aboutsummaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/panfrost/pan_instancing.c
blob: 473026cb8a0607ff6749698f3bddeaaa584bc728 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
/*
 * Copyright (C) 2018-2019 Alyssa Rosenzweig
 * Copyright (C) 2019 Collabora, Ltd.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

#include "pan_bo.h"
#include "pan_context.h"

/* See mali_job for notes on how this works. But basically, for small vertex
 * counts, we have a lookup table, and for large vertex counts, we look at the
 * high bits as a heuristic. This has to match exactly how the hardware
 * calculates this (which is why the algorithm is so weird) or else instancing
 * will break. */

/* Given an odd number (of the form 2k + 1), compute k */
#define ODD(odd) ((odd - 1) >> 1)

/* Given the shift/odd pair, recover the original padded integer */

unsigned
pan_expand_shift_odd(struct pan_shift_odd o)
{
        unsigned odd = 2*o.odd + 1;
        unsigned shift = 1 << o.shift;
        return odd * shift;
}

static inline struct pan_shift_odd
pan_factored(unsigned pot, unsigned odd)
{
        struct pan_shift_odd out;

        assert(util_is_power_of_two_or_zero(pot));
        assert(odd & 1);

        /* Odd is of the form (2k + 1) = (k << 1) + 1 = (k << 1) | 1.
         *
         * So (odd >> 1) = ((k << 1) | 1) >> 1 = ((k << 1) >> 1) | (1 >> 1)
         *  = k | 0 = k */

        out.odd = (odd >> 1);

        /* POT is the form (1 << shift) */
        out.shift = __builtin_ctz(pot);

        return out;
}


/* For small vertices. Second argument is whether the primitive takes a
 * power-of-two argument, which determines how rounding works. True for POINTS
 * and LINES, false for TRIANGLES. Presumably true for QUADS but you'd be crazy
 * to try instanced quads on ES class hardware <3 */

static struct {
        unsigned pot;
        unsigned odd;
} small_lut[] = {
        {  0, 1 },
        {  1, 1 },
        {  2, 1 },
        {  1, 3 },
        {  4, 1 },
        {  1, 5 },
        {  2, 3 },
        {  1, 7 },
        {  8, 1 },
        {  1, 9 },
        {  2, 5 },
        {  4, 3 }, /* 11 */
        {  4, 3 },
        {  2, 7 }, /* 13 */
        {  2, 7 },
        { 16, 1 }, /* 15 */
        { 16, 1 },
        {  2, 9 },
        {  4, 5 }, /* 20 */
        {  4, 5 }
};

static struct pan_shift_odd
panfrost_small_padded_vertex_count(unsigned idx)
{
        return pan_factored(
                       small_lut[idx].pot,
                       small_lut[idx].odd);
}

static struct pan_shift_odd
panfrost_large_padded_vertex_count(uint32_t vertex_count)
{
        struct pan_shift_odd out = { 0 };

        /* First, we have to find the highest set one */
        unsigned highest = 32 - __builtin_clz(vertex_count);

        /* Using that, we mask out the highest 4-bits */
        unsigned n = highest - 4;
        unsigned nibble = (vertex_count >> n) & 0xF;

        /* Great, we have the nibble. Now we can just try possibilities. Note
         * that we don't care about the bottom most bit in most cases, and we
         * know the top bit must be 1 */

        unsigned middle_two = (nibble >> 1) & 0x3;

        switch (middle_two) {
        case 0b00:
                if (nibble & 1)
                        return pan_factored(1 << n, 9);
                else
                        return pan_factored(1 << (n + 1), 5);
        case 0b01:
                return pan_factored(1 << (n + 2), 3);
        case 0b10:
                return pan_factored(1 << (n + 1), 7);
        case 0b11:
                return pan_factored(1 << (n + 4), 1);
        default:
                unreachable("Invalid two bits");
        }

        return out;
}

struct pan_shift_odd
panfrost_padded_vertex_count(
        unsigned vertex_count,
        bool pot)
{
        assert(vertex_count > 0);

        if (vertex_count < 20) {
                /* Add an off-by-one if it won't align naturally (quirk of the hardware) */
                //if (!pot)
                //      vertex_count++;

                return panfrost_small_padded_vertex_count(vertex_count);
        } else
                return panfrost_large_padded_vertex_count(vertex_count);
}

/* The much, much more irritating case -- instancing is enabled. See
 * panfrost_job.h for notes on how this works */

static unsigned
panfrost_vertex_instanced(
        struct panfrost_batch *batch,
        struct panfrost_resource *rsrc,
        unsigned divisor,
        union mali_attr *attrs,
        mali_ptr addr,
        unsigned vertex_count,
        unsigned instance_count)
{
        /* First, grab the padded vertex count */

        struct pan_shift_odd o = {
                .shift = batch->ctx->payloads[PIPE_SHADER_FRAGMENT].instance_shift,
                .odd = batch->ctx->payloads[PIPE_SHADER_FRAGMENT].instance_odd,
        };

        unsigned padded_count = batch->ctx->padded_count;

        /* Depending if there is an instance divisor or not, packing varies.
         * When there is a divisor, the hardware-level divisor is actually the
         * product of the instance divisor and the padded count */

        unsigned hw_divisor = padded_count * divisor;

        if (divisor == 0) {
                /* Per-vertex attributes use the MODULO mode. First, compute
                 * the modulus */

                attrs->elements |= MALI_ATTR_MODULO;
                attrs->shift = o.shift;
                attrs->extra_flags = o.odd;

                return 1;
        } else if (util_is_power_of_two_or_zero(hw_divisor)) {
                /* If there is a divisor but the hardware divisor works out to
                 * a power of two (not terribly exceptional), we can use an
                 * easy path (just shifting) */

                attrs->elements |= MALI_ATTR_POT_DIVIDE;
                attrs->shift = __builtin_ctz(hw_divisor);

                return 1;
        } else {
                /* We have a NPOT divisor. Here's the fun one (multipling by
                 * the inverse and shifting) */

