1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
|
/*
* Copyright 2011 Christoph Bumiller
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "codegen/nv50_ir.h"
#include "codegen/nv50_ir_build_util.h"
#include "codegen/nv50_ir_target_nvc0.h"
#include "codegen/nv50_ir_lowering_nvc0.h"
#include <limits>
namespace nv50_ir {
#define QOP_ADD 0
#define QOP_SUBR 1
#define QOP_SUB 2
#define QOP_MOV2 3
// UL UR LL LR
#define QUADOP(q, r, s, t) \
((QOP_##q << 6) | (QOP_##r << 4) | \
(QOP_##s << 2) | (QOP_##t << 0))
void
NVC0LegalizeSSA::handleDIV(Instruction *i)
{
FlowInstruction *call;
int builtin;
Value *def[2];
bld.setPosition(i, false);
def[0] = bld.mkMovToReg(0, i->getSrc(0))->getDef(0);
def[1] = bld.mkMovToReg(1, i->getSrc(1))->getDef(0);
switch (i->dType) {
case TYPE_U32: builtin = NVC0_BUILTIN_DIV_U32; break;
case TYPE_S32: builtin = NVC0_BUILTIN_DIV_S32; break;
default:
return;
}
call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
bld.mkMov(i->getDef(0), def[(i->op == OP_DIV) ? 0 : 1]);
bld.mkClobber(FILE_GPR, (i->op == OP_DIV) ? 0xe : 0xd, 2);
bld.mkClobber(FILE_PREDICATE, (i->dType == TYPE_S32) ? 0xf : 0x3, 0);
call->fixed = 1;
call->absolute = call->builtin = 1;
call->target.builtin = builtin;
delete_Instruction(prog, i);
}
void
NVC0LegalizeSSA::handleRCPRSQ(Instruction *i)
{
assert(i->dType == TYPE_F64);
// There are instructions that will compute the high 32 bits of the 64-bit
// float. We will just stick 0 in the bottom 32 bits.
bld.setPosition(i, false);
// 1. Take the source and it up.
Value *src[2], *dst[2], *def = i->getDef(0);
bld.mkSplit(src, 4, i->getSrc(0));
// 2. We don't care about the low 32 bits of the destination. Stick a 0 in.
dst[0] = bld.loadImm(NULL, 0);
dst[1] = bld.getSSA();
// 3. The new version of the instruction takes the high 32 bits of the
// source and outputs the high 32 bits of the destination.
i->setSrc(0, src[1]);
i->setDef(0, dst[1]);
i->setType(TYPE_F32);
i->subOp = NV50_IR_SUBOP_RCPRSQ_64H;
// 4. Recombine the two dst pieces back into the original destination.
bld.setPosition(i, true);
bld.mkOp2(OP_MERGE, TYPE_U64, def, dst[0], dst[1]);
}
void
NVC0LegalizeSSA::handleFTZ(Instruction *i)
{
// Only want to flush float inputs
assert(i->sType == TYPE_F32);
// If we're already flushing denorms (and NaN's) to zero, no need for this.
