1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
|
/*
* Copyright 2011 Christoph Bumiller
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "nv50_ir_target_nvc0.h"
namespace nv50_ir {
Target *getTargetNVC0(unsigned int chipset)
{
return new TargetNVC0(chipset);
}
TargetNVC0::TargetNVC0(unsigned int card) : Target(false, card >= 0xe4)
{
chipset = card;
initOpInfo();
}
// BULTINS / LIBRARY FUNCTIONS:
// lazyness -> will just hardcode everything for the time being
// Will probably make this nicer once we support subroutines properly,
// i.e. when we have an input IR that provides function declarations.
// TODO: separate version for nve4+ which doesn't like the 4-byte insn formats
static const uint32_t nvc0_builtin_code[] =
{
// DIV U32: slow unsigned integer division
//
// UNR recurrence (q = a / b):
// look for z such that 2^32 - b <= b * z < 2^32
// then q - 1 <= (a * z) / 2^32 <= q
//
// INPUT: $r0: dividend, $r1: divisor
// OUTPUT: $r0: result, $r1: modulus
// CLOBBER: $r2 - $r3, $p0 - $p1
// SIZE: 22 / 14 * 8 bytes
//
#if 1
0x04009c03, 0x78000000,
0x7c209c82, 0x38000000, // 0x7c209cdd,
0x0400dde2, 0x18000000, // 0x0010dd18,
0x08309c03, 0x60000000,
0x05205d04, 0x1c000000, // 0x05605c18,
0x0810dc03, 0x50000000, // 0x0810dc2a,
0x0c209c43, 0x20040000,
0x0810dc03, 0x50000000,
0x0c209c43, 0x20040000,
0x0810dc03, 0x50000000,
0x0c209c43, 0x20040000,
0x0810dc03, 0x50000000,
0x0c209c43, 0x20040000,
0x0810dc03, 0x50000000,
0x0c209c43, 0x20040000,
0x0000dde4, 0x28000000,
0x08001c43, 0x50000000,
0x05209d04, 0x1c000000, // 0x05609c18,
0x00105c03, 0x20060000, // 0x0010430d,
0x0811dc03, 0x1b0e0000,
0x08104103, 0x48000000,
0x04000002, 0x08000000,
0x0811c003, 0x1b0e0000,
0x08104103, 0x48000000,
0x04000002, 0x08000000, // 0x040000ac,
0x00001de7, 0x90000000, // 0x90001dff,
#else
0x0401dc03, 0x1b0e0000,
0x00008003, 0x78000000,
0x0400c003, 0x78000000,
0x0c20c103, 0x48000000,
0x0c108003, 0x60000000,
0x00005c28,
0x00001d18,
0x0031c023, 0x1b0ec000,
0xb000a1e7, 0x40000000,
0x04000003, 0x6000c000,
0x0813dc03, 0x1b000000,
0x0420446c,
0x040004bd,
0x04208003, 0x5800c000,
0x0430c103, 0x4800c000,
0x0ffc5dff,
0x90001dff,
#endif
// DIV S32: slow signed integer division
//
// INPUT: $r0: dividend, $r1: divisor
// OUTPUT: $r0: result, $r1: modulus
// CLOBBER: $r2 - $r3, $p0 - $p3
// SIZE: 18 * 8 bytes
//
0xfc05dc23, 0x188e0000,
0xfc17dc23, 0x18c40000,
0x01201ec4, 0x1c000000, // 0x03301e18,
0x05205ec4, 0x1c000000, // 0x07305e18,
0x0401dc03, 0x1b0e0000,
0x00008003, 0x78000000,
0x0400c003, 0x78000000,
0x0c20c103, 0x48000000,
0x0c108003, 0x60000000,
0x00005de4, 0x28000000, // 0x00005c28,
0x00001de2, 0x18000000, // 0x00001d18,
0x0031c023, 0x1b0ec000,
0xe000a1e7, 0x40000000, // 0xb000a1e7, 0x40000000,
0x04000003, 0x6000c000,
0x0813dc03, 0x1b000000,
0x04204603, 0x48000000, // 0x0420446c,
0x04000442, 0x38000000, // 0x040004bd,
0x04208003, 0x5800c000,
0x0430c103, 0x4800c000,
0xe0001de7, 0x4003fffe, // 0x0ffc5dff,
0x01200f84, 0x1c000000, // 0x01700e18,
0x05204b84, 0x1c000000, // 0x05704a18,
0x00001de7, 0x90000000, // 0x90001dff,
// RCP F64: Newton Raphson reciprocal(x): r_{i+1} = r_i * (2.0 - x * r_i)
//
// INPUT: $r0d (x)
// OUTPUT: $r0d (rcp(x))
// CLOBBER: $r2 - $r7
// SIZE: 9 * 8 bytes
//
0x9810dc08,
0x00009c28,
0x4001df18,
0x00019d18,
0x08011e01, 0x200c0000,
0x10209c01, 0x50000000,
0x08011e01, 0x200c0000,
0x10209c01, 0x50000000,
0x08011e01, 0x200c0000,
0x10201c01, 0x50000000,