                /* floor(log2(d)) */
                unsigned shift = util_logbase2(hw_divisor);

                /* m = ceil(2^(32 + shift) / d) */
                uint64_t shift_hi = 32 + shift;
                uint64_t t = 1ll << shift_hi;
                double t_f = t;
                double hw_divisor_d = hw_divisor;
                double m_f = ceil(t_f / hw_divisor_d);
                unsigned m = m_f;

                /* Default case */
                uint32_t magic_divisor = m, extra_flags = 0;

                /* e = 2^(shift + 32) % d */
                uint64_t e = t % hw_divisor;

                /* Apply round-down algorithm? e <= 2^shift?. XXX: The blob
                 * seems to use a different condition */
                if (e <= (1ll << shift)) {
                        magic_divisor = m - 1;
                        extra_flags = 1;
                }

                /* Top flag implicitly set */
                assert(magic_divisor & (1u << 31));
                magic_divisor &= ~(1u << 31);

                /* Upload to two different slots */

                attrs[0].elements |= MALI_ATTR_NPOT_DIVIDE;
                attrs[0].shift = shift;
                attrs[0].extra_flags = extra_flags;

                attrs[1].unk = 0x20;
                attrs[1].magic_divisor = magic_divisor;
                attrs[1].zero = 0;
                attrs[1].divisor = divisor;

                return 2;
        }
}

void
panfrost_emit_vertex_data(struct panfrost_batch *batch)
{
        struct panfrost_context *ctx = batch->ctx;
        struct panfrost_vertex_state *so = ctx->vertex;

        /* Staged mali_attr, and index into them. i =/= k, depending on the
         * vertex buffer mask and instancing. Twice as much room is allocated,
         * for a worst case of NPOT_DIVIDEs which take up extra slot */
        union mali_attr attrs[PIPE_MAX_ATTRIBS * 2];
        unsigned k = 0;

        unsigned vertex_count = ctx->vertex_count;
        unsigned instanced_count = ctx->instance_count;

        for (unsigned i = 0; i < so->num_elements; ++i) {
                /* We map a mali_attr to be 1:1 with the mali_attr_meta, which
                 * means duplicating some vertex buffers (who cares? aside from
                 * maybe some caching implications but I somehow doubt that
                 * matters) */

                struct pipe_vertex_element *elem = &so->pipe[i];
                unsigned vbi = elem->vertex_buffer_index;

                /* The exception to 1:1 mapping is that we can have multiple
                 * entries (NPOT divisors), so we fixup anyways */

                so->hw[i].index = k;

                if (!(ctx->vb_mask & (1 << vbi))) continue;

                struct pipe_vertex_buffer *buf = &ctx->vertex_buffers[vbi];
                struct panfrost_resource *rsrc = (struct panfrost_resource *) (buf->buffer.resource);

                if (!rsrc) continue;

                /* Align to 64 bytes by masking off the lower bits. This
                 * will be adjusted back when we fixup the src_offset in
                 * mali_attr_meta */

                mali_ptr raw_addr = rsrc->bo->gpu + buf->buffer_offset;
                mali_ptr addr = raw_addr & ~63;
                unsigned chopped_addr = raw_addr - addr;

                /* Add a dependency of the batch on the vertex buffer */
                panfrost_batch_add_bo(batch, rsrc->bo,
                                      PAN_BO_ACCESS_SHARED |
                                      PAN_BO_ACCESS_READ |
                                      PAN_BO_ACCESS_VERTEX_TILER);

                /* Set common fields */
                attrs[k].elements = addr;
                attrs[k].stride = buf->stride;

                /* Since we advanced the base pointer, we shrink the buffer
                 * size */
                attrs[k].size = rsrc->base.width0 - buf->buffer_offset;

                /* We need to add the extra size we masked off (for
                 * correctness) so the data doesn't get clamped away */
                attrs[k].size += chopped_addr;

                /* For non-instancing make sure we initialize */
                attrs[k].shift = attrs[k].extra_flags = 0;

                /* Instancing uses a dramatically different code path than
                 * linear, so dispatch for the actual emission now that the
                 * common code is finished */

                unsigned divisor = elem->instance_divisor;

                if (divisor && instanced_count == 1) {
                        /* Silly corner case where there's a divisor(=1) but
                         * there's no legitimate instancing. So we want *every*
                         * attribute to be the same. So set stride to zero so
                         * we don't go anywhere. */

                        attrs[k].size = attrs[k].stride + chopped_addr;
                        attrs[k].stride = 0;
                        attrs[k++].elements |= MALI_ATTR_LINEAR;
                } else if (instanced_count <= 1) {
                        /* Normal, non-instanced attributes */
                        attrs[k++].elements |= MALI_ATTR_LINEAR;
                } else {
                        k += panfrost_vertex_instanced(
                                     batch, rsrc, divisor, &attrs[k], addr, vertex_count, instanced_count);
                }
        }

        /* Upload whatever we emitted and go */

        ctx->payloads[PIPE_SHADER_VERTEX].postfix.attributes =
                panfrost_upload_transient(batch, attrs, k * sizeof(union mali_attr));
}