if (i->dnz)
return;
// Only certain classes of operations can flush
OpClass cls = prog->getTarget()->getOpClass(i->op);
if (cls != OPCLASS_ARITH && cls != OPCLASS_COMPARE &&
cls != OPCLASS_CONVERT)
return;
i->ftz = true;
}
bool
NVC0LegalizeSSA::visit(Function *fn)
{
bld.setProgram(fn->getProgram());
return true;
}
bool
NVC0LegalizeSSA::visit(BasicBlock *bb)
{
Instruction *next;
for (Instruction *i = bb->getEntry(); i; i = next) {
next = i->next;
if (i->sType == TYPE_F32) {
if (prog->getType() != Program::TYPE_COMPUTE)
handleFTZ(i);
continue;
}
switch (i->op) {
case OP_DIV:
case OP_MOD:
handleDIV(i);
break;
case OP_RCP:
case OP_RSQ:
if (i->dType == TYPE_F64)
handleRCPRSQ(i);
break;
default:
break;
}
}
return true;
}
NVC0LegalizePostRA::NVC0LegalizePostRA(const Program *prog)
: rZero(NULL),
carry(NULL),
needTexBar(prog->getTarget()->getChipset() >= 0xe0)
{
}
bool
NVC0LegalizePostRA::insnDominatedBy(const Instruction *later,
const Instruction *early) const
{
if (early->bb == later->bb)
return early->serial < later->serial;
return later->bb->dominatedBy(early->bb);
}
void
NVC0LegalizePostRA::addTexUse(std::list<TexUse> &uses,
Instruction *usei, const Instruction *texi)
{
bool add = true;
for (std::list<TexUse>::iterator it = uses.begin();
it != uses.end();) {
if (insnDominatedBy(usei, it->insn)) {
add = false;
break;
}
if (insnDominatedBy(it->insn, usei))
it = uses.erase(it);
else
++it;
}
if (add)
uses.push_back(TexUse(usei, texi));
}
// While it might be tempting to use the an algorithm that just looks at tex
// uses, not all texture results are guaranteed to be used on all paths. In
// the case where along some control flow path a texture result is never used,
// we might reuse that register for something else, creating a
// write-after-write hazard. So we have to manually look through all
// instructions looking for ones that reference the registers in question.
void
NVC0LegalizePostRA::findFirstUses(
Instruction *texi, std::list<TexUse> &uses)
{
int minGPR = texi->def(0).rep()->reg.data.id;
int maxGPR = minGPR + texi->def(0).rep()->reg.size / 4 - 1;
unordered_set<const BasicBlock *> visited;
findFirstUsesBB(minGPR, maxGPR, texi->next, texi, uses, visited);
}
void
NVC0LegalizePostRA::findFirstUsesBB(
int minGPR, int maxGPR, Instruction *start,
const Instruction *texi, std::list<TexUse> &uses,
unordered_set<const BasicBlock *> &visited)
{
const BasicBlock *bb = start->bb;
// We don't process the whole bb the first time around. This is correct,
// however we might be in a loop and hit this BB again, and need to process
// the full thing. So only mark a bb as visited if we processed it from the
// beginning.
if (start == bb->getEntry()) {
if (visited.find(bb) != visited.end())
return;
visited.insert(bb);
}
for (Instruction *insn = start; insn != bb->getExit(); insn = insn->next) {
if (insn->isNop())
continue;
for (int d = 0; insn->defExists(d); ++d) {
if (insn->def(d).getFile() != FILE_GPR ||
insn->def(d).rep()->reg.data.id < minGPR ||
insn->def(d).rep()->reg.data.id > maxGPR)
continue;
addTexUse(uses, insn, texi);
return;
}
for (int s = 0; insn->srcExists(s); ++s) {
if (insn->src(s).getFile() != FILE_GPR ||
insn->src(s).rep()->reg.data.id < minGPR ||
insn->src(s).rep()->reg.data.id > maxGPR)
continue;
addTexUse(uses, insn, texi);
return;
}
}
for (Graph::EdgeIterator ei = bb->cfg.outgoing(); !ei.end(); ei.next()) {
findFirstUsesBB(minGPR, maxGPR, BasicBlock::get(ei.getNode())->getEntry(),
texi, uses, visited);
}
}
// Texture barriers:
// This pass is a bit long and ugly and can probably be optimized.
