {
unsigned int * can_change_writemask;
unsigned int conversion_swizzle;
};
static void variable_get_class_read_cb(
void * userdata,
struct rc_instruction * inst,
struct rc_pair_instruction_arg * arg,
struct rc_pair_instruction_source * src)
{
struct variable_get_class_cb_data * d = userdata;
unsigned int new_swizzle = rc_adjust_channels(arg->Swizzle,
d->conversion_swizzle);
if (!r300_swizzle_is_native_basic(new_swizzle)) {
*d->can_change_writemask = 0;
}
}
static enum rc_reg_class variable_get_class(
struct rc_variable * variable,
const struct rc_class * classes)
{
unsigned int i;
unsigned int can_change_writemask= 1;
unsigned int writemask = rc_variable_writemask_sum(variable);
struct rc_list * readers = rc_variable_readers_union(variable);
int class_index;
if (!variable->C->is_r500) {
struct rc_class c;
struct rc_variable * var_ptr;
/* The assumption here is that if an instruction has type
* RC_INSTRUCTION_NORMAL then it is a TEX instruction.
* r300 and r400 can't swizzle the result of a TEX lookup. */
for (var_ptr = variable; var_ptr; var_ptr = var_ptr->Friend) {
if (var_ptr->Inst->Type == RC_INSTRUCTION_NORMAL) {
writemask = RC_MASK_XYZW;
}
}
/* Check if it is possible to do swizzle packing for r300/r400
* without creating non-native swizzles. */
class_index = find_class(classes, writemask, 3);
if (class_index < 0) {
goto error;
}
c = classes[class_index];
if (c.WritemaskCount == 1) {
goto done;
}
for (i = 0; i < c.WritemaskCount; i++) {
struct rc_variable * var_ptr;
for (var_ptr = variable; var_ptr;
var_ptr = var_ptr->Friend) {
int j;
unsigned int conversion_swizzle =
rc_make_conversion_swizzle(
writemask, c.Writemasks[i]);
struct variable_get_class_cb_data d;
d.can_change_writemask = &can_change_writemask;
d.conversion_swizzle = conversion_swizzle;
/* If we get this far var_ptr->Inst has to
* be a pair instruction. If variable or any
* of its friends are normal instructions,
* then the writemask will be set to RC_MASK_XYZW
* and the function will return before it gets
* here. */
rc_pair_for_all_reads_arg(var_ptr->Inst,
variable_get_class_read_cb, &d);
for (j = 0; j < var_ptr->ReaderCount; j++) {
unsigned int old_swizzle;
unsigned int new_swizzle;
struct rc_reader r = var_ptr->Readers[j];
if (r.Inst->Type ==
RC_INSTRUCTION_PAIR ) {
old_swizzle = r.U.P.Arg->Swizzle;
} else {
/* Source operands of TEX
* instructions can't be
* swizzle on r300/r400 GPUs.
