aboutsummaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/nouveau/nv50/nv84_video_vp.c
blob: 8b121477a37dfc8a8fe1f4607cf2b37e427bcd1d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
/*
 * Copyright 2013 Ilia Mirkin
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include "nv50/nv84_video.h"

#include "util/u_sse.h"

struct h264_iparm1 {
   uint8_t scaling_lists_4x4[6][16]; // 00
   uint8_t scaling_lists_8x8[2][64]; // 60
   uint32_t width; // e0
   uint32_t height; // e4
   uint64_t ref1_addrs[16]; // e8
   uint64_t ref2_addrs[16]; // 168
   uint32_t unk1e8;
   uint32_t unk1ec;
   uint32_t w1; // 1f0
   uint32_t w2; // 1f4
   uint32_t w3; // 1f8
   uint32_t h1; // 1fc
   uint32_t h2; // 200
   uint32_t h3; // 204
   uint32_t mb_adaptive_frame_field_flag; // 208
   uint32_t field_pic_flag; // 20c
   uint32_t format; // 210
   uint32_t unk214; // 214
};

struct h264_iparm2 {
   uint32_t width; // 00
   uint32_t height; // 04
   uint32_t mbs; // 08
   uint32_t w1; // 0c
   uint32_t w2; // 10
   uint32_t w3; // 14
   uint32_t h1; // 18
   uint32_t h2; // 1c
   uint32_t h3; // 20
   uint32_t unk24;
   uint32_t mb_adaptive_frame_field_flag; // 28
   uint32_t top; // 2c
   uint32_t bottom; // 30
   uint32_t is_reference; // 34
};

void
nv84_decoder_vp_h264(struct nv84_decoder *dec,
                     struct pipe_h264_picture_desc *desc,
                     struct nv84_video_buffer *dest)
{
   struct h264_iparm1 param1;
   struct h264_iparm2 param2;
   int i, width = align(dest->base.width, 16),
      height = align(dest->base.height, 16);

   struct nouveau_pushbuf *push = dec->vp_pushbuf;
   struct nouveau_pushbuf_refn bo_refs[] = {
      { dest->interlaced, NOUVEAU_BO_RDWR | NOUVEAU_BO_VRAM },
      { dest->full, NOUVEAU_BO_RDWR | NOUVEAU_BO_VRAM },
      { dec->vpring, NOUVEAU_BO_RDWR | NOUVEAU_BO_VRAM },
      { dec->mbring, NOUVEAU_BO_RDWR | NOUVEAU_BO_VRAM },
      { dec->vp_params, NOUVEAU_BO_RDWR | NOUVEAU_BO_GART },
      { dec->fence, NOUVEAU_BO_RDWR | NOUVEAU_BO_VRAM },
   };
   int num_refs = sizeof(bo_refs)/sizeof(*bo_refs);
   bool is_ref = desc->is_reference;

   STATIC_ASSERT(sizeof(struct h264_iparm1) == 0x218);
   STATIC_ASSERT(sizeof(struct h264_iparm2) == 0x38);

   memset(&param1, 0, sizeof(param1));
   memset(&param2, 0, sizeof(param2));

   memcpy(&param1.scaling_lists_4x4, desc->pps->ScalingList4x4,
          sizeof(param1.scaling_lists_4x4));
   memcpy(&param1.scaling_lists_8x8, desc->pps->ScalingList8x8,
          sizeof(param1.scaling_lists_8x8));

   param1.width = width;
   param1.w1 = param1.w2 = param1.w3 = align(width, 64);
   param1.height = param1.h2 = height;
   param1.h1 = param1.h3 = align(height, 32);
   param1.format = 0x3231564e; /* 'NV12' */
   param1.mb_adaptive_frame_field_flag = desc->pps->sps->mb_adaptive_frame_field_flag;
   param1.field_pic_flag = desc->field_pic_flag;