//
// 1. obtain a list of TEXes and their outputs' first use(s)
// 2. calculate the barrier level of each first use (minimal number of TEXes,
// over all paths, between the TEX and the use in question)
// 3. for each barrier, if all paths from the source TEX to that barrier
// contain a barrier of lesser level, it can be culled
bool
NVC0LegalizePostRA::insertTextureBarriers(Function *fn)
{
std::list<TexUse> *uses;
std::vector<Instruction *> texes;
std::vector<int> bbFirstTex;
std::vector<int> bbFirstUse;
std::vector<int> texCounts;
std::vector<TexUse> useVec;
ArrayList insns;
fn->orderInstructions(insns);
texCounts.resize(fn->allBBlocks.getSize(), 0);
bbFirstTex.resize(fn->allBBlocks.getSize(), insns.getSize());
bbFirstUse.resize(fn->allBBlocks.getSize(), insns.getSize());
// tag BB CFG nodes by their id for later
for (ArrayList::Iterator i = fn->allBBlocks.iterator(); !i.end(); i.next()) {
BasicBlock *bb = reinterpret_cast<BasicBlock *>(i.get());
if (bb)
bb->cfg.tag = bb->getId();
}
// gather the first uses for each TEX
for (int i = 0; i < insns.getSize(); ++i) {
Instruction *tex = reinterpret_cast<Instruction *>(insns.get(i));
if (isTextureOp(tex->op)) {
texes.push_back(tex);
if (!texCounts.at(tex->bb->getId()))
bbFirstTex[tex->bb->getId()] = texes.size() - 1;
texCounts[tex->bb->getId()]++;
}
}
insns.clear();
if (texes.empty())
return false;
uses = new std::list<TexUse>[texes.size()];
if (!uses)
return false;
for (size_t i = 0; i < texes.size(); ++i) {
findFirstUses(texes[i], uses[i]);
}
// determine the barrier level at each use
for (size_t i = 0; i < texes.size(); ++i) {
for (std::list<TexUse>::iterator u = uses[i].begin(); u != uses[i].end();
++u) {
BasicBlock *tb = texes[i]->bb;
BasicBlock *ub = u->insn->bb;
if (tb == ub) {
u->level = 0;
for (size_t j = i + 1; j < texes.size() &&
texes[j]->bb == tb && texes[j]->serial < u->insn->serial;
++j)
u->level++;
} else {
u->level = fn->cfg.findLightestPathWeight(&tb->cfg,
&ub->cfg, texCounts);
if (u->level < 0) {
WARN("Failed to find path TEX -> TEXBAR\n");
u->level = 0;
continue;
}
// this counted all TEXes in the origin block, correct that
u->level -= i - bbFirstTex.at(tb->getId()) + 1 /* this TEX */;
// and did not count the TEXes in the destination block, add those
for (size_t j = bbFirstTex.at(ub->getId()); j < texes.size() &&
texes[j]->bb == ub && texes[j]->serial < u->insn->serial;
++j)
u->level++;
}
assert(u->level >= 0);
useVec.push_back(*u);
}
}
delete[] uses;
// insert the barriers
for (size_t i = 0; i < useVec.size(); ++i) {
Instruction *prev = useVec[i].insn->prev;
if (useVec[i].level < 0)
continue;
if (prev && prev->op == OP_TEXBAR) {
if (prev->subOp > useVec[i].level)
prev->subOp = useVec[i].level;
prev->setSrc(prev->srcCount(), useVec[i].tex->getDef(0));
} else {
Instruction *bar = new_Instruction(func, OP_TEXBAR, TYPE_NONE);
bar->fixed = 1;
bar->subOp = useVec[i].level;
// make use explicit to ease latency calculation
bar->setSrc(bar->srcCount(), useVec[i].tex->getDef(0));
useVec[i].insn->bb->insertBefore(useVec[i].insn, bar);
}
}
if (fn->getProgram()->optLevel < 3)
return true;
std::vector<Limits> limitT, limitB, limitS; // entry, exit, single
limitT.resize(fn->allBBlocks.getSize(), Limits(0, 0));
limitB.resize(fn->allBBlocks.getSize(), Limits(0, 0));
limitS.resize(fn->allBBlocks.getSize());
// cull unneeded barriers (should do that earlier, but for simplicity)
IteratorRef bi = fn->cfg.iteratorCFG();
// first calculate min/max outstanding TEXes for each BB
for (bi->reset(); !bi->end(); bi->next()) {
Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
BasicBlock *bb = BasicBlock::get(n);
int min = 0;
int max = std::numeric_limits<int>::max();
for (Instruction *i = bb->getFirst(); i; i = i->next) {
if (isTextureOp(i->op)) {
min++;
if (max < std::numeric_limits<int>::max())
max++;
} else
if (i->op == OP_TEXBAR) {
min = MIN2(min, i->subOp);
max = MIN2(max, i->subOp);
}
}
// limits when looking at an isolated block
limitS[bb->getId()].min = min;
limitS[bb->getId()].max = max;
}
// propagate the min/max values
for (unsigned int l = 0; l <= fn->loopNestingBound; ++l) {
for (bi->reset(); !bi->end(); bi->next()) {
Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
BasicBlock *bb = BasicBlock::get(n);
const int bbId = bb->getId();
for (Graph::EdgeIterator ei = n->incident(); !ei.end(); ei.next()) {
BasicBlock *in = BasicBlock::get(ei.getNode());
const int inId = in->getId();
limitT[bbId].min = MAX2(limitT[bbId].min, limitB[inId].min);
limitT[bbId].max = MAX2(limitT[bbId].max, limitB[inId].max);
}
// I just hope this is correct ...