*/
can_change_writemask = 0;
break;
}
new_swizzle = rc_adjust_channels(
old_swizzle, conversion_swizzle);
if (!r300_swizzle_is_native_basic(
new_swizzle)) {
can_change_writemask = 0;
break;
}
}
if (!can_change_writemask) {
break;
}
}
if (!can_change_writemask) {
break;
}
}
}
if (variable->Inst->Type == RC_INSTRUCTION_PAIR) {
/* DDX/DDY seem to always fail when their writemasks are
* changed.*/
if (is_derivative(variable->Inst->U.P.RGB.Opcode)
|| is_derivative(variable->Inst->U.P.Alpha.Opcode)) {
can_change_writemask = 0;
}
}
for ( ; readers; readers = readers->Next) {
struct rc_reader * r = readers->Item;
if (r->Inst->Type == RC_INSTRUCTION_PAIR) {
if (r->U.P.Arg->Source == RC_PAIR_PRESUB_SRC) {
can_change_writemask = 0;
break;
}
/* DDX/DDY also fail when their swizzles are changed. */
if (is_derivative(r->Inst->U.P.RGB.Opcode)
|| is_derivative(r->Inst->U.P.Alpha.Opcode)) {
can_change_writemask = 0;
break;
}
}
}
class_index = find_class(classes, writemask,
can_change_writemask ? 3 : 1);
done:
if (class_index > -1) {
return classes[class_index].ID;
} else {
error:
rc_error(variable->C,
"Could not find class for index=%u mask=%u\n",
variable->Dst.Index, writemask);
return 0;
}
}
static unsigned int overlap_live_intervals_array(
struct live_intervals * a,
struct live_intervals * b)
{
unsigned int a_chan, b_chan;
for (a_chan = 0; a_chan < 4; a_chan++) {
for (b_chan = 0; b_chan < 4; b_chan++) {
if (overlap_live_intervals(&a[a_chan], &b[b_chan])) {
return 1;
}
}
}
return 0;
}
static unsigned int reg_get_index(int reg)
{
return reg / RC_MASK_XYZW;
}
static unsigned int reg_get_writemask(int reg)
{
return (reg % RC_MASK_XYZW) + 1;
}
static int get_reg_id(unsigned int index, unsigned int writemask)
{
assert(writemask);
if (writemask == 0) {
return 0;
}
return (index * RC_MASK_XYZW) + (writemask - 1);
}
#if VERBOSE
static void print_reg(int reg)
{
unsigned int index = reg_get_index(reg);
unsigned int mask = reg_get_writemask(reg);
fprintf(stderr, "Temp[%u].%c%c%c%c", index,
mask & RC_MASK_X ? 'x' : '_',
mask & RC_MASK_Y ? 'y' : '_',
mask & RC_MASK_Z ? 'z' : '_',
mask & RC_MASK_W ? 'w' : '_');
}
#endif
static void add_register_conflicts(
struct ra_regs * regs,
unsigned int max_temp_regs)
{
unsigned int index, a_mask, b_mask;
for (index = 0; index < max_temp_regs; index++) {
for(a_mask = 1; a_mask <= RC_MASK_XYZW; a_mask++) {
for (b_mask = a_mask + 1; b_mask <= RC_MASK_XYZW;
b_mask++) {
if (a_mask & b_mask) {
ra_add_reg_conflict(regs,
get_reg_id(index, a_mask),
get_reg_id(index, b_mask));
}
}
}
}
}
static void do_advanced_regalloc(struct regalloc_state * s)
{
unsigned int i, input_node, node_count, node_index;
unsigned int * node_classes;
struct rc_instruction * inst;
struct rc_list * var_ptr;
struct rc_list * variables;
struct ra_graph * graph;
const struct rc_regalloc_state *ra_state = s->C->regalloc_state;
/* Get list of program variables */
variables = rc_get_variables(s->C);
node_count = rc_list_count(variables);
node_classes = memory_pool_malloc(&s->C->Pool,
node_count * sizeof(unsigned int));
for (var_ptr = variables, node_index = 0; var_ptr;
var_ptr = var_ptr->Next, node_index++) {
unsigned int class_index;
/* Compute the live intervals */
rc_variable_compute_live_intervals(var_ptr->Item);
class_index = variable_get_class(var_ptr->Item, rc_class_list);
node_classes[node_index] = ra_state->class_ids[class_index];
}
/* Calculate live intervals for input registers */
for (inst = s->C->Program.Instructions.Next;
inst != &s->C->Program.Instructions;