   param2.width = width;
   param2.w1 = param2.w2 = param2.w3 = param1.w1;
   if (desc->field_pic_flag)
      param2.height = align(height, 32) / 2;
   else
      param2.height = height;
   param2.h1 = param2.h2 = align(height, 32);
   param2.h3 = height;
   param2.mbs = width * height >> 8;
   if (desc->field_pic_flag) {
      param2.top = desc->bottom_field_flag ? 2 : 1;
      param2.bottom = desc->bottom_field_flag;
   }
   param2.mb_adaptive_frame_field_flag = desc->pps->sps->mb_adaptive_frame_field_flag;
   param2.is_reference = desc->is_reference;

   PUSH_SPACE(push, 5 + 16 + 3 + 2 + 6 + (is_ref ? 2 : 0) + 3 + 2 + 4 + 2);

   struct nouveau_bo *ref2_default = dest->full;

   for (i = 0; i < 16; i++) {
      struct nv84_video_buffer *buf = (struct nv84_video_buffer *)desc->ref[i];
      struct nouveau_bo *bo1, *bo2;
      if (buf) {
         bo1 = buf->interlaced;
         bo2 = buf->full;
         if (i == 0)
            ref2_default = buf->full;
      } else {
         bo1 = dest->interlaced;
         bo2 = ref2_default;
      }
      param1.ref1_addrs[i] = bo1->offset;
      param1.ref2_addrs[i] = bo2->offset;
      struct nouveau_pushbuf_refn bo_refs[] = {
         { bo1, NOUVEAU_BO_RDWR | NOUVEAU_BO_VRAM },
         { bo2, NOUVEAU_BO_RDWR | NOUVEAU_BO_VRAM },
      };
      nouveau_pushbuf_refn(push, bo_refs, sizeof(bo_refs)/sizeof(bo_refs[0]));
   }

   memcpy(dec->vp_params->map, &param1, sizeof(param1));
   memcpy(dec->vp_params->map + 0x400, &param2, sizeof(param2));

   nouveau_pushbuf_refn(push, bo_refs, num_refs);

   /* Wait for BSP to have completed */
   BEGIN_NV04(push, SUBC_VP(0x10), 4);
   PUSH_DATAh(push, dec->fence->offset);
   PUSH_DATA (push, dec->fence->offset);
   PUSH_DATA (push, 2);
   PUSH_DATA (push, 1); /* wait for sem == 2 */

   /* VP step 1 */
   BEGIN_NV04(push, SUBC_VP(0x400), 15);
   PUSH_DATA (push, 1);
   PUSH_DATA (push, param2.mbs);
   PUSH_DATA (push, 0x3987654); /* each nibble probably a dma index */
   PUSH_DATA (push, 0x55001); /* constant */
   PUSH_DATA (push, dec->vp_params->offset >> 8);
   PUSH_DATA (push, (dec->vpring->offset + dec->vpring_residual) >> 8);
   PUSH_DATA (push, dec->vpring_ctrl);
   PUSH_DATA (push, dec->vpring->offset >> 8);
   PUSH_DATA (push, dec->bitstream->size / 2 - 0x700);
   PUSH_DATA (push, (dec->mbring->offset + dec->mbring->size - 0x2000) >> 8);
   PUSH_DATA (push, (dec->vpring->offset + dec->vpring_ctrl +
                     dec->vpring_residual + dec->vpring_deblock) >> 8);
   PUSH_DATA (push, 0);
   PUSH_DATA (push, 0x100008);
   PUSH_DATA (push, dest->interlaced->offset >> 8);
   PUSH_DATA (push, 0);

   BEGIN_NV04(push, SUBC_VP(0x620), 2);
   PUSH_DATA (push, 0);
   PUSH_DATA (push, 0);

   BEGIN_NV04(push, SUBC_VP(0x300), 1);
   PUSH_DATA (push, 0);