if (limitS[bbId].max == std::numeric_limits<int>::max()) {
// no barrier
limitB[bbId].min = limitT[bbId].min + limitS[bbId].min;
limitB[bbId].max = limitT[bbId].max + limitS[bbId].min;
} else {
// block contained a barrier
limitB[bbId].min = MIN2(limitS[bbId].max,
limitT[bbId].min + limitS[bbId].min);
limitB[bbId].max = MIN2(limitS[bbId].max,
limitT[bbId].max + limitS[bbId].min);
}
}
}
// finally delete unnecessary barriers
for (bi->reset(); !bi->end(); bi->next()) {
Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
BasicBlock *bb = BasicBlock::get(n);
Instruction *prev = NULL;
Instruction *next;
int max = limitT[bb->getId()].max;
for (Instruction *i = bb->getFirst(); i; i = next) {
next = i->next;
if (i->op == OP_TEXBAR) {
if (i->subOp >= max) {
delete_Instruction(prog, i);
i = NULL;
} else {
max = i->subOp;
if (prev && prev->op == OP_TEXBAR && prev->subOp >= max) {
delete_Instruction(prog, prev);
prev = NULL;
}
}
} else
if (isTextureOp(i->op)) {
max++;
}
if (i && !i->isNop())
prev = i;
}
}
return true;
}
bool
NVC0LegalizePostRA::visit(Function *fn)
{
if (needTexBar)
insertTextureBarriers(fn);
rZero = new_LValue(fn, FILE_GPR);
carry = new_LValue(fn, FILE_FLAGS);
rZero->reg.data.id = prog->getTarget()->getFileSize(FILE_GPR);
carry->reg.data.id = 0;
return true;
}
void
NVC0LegalizePostRA::replaceZero(Instruction *i)
{
for (int s = 0; i->srcExists(s); ++s) {
if (s == 2 && i->op == OP_SUCLAMP)
continue;
ImmediateValue *imm = i->getSrc(s)->asImm();
if (imm && imm->reg.data.u64 == 0)
i->setSrc(s, rZero);
}
}
// replace CONT with BRA for single unconditional continue
bool
NVC0LegalizePostRA::tryReplaceContWithBra(BasicBlock *bb)
{
if (bb->cfg.incidentCount() != 2 || bb->getEntry()->op != OP_PRECONT)
return false;
Graph::EdgeIterator ei = bb->cfg.incident();
if (ei.getType() != Graph::Edge::BACK)
ei.next();
if (ei.getType() != Graph::Edge::BACK)
return false;
BasicBlock *contBB = BasicBlock::get(ei.getNode());
if (!contBB->getExit() || contBB->getExit()->op != OP_CONT ||
contBB->getExit()->getPredicate())
return false;
contBB->getExit()->op = OP_BRA;
bb->remove(bb->getEntry()); // delete PRECONT
ei.next();
assert(ei.end() || ei.getType() != Graph::Edge::BACK);
return true;
}
// replace branches to join blocks with join ops
void
NVC0LegalizePostRA::propagateJoin(BasicBlock *bb)
{
if (bb->getEntry()->op != OP_JOIN || bb->getEntry()->asFlow()->limit)
return;
for (Graph::EdgeIterator ei = bb->cfg.incident(); !ei.end(); ei.next()) {
BasicBlock *in = BasicBlock::get(ei.getNode());
Instruction *exit = in->getExit();
if (!exit) {
in->insertTail(new FlowInstruction(func, OP_JOIN, bb));
// there should always be a terminator instruction
WARN("inserted missing terminator in BB:%i\n", in->getId());
} else
if (exit->op == OP_BRA) {
exit->op = OP_JOIN;
exit->asFlow()->limit = 1; // must-not-propagate marker
}
}
bb->remove(bb->getEntry());
}