0x00001de7, 0x90000000,
// RSQ F64: Newton Raphson rsqrt(x): r_{i+1} = r_i * (1.5 - 0.5 * x * r_i * r_i)
//
// INPUT: $r0d (x)
// OUTPUT: $r0d (rsqrt(x))
// CLOBBER: $r2 - $r7
// SIZE: 14 * 8 bytes
//
0x9c10dc08,
0x00009c28,
0x00019d18,
0x3fe1df18,
0x18001c01, 0x50000000,
0x0001dde2, 0x18ffe000,
0x08211c01, 0x50000000,
0x10011e01, 0x200c0000,
0x10209c01, 0x50000000,
0x08211c01, 0x50000000,
0x10011e01, 0x200c0000,
0x10209c01, 0x50000000,
0x08211c01, 0x50000000,
0x10011e01, 0x200c0000,
0x10201c01, 0x50000000,
0x00001de7, 0x90000000,
};
static const uint16_t nvc0_builtin_offsets[NVC0_BUILTIN_COUNT] =
{
0,
8 * (26),
8 * (26 + 23),
8 * (26 + 23 + 9)
};
void
TargetNVC0::getBuiltinCode(const uint32_t **code, uint32_t *size) const
{
*code = &nvc0_builtin_code[0];
*size = sizeof(nvc0_builtin_code);
}
uint32_t
TargetNVC0::getBuiltinOffset(int builtin) const
{
assert(builtin < NVC0_BUILTIN_COUNT);
return nvc0_builtin_offsets[builtin];
}
struct opProperties
{
operation op;
unsigned int mNeg : 4;
unsigned int mAbs : 4;
unsigned int mNot : 4;
unsigned int mSat : 4;
unsigned int fConst : 3;
unsigned int fImmd : 4; // last bit indicates if full immediate is suppoted
};
static const struct opProperties _initProps[] =
{
// neg abs not sat c[] imm
{ OP_ADD, 0x3, 0x3, 0x0, 0x8, 0x2, 0x2 | 0x8 },
{ OP_SUB, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 | 0x8 },
{ OP_MUL, 0x3, 0x0, 0x0, 0x8, 0x2, 0x2 | 0x8 },
{ OP_MAX, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
{ OP_MIN, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
{ OP_MAD, 0x7, 0x0, 0x0, 0x8, 0x6, 0x2 | 0x8 }, // special c[] constraint
{ OP_ABS, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
{ OP_NEG, 0x0, 0x1, 0x0, 0x0, 0x1, 0x0 },
{ OP_CVT, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
{ OP_CEIL, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
{ OP_FLOOR, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
{ OP_TRUNC, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
{ OP_AND, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
{ OP_OR, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
{ OP_XOR, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
{ OP_SHL, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
{ OP_SHR, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
{ OP_SET, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
{ OP_SLCT, 0x4, 0x0, 0x0, 0x0, 0x6, 0x2 }, // special c[] constraint
{ OP_PREEX2, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
{ OP_PRESIN, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
{ OP_COS, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
{ OP_SIN, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
{ OP_EX2, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
{ OP_LG2, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
{ OP_RCP, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
{ OP_RSQ, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
{ OP_DFDX, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
{ OP_DFDY, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
{ OP_CALL, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
{ OP_INSBF, 0x0, 0x0, 0x0, 0x0, 0x0, 0x4 },
{ OP_SET_AND, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
{ OP_SET_OR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
{ OP_SET_XOR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
// saturate only:
{ OP_LINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
{ OP_PINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
};
void TargetNVC0::initOpInfo()
{
unsigned int i, j;
static const uint32_t commutative[(OP_LAST + 31) / 32] =
{
// ADD, MAD, MUL, AND, OR, XOR, MAX, MIN
0x0670ca00, 0x0000003f, 0x00000000
};
static const uint32_t shortForm[(OP_LAST + 31) / 32] =
{
// ADD, MAD, MUL, AND, OR, XOR, PRESIN, PREEX2, SFN, CVT, PINTERP, MOV
0x0670ca00, 0x00000000, 0x00000000
};
static const operation noDest[] =
{
OP_STORE, OP_WRSV, OP_EXPORT, OP_BRA, OP_CALL, OP_RET, OP_EXIT,
OP_DISCARD, OP_CONT, OP_BREAK, OP_PRECONT, OP_PREBREAK, OP_PRERET,
OP_JOIN, OP_JOINAT, OP_BRKPT, OP_MEMBAR, OP_EMIT, OP_RESTART,
OP_QUADON, OP_QUADPOP, OP_TEXBAR
};
for (i = 0; i < DATA_FILE_COUNT; ++i)
nativeFileMap[i] = (DataFile)i;
nativeFileMap[FILE_ADDRESS] = FILE_GPR;
for (i = 0; i < OP_LAST; ++i) {
opInfo[i].variants = NULL;
opInfo[i].op = (operation)i;
opInfo[i].srcTypes = 1 << (int)TYPE_F32;
opInfo[i].dstTypes = 1 << (int)TYPE_F32;
opInfo[i].immdBits = 0;
opInfo[i].srcNr = operationSrcNr[i];
for (j = 0; j < opInfo[i].srcNr; ++j) {
opInfo[i].srcMods[j] = 0;
opInfo[i].srcFiles[j] = 1 << (int)FILE_GPR;
}
opInfo[i].dstMods = 0;
opInfo[i].dstFiles = 1 << (int)FILE_GPR;
opInfo[i].hasDest = 1;
opInfo[i].vector = (i >= OP_TEX && i <= OP_TEXCSAA);
opInfo[i].commutative = (commutative[i / 32] >> (i % 32)) & 1;
opInfo[i].pseudo = (i < OP_MOV);
opInfo[i].predicate = !opInfo[i].pseudo;
opInfo[i].flow = (i >= OP_BRA && i <= OP_JOIN);
opInfo[i].minEncSize = (shortForm[i / 32] & (1 << (i % 32))) ? 4 : 8;
}
for (i = 0; i < sizeof(noDest) / sizeof(noDest[0]); ++i)
opInfo[noDest[i]].hasDest = 0;
for (i = 0; i < sizeof(_initProps) / sizeof(_initProps[0]); ++i) {
const struct opProperties *prop = &_initProps[i];
for (int s = 0; s < 3; ++s) {
if (prop->mNeg & (1 << s))
opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NEG;
if (prop->mAbs & (1 << s))
opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_ABS;
if (prop->mNot & (1 << s))
opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NOT;
if (prop->fConst & (1 << s))
opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_MEMORY_CONST;
if (prop->fImmd & (1 << s))
opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_IMMEDIATE;
if (prop->fImmd & 8)
opInfo[prop->op].immdBits = 0xffffffff;
}
if (prop->mSat & 8)
opInfo[prop->op].dstMods = NV50_IR_MOD_SAT;
}
}
unsigned int
TargetNVC0::getFileSize(DataFile file) const
{
switch (file) {
case FILE_NULL: return 0;
case FILE_GPR: return 63;
case FILE_PREDICATE: return 7;
case FILE_FLAGS: return 1;
case FILE_ADDRESS: return 0;
case FILE_IMMEDIATE: return 0;
case FILE_MEMORY_CONST: return 65536;
case FILE_SHADER_INPUT: return 0x400;
case FILE_SHADER_OUTPUT: return 0x400;
case FILE_MEMORY_GLOBAL: return 0xffffffff;
case FILE_MEMORY_SHARED: return 16 << 10;
case FILE_MEMORY_LOCAL: return 48 << 10;
case FILE_SYSTEM_VALUE: return 32;
default:
assert(!"invalid file");
return 0;
}
}
unsigned int
TargetNVC0::getFileUnit(DataFile file) const
{
if (file == FILE_GPR || file == FILE_ADDRESS || file == FILE_SYSTEM_VALUE)
return 2;
return 0;
}
uint32_t
TargetNVC0::getSVAddress(DataFile shaderFile, const Symbol *sym) const
{
const int idx = sym->reg.data.sv.index;
const SVSemantic sv = sym->reg.data.sv.sv;
const bool isInput = shaderFile == FILE_SHADER_INPUT;
switch (sv) {
case SV_POSITION: return 0x070 + idx * 4;