   /* VP step 2 */
   BEGIN_NV04(push, SUBC_VP(0x400), 5);
   PUSH_DATA (push, 0x54530201);
   PUSH_DATA (push, (dec->vp_params->offset >> 8) + 0x4);
   PUSH_DATA (push, (dec->vpring->offset + dec->vpring_ctrl +
                     dec->vpring_residual) >> 8);
   PUSH_DATA (push, dest->interlaced->offset >> 8);
   PUSH_DATA (push, dest->interlaced->offset >> 8);

   if (is_ref) {
      BEGIN_NV04(push, SUBC_VP(0x414), 1);
      PUSH_DATA (push, dest->full->offset >> 8);
   }

   BEGIN_NV04(push, SUBC_VP(0x620), 2);
   PUSH_DATAh(push, dec->vp_fw2_offset);
   PUSH_DATA (push, dec->vp_fw2_offset);

   BEGIN_NV04(push, SUBC_VP(0x300), 1);
   PUSH_DATA (push, 0);

   /* Set the semaphore back to 1 */
   BEGIN_NV04(push, SUBC_VP(0x610), 3);
   PUSH_DATAh(push, dec->fence->offset);
   PUSH_DATA (push, dec->fence->offset);
   PUSH_DATA (push, 1);

   /* Write to the semaphore location, intr */
   BEGIN_NV04(push, SUBC_VP(0x304), 1);
   PUSH_DATA (push, 0x101);

   for (i = 0; i < 2; i++) {
      struct nv50_miptree *mt = nv50_miptree(dest->resources[i]);
      mt->base.status |= NOUVEAU_BUFFER_STATUS_GPU_WRITING;
   }

   PUSH_KICK (push);
}

static inline int16_t inverse_quantize(int16_t val, uint8_t quant, int mpeg1) {
   int16_t ret = val * quant / 16;
   if (mpeg1 && ret) {
      if (ret > 0)
         ret = (ret - 1) | 1;
      else
         ret = (ret + 1) | 1;
   }
   if (ret < -2048)
      ret = -2048;
   else if (ret > 2047)
      ret = 2047;
   return ret;
}

struct mpeg12_mb_info {
   uint32_t index;
   uint8_t unk4;
   uint8_t unk5;
   uint16_t coded_block_pattern;
   uint8_t block_counts[6];
   uint16_t PMV[8];
   uint16_t skipped;
};

void
nv84_decoder_vp_mpeg12_mb(struct nv84_decoder *dec,
                          struct pipe_mpeg12_picture_desc *desc,
                          const struct pipe_mpeg12_macroblock *macrob)
{
   STATIC_ASSERT(sizeof(struct mpeg12_mb_info) == 32);

   struct mpeg12_mb_info info = {0};
   int i, sum = 0, mask, block_index, count;
   const int16_t *blocks;
   int intra = macrob->macroblock_type & PIPE_MPEG12_MB_TYPE_INTRA;
   int motion = macrob->macroblock_type &
      (PIPE_MPEG12_MB_TYPE_MOTION_FORWARD | PIPE_MPEG12_MB_TYPE_MOTION_BACKWARD);
   const uint8_t *quant_matrix = intra ? dec->mpeg12_intra_matrix :
      dec->mpeg12_non_intra_matrix;
   int mpeg1 = dec->base.profile == PIPE_VIDEO_PROFILE_MPEG1;

   info.index = macrob->y * mb(dec->base.width) + macrob->x;
   info.unk4 = motion;
   if (intra)
      info.unk4 |= 1;
   if (macrob->macroblock_modes.bits.dct_type)
      info.unk4 |= 0x20;
   info.unk5 = (macrob->motion_vertical_field_select << 4) |
      (macrob->macroblock_modes.value & 0xf);
   info.coded_block_pattern = macrob->coded_block_pattern;
   if (motion) {
      memcpy(info.PMV, macrob->PMV, sizeof(info.PMV));
   }
   blocks = macrob->blocks;
   for (mask = 0x20, block_index = 0; mask > 0; mask >>= 1, block_index++) {
      if ((macrob->coded_block_pattern & mask) == 0)
         continue;

      count = 0;