inst = inst->Next) {
rc_opcode op = rc_get_flow_control_inst(inst);
if (op == RC_OPCODE_BGNLOOP) {
struct rc_instruction * endloop =
rc_match_bgnloop(inst);
if (endloop->IP > s->LoopEnd) {
s->LoopEnd = endloop->IP;
}
}
rc_for_all_reads_mask(inst, scan_read_callback, s);
}
/* Compute the writemask for inputs. */
for (i = 0; i < s->NumInputs; i++) {
unsigned int chan, writemask = 0;
for (chan = 0; chan < 4; chan++) {
if (s->Input[i].Live[chan].Used) {
writemask |= (1 << chan);
}
}
s->Input[i].Writemask = writemask;
}
graph = ra_alloc_interference_graph(ra_state->regs,
node_count + s->NumInputs);
for (node_index = 0; node_index < node_count; node_index++) {
ra_set_node_class(graph, node_index, node_classes[node_index]);
}
/* Build the interference graph */
for (var_ptr = variables, node_index = 0; var_ptr;
var_ptr = var_ptr->Next,node_index++) {
struct rc_list * a, * b;
unsigned int b_index;
for (a = var_ptr, b = var_ptr->Next, b_index = node_index + 1;
b; b = b->Next, b_index++) {
struct rc_variable * var_a = a->Item;
while (var_a) {
struct rc_variable * var_b = b->Item;
while (var_b) {
if (overlap_live_intervals_array(var_a->Live, var_b->Live)) {
ra_add_node_interference(graph,
node_index, b_index);
}
var_b = var_b->Friend;
}
var_a = var_a->Friend;
}
}
}
/* Add input registers to the interference graph */
for (i = 0, input_node = 0; i< s->NumInputs; i++) {
if (!s->Input[i].Writemask) {
continue;
}
for (var_ptr = variables, node_index = 0;
var_ptr; var_ptr = var_ptr->Next, node_index++) {
struct rc_variable * var = var_ptr->Item;
if (overlap_live_intervals_array(s->Input[i].Live,
var->Live)) {
ra_add_node_interference(graph, node_index,
node_count + input_node);
}
}
/* Manually allocate a register for this input */
ra_set_node_reg(graph, node_count + input_node, get_reg_id(
s->Input[i].Index, s->Input[i].Writemask));
input_node++;
}
if (!ra_allocate(graph)) {
rc_error(s->C, "Ran out of hardware temporaries\n");
return;
}
/* Rewrite the registers */
for (var_ptr = variables, node_index = 0; var_ptr;
var_ptr = var_ptr->Next, node_index++) {
int reg = ra_get_node_reg(graph, node_index);
unsigned int writemask = reg_get_writemask(reg);
unsigned int index = reg_get_index(reg);
struct rc_variable * var = var_ptr->Item;
if (!s->C->is_r500 && var->Inst->Type == RC_INSTRUCTION_NORMAL) {
writemask = rc_variable_writemask_sum(var);
}
if (var->Dst.File == RC_FILE_INPUT) {
continue;
}
rc_variable_change_dst(var, index, writemask);
}
ralloc_free(graph);
}
void rc_init_regalloc_state(struct rc_regalloc_state *s)
{
unsigned i, j, index;
unsigned **ra_q_values;
/* Pre-computed q values. This array describes the maximum number of
* a class's [row] registers that are in conflict with a single
* register from another class [column].
*
* For example:
* q_values[0][2] is 3, because a register from class 2
* (RC_REG_CLASS_TRIPLE) may conflict with at most 3 registers from
* class 0 (RC_REG_CLASS_SINGLE) e.g. T0.xyz conflicts with T0.x, T0.y,
* and T0.z.
*
* q_values[2][0] is 1, because a register from class 0
* (RC_REG_CLASS_SINGLE) may conflict with at most 1 register from
* class 2 (RC_REG_CLASS_TRIPLE) e.g. T0.x conflicts with T0.xyz
*
* The q values for each register class [row] will never be greater
* than the maximum number of writemask combinations for that class.
*
* For example:
*
* Class 2 (RC_REG_CLASS_TRIPLE) only has 1 writemask combination,
* so no value in q_values[2][0..RC_REG_CLASS_COUNT] will be greater
* than 1.