case SV_INSTANCE_ID: return 0x2f8;
case SV_VERTEX_ID: return 0x2fc;
case SV_PRIMITIVE_ID: return isInput ? 0x060 : 0x040;
case SV_LAYER: return 0x064;
case SV_VIEWPORT_INDEX: return 0x068;
case SV_POINT_SIZE: return 0x06c;
case SV_CLIP_DISTANCE: return 0x2c0 + idx * 4;
case SV_POINT_COORD: return 0x2e0 + idx * 4;
case SV_FACE: return 0x3fc;
case SV_TESS_FACTOR: return 0x000 + idx * 4;
case SV_TESS_COORD: return 0x2f0 + idx * 4;
default:
return 0xffffffff;
}
}
bool
TargetNVC0::insnCanLoad(const Instruction *i, int s,
const Instruction *ld) const
{
DataFile sf = ld->src(0).getFile();
// immediate 0 can be represented by GPR $r63
if (sf == FILE_IMMEDIATE && ld->getSrc(0)->reg.data.u64 == 0)
return (!i->asTex() && i->op != OP_EXPORT && i->op != OP_STORE);
if (s >= opInfo[i->op].srcNr)
return false;
if (!(opInfo[i->op].srcFiles[s] & (1 << (int)sf)))
return false;
// indirect loads can only be done by OP_LOAD/VFETCH/INTERP on nvc0
if (ld->src(0).isIndirect(0))
return false;
for (int k = 0; i->srcExists(k); ++k) {
if (i->src(k).getFile() == FILE_IMMEDIATE) {
if (i->getSrc(k)->reg.data.u64 != 0)
return false;
} else
if (i->src(k).getFile() != FILE_GPR &&
i->src(k).getFile() != FILE_PREDICATE) {
return false;
}
}
// not all instructions support full 32 bit immediates
if (sf == FILE_IMMEDIATE) {
Storage ® = ld->getSrc(0)->asImm()->reg;
if (opInfo[i->op].immdBits != 0xffffffff) {
if (i->sType == TYPE_F32) {
if (reg.data.u32 & 0xfff)
return false;
} else
if (i->sType == TYPE_S32 || i->sType == TYPE_U32) {
// with u32, 0xfffff counts as 0xffffffff as well
if (reg.data.s32 > 0x7ffff || reg.data.s32 < -0x80000)
return false;
}
} else
if (i->op == OP_MAD || i->op == OP_FMA) {
// requires src == dst, cannot decide before RA
// (except if we implement more constraints)
if (ld->getSrc(0)->asImm()->reg.data.u32 & 0xfff)
return false;
}
}
return true;
}
bool
TargetNVC0::isAccessSupported(DataFile file, DataType ty) const
{
if (ty == TYPE_NONE)
return false;
if (file == FILE_MEMORY_CONST && getChipset() >= 0xe0) // wrong encoding ?
return typeSizeof(ty) <= 4;
if (ty == TYPE_B96)
return (file == FILE_SHADER_INPUT) || (file == FILE_SHADER_OUTPUT);
return true;
}
bool
TargetNVC0::isOpSupported(operation op, DataType ty) const
{
if ((op == OP_MAD || op == OP_FMA) && (ty != TYPE_F32))
return false;
if (op == OP_SAD && ty != TYPE_S32 && ty != TYPE_U32)
return false;
if (op == OP_POW || op == OP_SQRT || op == OP_DIV || op == OP_MOD)
return false;
return true;
}
bool
TargetNVC0::isModSupported(const Instruction *insn, int s, Modifier mod) const
{
if (!isFloatType(insn->dType)) {
switch (insn->op) {
case OP_ABS:
case OP_NEG:
case OP_CVT:
case OP_CEIL:
case OP_FLOOR:
case OP_TRUNC:
case OP_AND:
case OP_OR:
case OP_XOR:
break;
case OP_ADD:
if (mod.abs())
return false;
if (insn->src(s ? 0 : 1).mod.neg())
return false;
break;
case OP_SUB:
if (s == 0)
return insn->src(1).mod.neg() ? false : true;
break;
default:
return false;
}
}
if (s > 3)
return false;
return (mod & Modifier(opInfo[insn->op].srcMods[s])) == mod;
}
bool
TargetNVC0::mayPredicate(const Instruction *insn, const Value *pred) const
{
if (insn->getPredicate())
return false;
return opInfo[insn->op].predicate;
}
bool
TargetNVC0::isSatSupported(const Instruction *insn) const
{
if (insn->op == OP_CVT)
return true;
if (!(opInfo[insn->op].dstMods & NV50_IR_MOD_SAT))
return false;
if (insn->dType == TYPE_U32)