      /*
       * The observation here is that there are a lot of 0's, and things go
       * a lot faster if one skips over them.
       */

#if defined(PIPE_ARCH_SSE) && defined(PIPE_ARCH_X86_64)
/* Note that the SSE implementation is much more tuned to X86_64. As it's not
 * benchmarked on X86_32, disable it there. I suspect that the code needs to
 * be reorganized in terms of 32-bit wide data in order to be more
 * efficient. NV84+ were released well into the 64-bit CPU era, so it should
 * be a minority case.
 */

/* This returns a 16-bit bit-mask, each 2 bits are both 1 or both 0, depending
 * on whether the corresponding (16-bit) word in blocks is zero or non-zero. */
#define wordmask(blocks, zero) \
      (uint64_t)(_mm_movemask_epi8( \
                       _mm_cmpeq_epi16( \
                             zero, _mm_load_si128((__m128i *)(blocks)))))

      __m128i zero = _mm_setzero_si128();

      /* TODO: Look into doing the inverse quantization in terms of SSE
       * operations unconditionally, when necessary. */
      uint64_t bmask0 = wordmask(blocks, zero);
      bmask0 |= wordmask(blocks + 8, zero) << 16;
      bmask0 |= wordmask(blocks + 16, zero) << 32;
      bmask0 |= wordmask(blocks + 24, zero) << 48;
      uint64_t bmask1 = wordmask(blocks + 32, zero);
      bmask1 |= wordmask(blocks + 40, zero) << 16;
      bmask1 |= wordmask(blocks + 48, zero) << 32;
      bmask1 |= wordmask(blocks + 56, zero) << 48;

      /* The wordmask macro returns the inverse of what we want, since it
       * returns a 1 for equal-to-zero. Invert. */
      bmask0 = ~bmask0;
      bmask1 = ~bmask1;

      /* Note that the bitmask is actually sequences of 2 bits for each block
       * index. This is because there is no movemask_epi16. That means that
       * (a) ffs will never return 64, since the prev bit will always be set
       * in that case, and (b) we need to do an extra bit shift. Or'ing the
       * bitmasks together is faster than having a loop that computes them one
       * at a time and processes them, on a Core i7-920. Trying to put bmask
       * into an array and then looping also slows things down.
       */

      /* shift needs to be the same width as i, and unsigned so that / 2
       * becomes a rshift operation */
      uint32_t shift;
      i = 0;

      if (dec->base.entrypoint == PIPE_VIDEO_ENTRYPOINT_BITSTREAM) {
         int16_t tmp;
         while ((shift = __builtin_ffsll(bmask0))) {
            i += (shift - 1) / 2;
            bmask0 >>= shift - 1;
            *dec->mpeg12_data++ = dec->zscan[i] * 2;
            tmp = inverse_quantize(blocks[i], quant_matrix[i], mpeg1);
            *dec->mpeg12_data++ = tmp;
            sum += tmp;
            count++;
            i++;
            bmask0 >>= 2;
         }
         i = 32;
         while ((shift = __builtin_ffsll(bmask1))) {
            i += (shift - 1) / 2;
            bmask1 >>= shift - 1;
            *dec->mpeg12_data++ = dec->zscan[i] * 2;
            tmp = inverse_quantize(blocks[i], quant_matrix[i], mpeg1);
            *dec->mpeg12_data++ = tmp;
            sum += tmp;
            count++;
            i++;
            bmask1 >>= 2;
         }
      } else {
         while ((shift = __builtin_ffsll(bmask0))) {
            i += (shift - 1) / 2;
            bmask0 >>= shift - 1;
            *dec->mpeg12_data++ = i * 2;
            *dec->mpeg12_data++ = blocks[i];
            count++;
            i++;
            bmask0 >>= 2;
         }
         i = 32;
         while ((shift = __builtin_ffsll(bmask1))) {
            i += (shift - 1) / 2;
            bmask1 >>= shift - 1;
            *dec->mpeg12_data++ = i * 2;
            *dec->mpeg12_data++ = blocks[i];
            count++;
            i++;
            bmask1 >>= 2;
         }
      }
#undef wordmask
#else