bool
NVC0LegalizePostRA::visit(BasicBlock *bb)
{
Instruction *i, *next;
// remove pseudo operations and non-fixed no-ops, split 64 bit operations
for (i = bb->getFirst(); i; i = next) {
next = i->next;
if (i->op == OP_EMIT || i->op == OP_RESTART) {
if (!i->getDef(0)->refCount())
i->setDef(0, NULL);
if (i->src(0).getFile() == FILE_IMMEDIATE)
i->setSrc(0, rZero); // initial value must be 0
replaceZero(i);
} else
if (i->isNop()) {
bb->remove(i);
} else
if (i->op == OP_BAR && i->subOp == NV50_IR_SUBOP_BAR_SYNC &&
prog->getType() != Program::TYPE_COMPUTE) {
// It seems like barriers are never required for tessellation since
// the warp size is 32, and there are always at most 32 tcs threads.
bb->remove(i);
} else
if (i->op == OP_LOAD && i->subOp == NV50_IR_SUBOP_LDC_IS) {
int offset = i->src(0).get()->reg.data.offset;
if (abs(offset) > 0x10000)
i->src(0).get()->reg.fileIndex += offset >> 16;
i->src(0).get()->reg.data.offset = (int)(short)offset;
} else {
// TODO: Move this to before register allocation for operations that
// need the $c register !
if (typeSizeof(i->dType) == 8) {
Instruction *hi;
hi = BuildUtil::split64BitOpPostRA(func, i, rZero, carry);
if (hi)
next = hi;
}
if (i->op != OP_MOV && i->op != OP_PFETCH)
replaceZero(i);
}
}
if (!bb->getEntry())
return true;
if (!tryReplaceContWithBra(bb))
propagateJoin(bb);
return true;
}
NVC0LoweringPass::NVC0LoweringPass(Program *prog) : targ(prog->getTarget())
{
bld.setProgram(prog);
gMemBase = NULL;
}
bool
NVC0LoweringPass::visit(Function *fn)
{
if (prog->getType() == Program::TYPE_GEOMETRY) {
assert(!strncmp(fn->getName(), "MAIN", 4));
// TODO: when we generate actual functions pass this value along somehow
bld.setPosition(BasicBlock::get(fn->cfg.getRoot()), false);
gpEmitAddress = bld.loadImm(NULL, 0)->asLValue();
if (fn->cfgExit) {
bld.setPosition(BasicBlock::get(fn->cfgExit)->getExit(), false);
bld.mkMovToReg(0, gpEmitAddress);
}
}
return true;
}
bool
NVC0LoweringPass::visit(BasicBlock *bb)
{
return true;
}
inline Value *
NVC0LoweringPass::loadTexHandle(Value *ptr, unsigned int slot)
{
uint8_t b = prog->driver->io.auxCBSlot;
uint32_t off = prog->driver->io.texBindBase + slot * 4;
return bld.
mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
}
// move array source to first slot, convert to u16, add indirections
bool
NVC0LoweringPass::handleTEX(TexInstruction *i)
{
const int dim = i->tex.target.getDim() + i->tex.target.isCube();
const int arg = i->tex.target.getArgCount();
const int lyr = arg - (i->tex.target.isMS() ? 2 : 1);
const int chipset = prog->getTarget()->getChipset();
// Arguments to the TEX instruction are a little insane. Even though the
// encoding is identical between SM20 and SM30, the arguments mean
// different things between Fermi and Kepler+. A lot of arguments are
// optional based on flags passed to the instruction. This summarizes the
// order of things.