return (insn->op == OP_ADD) || (insn->op == OP_MAD);
return insn->dType == TYPE_F32;
}
bool
TargetNVC0::isPostMultiplySupported(operation op, float f, int& e) const
{
if (op != OP_MUL)
return false;
f = fabsf(f);
e = static_cast<int>(log2f(f));
if (e < -3 || e > 3)
return false;
return f == exp2f(static_cast<float>(e));
}
// TODO: better values
// this could be more precise, e.g. depending on the issue-to-read/write delay
// of the depending instruction, but it's good enough
int TargetNVC0::getLatency(const Instruction *i) const
{
if (chipset >= 0xe4) {
if (i->dType == TYPE_F64 || i->sType == TYPE_F64)
return 20;
switch (i->op) {
case OP_LINTERP:
case OP_PINTERP:
return 15;
case OP_LOAD:
if (i->src(0).getFile() == FILE_MEMORY_CONST)
return 9;
// fall through
case OP_VFETCH:
return 24;
default:
if (Target::getOpClass(i->op) == OPCLASS_TEXTURE)
return 17;
if (i->op == OP_MUL && i->dType != TYPE_F32)
return 15;
return 9;
}
} else {
if (i->op == OP_LOAD) {
if (i->cache == CACHE_CV)
return 700;
return 48;
}
return 24;
}
return 32;
}
// These are "inverse" throughput values, i.e. the number of cycles required
// to issue a specific instruction for a full warp (32 threads).
//
// Assuming we have more than 1 warp in flight, a higher issue latency results
// in a lower result latency since the MP will have spent more time with other
// warps.
// This also helps to determine the number of cycles between instructions in
// a single warp.
//
int TargetNVC0::getThroughput(const Instruction *i) const
{
// TODO: better values
if (i->dType == TYPE_F32) {
switch (i->op) {
case OP_ADD:
case OP_MUL:
case OP_MAD:
case OP_FMA:
return 1;
case OP_CVT:
case OP_CEIL:
case OP_FLOOR:
case OP_TRUNC:
case OP_SET:
case OP_SLCT:
case OP_MIN:
case OP_MAX:
return 2;
case OP_RCP:
case OP_RSQ:
case OP_LG2:
case OP_SIN:
case OP_COS:
case OP_PRESIN:
case OP_PREEX2:
default:
return 8;
}
} else
if (i->dType == TYPE_U32 || i->dType == TYPE_S32) {
switch (i->op) {
case OP_ADD:
case OP_AND:
case OP_OR:
case OP_XOR:
case OP_NOT:
return 1;
case OP_MUL:
case OP_MAD:
case OP_CVT:
case OP_SET:
case OP_SLCT:
case OP_SHL:
case OP_SHR:
case OP_NEG:
case OP_ABS:
case OP_MIN:
case OP_MAX:
default:
return 2;
}
} else
if (i->dType == TYPE_F64) {
return 2;
} else {
return 1;
}
}
bool TargetNVC0::canDualIssue(const Instruction *a, const Instruction *b) const
{
const OpClass clA = operationClass[a->op];
const OpClass clB = operationClass[b->op];
if (getChipset() >= 0xe4) {
// not texturing
// not if the 2nd instruction isn't necessarily executed
if (clA == OPCLASS_TEXTURE || clA == OPCLASS_FLOW)
return false;
// anything with MOV
if (a->op == OP_MOV || b->op == OP_MOV)
return true;
if (clA == clB) {
// only F32 arith or integer additions
if (clA != OPCLASS_ARITH)
return false;
return (a->dType == TYPE_F32 || a->op == OP_ADD ||
b->dType == TYPE_F32 || b->op == OP_ADD);
}
// nothing with TEXBAR
if (a->op == OP_TEXBAR || b->op == OP_TEXBAR)
return false;
// no loads and stores accessing the the same space
if ((clA == OPCLASS_LOAD && clB == OPCLASS_STORE) ||
(clB == OPCLASS_LOAD && clA == OPCLASS_STORE))
if (a->src(0).getFile() == b->src(0).getFile())
return false;
// no > 32-bit ops
if (typeSizeof(a->dType) > 4 || typeSizeof(b->dType) > 4 ||
typeSizeof(a->sType) > 4 || typeSizeof(b->sType) > 4)
return false;
return true;
} else {
return false; // info not needed (yet)
}
}
} // namespace nv50_ir
|