      /*
       * This loop looks ridiculously written... and it is. I tried a lot of
       * different ways of achieving this scan, and this was the fastest, at
       * least on a Core i7-920. Note that it's not necessary to skip the 0's,
       * the firmware will deal with those just fine. But it's faster to skip
       * them. Note to people trying benchmarks: make sure to use realistic
       * mpeg data, which can often be a single data point first followed by
       * 63 0's, or <data> 7x <0> <data> 7x <0> etc.
       */
      i = 0;
      if (dec->base.entrypoint == PIPE_VIDEO_ENTRYPOINT_BITSTREAM) {
         while (true) {
            int16_t tmp;
            while (likely(i < 64 && !(tmp = blocks[i]))) i++;
            if (i >= 64) break;
            *dec->mpeg12_data++ = dec->zscan[i] * 2;
            tmp = inverse_quantize(tmp, quant_matrix[i], mpeg1);
            *dec->mpeg12_data++ = tmp;
            sum += tmp;
            count++;
            i++;
         }
      } else {
         while (true) {
            int16_t tmp;
            while (likely(i < 64 && !(tmp = blocks[i]))) i++;
            if (i >= 64) break;
            *dec->mpeg12_data++ = i * 2;
            *dec->mpeg12_data++ = tmp;
            count++;
            i++;
         }
      }

#endif

      if (dec->base.entrypoint == PIPE_VIDEO_ENTRYPOINT_BITSTREAM) {
         if (!mpeg1 && (sum & 1) == 0) {
            if (count && *(dec->mpeg12_data - 2) == 63 * 2) {
               uint16_t *val = dec->mpeg12_data - 1;
               if (*val & 1) *val -= 1;
               else *val += 1;
            } else {
               *dec->mpeg12_data++ = 63 * 2;
               *dec->mpeg12_data++ = 1;
               count++;
            }
         }
      }

      if (count) {
         *(dec->mpeg12_data - 2) |= 1;
      } else {
         *dec->mpeg12_data++ = 1;
         *dec->mpeg12_data++ = 0;
         count = 1;
      }
      info.block_counts[block_index] = count;
      blocks += 64;
   }

   memcpy(dec->mpeg12_mb_info, &info, sizeof(info));
   dec->mpeg12_mb_info += sizeof(info);

   if (macrob->num_skipped_macroblocks) {
      info.index++;
      info.coded_block_pattern = 0;
      info.skipped = macrob->num_skipped_macroblocks - 1;
      memset(info.block_counts, 0, sizeof(info.block_counts));
      memcpy(dec->mpeg12_mb_info, &info, sizeof(info));
      dec->mpeg12_mb_info += sizeof(info);
   }
}

struct mpeg12_header {
   uint32_t luma_top_size; // 00
   uint32_t luma_bottom_size; // 04
   uint32_t chroma_top_size; // 08
   uint32_t mbs; // 0c
   uint32_t mb_info_size; // 10
   uint32_t mb_width_minus1; // 14
   uint32_t mb_height_minus1; // 18
   uint32_t width; // 1c
   uint32_t height; // 20
   uint8_t progressive; // 24
   uint8_t mocomp_only; // 25
   uint8_t frames; // 26
   uint8_t picture_structure; // 27
   uint32_t unk28; // 28 -- 0x50100
   uint32_t unk2c; // 2c
   uint32_t pad[4 * 13];
};