*/
const unsigned q_values[RC_REG_CLASS_COUNT][RC_REG_CLASS_COUNT] = {
{1, 2, 3, 0, 1, 2, 3, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2},
{2, 3, 3, 0, 2, 3, 3, 2, 2, 2, 3, 3, 3, 2, 2, 2, 3, 3, 3},
{1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1},
{1, 2, 3, 3, 3, 3, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3},
{2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1},
{1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0},
{1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1},
{1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1},
{1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1},
{1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
};
/* Allocate the main ra data structure */
s->regs = ra_alloc_reg_set(NULL, R500_PFS_NUM_TEMP_REGS * RC_MASK_XYZW,
true);
/* Create the register classes */
for (i = 0; i < RC_REG_CLASS_COUNT; i++) {
const struct rc_class *class = &rc_class_list[i];
s->class_ids[class->ID] = ra_alloc_reg_class(s->regs);
/* Assign registers to the classes */
for (index = 0; index < R500_PFS_NUM_TEMP_REGS; index++) {
for (j = 0; j < class->WritemaskCount; j++) {
int reg_id = get_reg_id(index,
class->Writemasks[j]);
ra_class_add_reg(s->regs,
s->class_ids[class->ID], reg_id);
}
}
}
/* Set the q values. The q_values array is indexed based on
* the rc_reg_class ID (RC_REG_CLASS_*) which might be
* different than the ID assigned to that class by ra.
* This why we need to manually construct this list.
*/
ra_q_values = MALLOC(RC_REG_CLASS_COUNT * sizeof(unsigned *));
for (i = 0; i < RC_REG_CLASS_COUNT; i++) {
ra_q_values[i] = MALLOC(RC_REG_CLASS_COUNT * sizeof(unsigned));
for (j = 0; j < RC_REG_CLASS_COUNT; j++) {
ra_q_values[s->class_ids[i]][s->class_ids[j]] =
q_values[i][j];
}
}
/* Add register conflicts */
add_register_conflicts(s->regs, R500_PFS_NUM_TEMP_REGS);
ra_set_finalize(s->regs, ra_q_values);
for (i = 0; i < RC_REG_CLASS_COUNT; i++) {
FREE(ra_q_values[i]);
}
FREE(ra_q_values);
}
void rc_destroy_regalloc_state(struct rc_regalloc_state *s)
{
ralloc_free(s->regs);
}
/**
* @param user This parameter should be a pointer to an integer value. If this
* integer value is zero, then a simple register allocator will be used that
* only allocates space for input registers (\sa do_regalloc_inputs_only). If
* user is non-zero, then the regular register allocator will be used
* (\sa do_regalloc).
*/
void rc_pair_regalloc(struct radeon_compiler *cc, void *user)
{
struct r300_fragment_program_compiler *c =
(struct r300_fragment_program_compiler*)cc;
struct regalloc_state s;
int * do_full_regalloc = (int*)user;
memset(&s, 0, sizeof(s));
s.C = cc;
s.NumInputs = rc_get_max_index(cc, RC_FILE_INPUT) + 1;
s.Input = memory_pool_malloc(&cc->Pool,
s.NumInputs * sizeof(struct register_info));
memset(s.Input, 0, s.NumInputs * sizeof(struct register_info));
s.NumTemporaries = rc_get_max_index(cc, RC_FILE_TEMPORARY) + 1;
s.Temporary = memory_pool_malloc(&cc->Pool,
s.NumTemporaries * sizeof(struct register_info));
memset(s.Temporary, 0, s.NumTemporaries * sizeof(struct register_info));
rc_recompute_ips(s.C);
c->AllocateHwInputs(c, &alloc_input_simple, &s);
if (*do_full_regalloc) {
do_advanced_regalloc(&s);
} else {
s.Simple = 1;
do_regalloc_inputs_only(&s);
}
/* Rewrite inputs and if we are doing the simple allocation, rewrite
* temporaries too. */
for (struct rc_instruction *inst = s.C->Program.Instructions.Next;
inst != &s.C->Program.Instructions;
inst = inst->Next) {
rc_remap_registers(inst, &remap_register, &s);
}
}
|