void
nv84_decoder_vp_mpeg12(struct nv84_decoder *dec,
                       struct pipe_mpeg12_picture_desc *desc,
                       struct nv84_video_buffer *dest)
{
   struct nouveau_pushbuf *push = dec->vp_pushbuf;
   struct nv84_video_buffer *ref1 = (struct nv84_video_buffer *)desc->ref[0];
   struct nv84_video_buffer *ref2 = (struct nv84_video_buffer *)desc->ref[1];
   struct nouveau_pushbuf_refn bo_refs[] = {
      { dest->interlaced, NOUVEAU_BO_RDWR | NOUVEAU_BO_VRAM },
      { NULL, NOUVEAU_BO_RDWR | NOUVEAU_BO_VRAM },
      { NULL, NOUVEAU_BO_RDWR | NOUVEAU_BO_VRAM },
      { dec->mpeg12_bo, NOUVEAU_BO_RDWR | NOUVEAU_BO_GART },
   };
   int i, num_refs = sizeof(bo_refs) / sizeof(*bo_refs);
   struct mpeg12_header header = {0};
   struct nv50_miptree *y = nv50_miptree(dest->resources[0]);
   struct nv50_miptree *uv = nv50_miptree(dest->resources[1]);

   STATIC_ASSERT(sizeof(struct mpeg12_header) == 0x100);

   if (ref1 == NULL)
      ref1 = dest;
   if (ref2 == NULL)
      ref2 = dest;
   bo_refs[1].bo = ref1->interlaced;
   bo_refs[2].bo = ref2->interlaced;

   header.luma_top_size = y->layer_stride;
   header.luma_bottom_size = y->layer_stride;
   header.chroma_top_size = uv->layer_stride;
   header.mbs = mb(dec->base.width) * mb(dec->base.height);
   header.mb_info_size = dec->mpeg12_mb_info - dec->mpeg12_bo->map - 0x100;
   header.mb_width_minus1 = mb(dec->base.width) - 1;
   header.mb_height_minus1 = mb(dec->base.height) - 1;
   header.width = align(dec->base.width, 16);
   header.height = align(dec->base.height, 16);
   header.progressive = desc->frame_pred_frame_dct;
   header.frames = 1 + (desc->ref[0] != NULL) + (desc->ref[1] != NULL);
   header.picture_structure = desc->picture_structure;
   header.unk28 = 0x50100;

   memcpy(dec->mpeg12_bo->map, &header, sizeof(header));

   PUSH_SPACE(push, 10 + 3 + 2);

   nouveau_pushbuf_refn(push, bo_refs, num_refs);

   BEGIN_NV04(push, SUBC_VP(0x400), 9);
   PUSH_DATA (push, 0x543210); /* each nibble possibly a dma index */
   PUSH_DATA (push, 0x555001); /* constant */
   PUSH_DATA (push, dec->mpeg12_bo->offset >> 8);
   PUSH_DATA (push, (dec->mpeg12_bo->offset + 0x100) >> 8);
   PUSH_DATA (push, (dec->mpeg12_bo->offset + 0x100 +
                     align(0x20 * mb(dec->base.width) *
                           mb(dec->base.height), 0x100)) >> 8);
   PUSH_DATA (push, dest->interlaced->offset >> 8);
   PUSH_DATA (push, ref1->interlaced->offset >> 8);
   PUSH_DATA (push, ref2->interlaced->offset >> 8);
   PUSH_DATA (push, 6 * 64 * 8 * header.mbs);

   BEGIN_NV04(push, SUBC_VP(0x620), 2);
   PUSH_DATA (push, 0);
   PUSH_DATA (push, 0);

   BEGIN_NV04(push, SUBC_VP(0x300), 1);
   PUSH_DATA (push, 0);

   for (i = 0; i < 2; i++) {
      struct nv50_miptree *mt = nv50_miptree(dest->resources[i]);
      mt->base.status |= NOUVEAU_BUFFER_STATUS_GPU_WRITING;
   }
   PUSH_KICK (push);
}