//
// Fermi:
// array/indirect
// coords
// sample
// lod bias
// depth compare
// offsets:
// - tg4: 8 bits each, either 2 (1 offset reg) or 8 (2 offset reg)
// - other: 4 bits each, single reg
//
// Kepler+:
// indirect handle
// array (+ offsets for txd in upper 16 bits)
// coords
// sample
// lod bias
// depth compare
// offsets (same as fermi, except txd which takes it with array)
//
// Maxwell (tex):
// array
// coords
// indirect handle
// sample
// lod bias
// depth compare
// offsets
//
// Maxwell (txd):
// indirect handle
// coords
// array + offsets
// derivatives
if (chipset >= NVISA_GK104_CHIPSET) {
if (i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
// XXX this ignores tsc, and assumes a 1:1 mapping
assert(i->tex.rIndirectSrc >= 0);
Value *hnd = loadTexHandle(
bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
i->getIndirectR(), bld.mkImm(2)),
i->tex.r);
i->tex.r = 0xff;
i->tex.s = 0x1f;
i->setIndirectR(hnd);
i->setIndirectS(NULL);
} else if (i->tex.r == i->tex.s || i->op == OP_TXF) {
i->tex.r += prog->driver->io.texBindBase / 4;
i->tex.s = 0; // only a single cX[] value possible here
} else {
Value *hnd = bld.getScratch();
Value *rHnd = loadTexHandle(NULL, i->tex.r);
Value *sHnd = loadTexHandle(NULL, i->tex.s);
bld.mkOp3(OP_INSBF, TYPE_U32, hnd, rHnd, bld.mkImm(0x1400), sHnd);
i->tex.r = 0; // not used for indirect tex
i->tex.s = 0;
i->setIndirectR(hnd);
}
if (i->tex.target.isArray()) {
LValue *layer = new_LValue(func, FILE_GPR);
Value *src = i->getSrc(lyr);
const int sat = (i->op == OP_TXF) ? 1 : 0;
DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
bld.mkCvt(OP_CVT, TYPE_U16, layer, sTy, src)->saturate = sat;
if (i->op != OP_TXD || chipset < NVISA_GM107_CHIPSET) {
for (int s = dim; s >= 1; --s)
i->setSrc(s, i->getSrc(s - 1));
i->setSrc(0, layer);
} else {
i->setSrc(dim, layer);
}
}
// Move the indirect reference to the first place
if (i->tex.rIndirectSrc >= 0 && (
i->op == OP_TXD || chipset < NVISA_GM107_CHIPSET)) {
Value *hnd = i->getIndirectR();
i->setIndirectR(NULL);
i->moveSources(0, 1);
i->setSrc(0, hnd);
i->tex.rIndirectSrc = 0;
i->tex.sIndirectSrc = -1;
}
} else
// (nvc0) generate and move the tsc/tic/array source to the front
if (i->tex.target.isArray() || i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
Value *ticRel = i->getIndirectR();
Value *tscRel = i->getIndirectS();
if (ticRel) {
i->setSrc(i->tex.rIndirectSrc, NULL);
if (i->tex.r)
ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
ticRel, bld.mkImm(i->tex.r));
}
if (tscRel) {
i->setSrc(i->tex.sIndirectSrc, NULL);
if (i->tex.s)
tscRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
tscRel, bld.mkImm(i->tex.s));
}
Value *arrayIndex = i->tex.target.isArray() ? i->getSrc(lyr) : NULL;
for (int s = dim; s >= 1; --s)
i->setSrc(s, i->getSrc(s - 1));
i->setSrc(0, arrayIndex);
if (arrayIndex) {
int sat = (i->op == OP_TXF) ? 1 : 0;
DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
bld.mkCvt(OP_CVT, TYPE_U16, src, sTy, arrayIndex)->saturate = sat;
} else {
bld.loadImm(src, 0);
}
if (ticRel)
bld.mkOp3(OP_INSBF, TYPE_U32, src, ticRel, bld.mkImm(0x0917), src);
if (tscRel)
bld.mkOp3(OP_INSBF, TYPE_U32, src, tscRel, bld.mkImm(0x0710), src);
i->setSrc(0, src);
}
// For nvc0, the sample id has to be in the second operand, as the offset
// does. Right now we don't know how to pass both in, and this case can't
// happen with OpenGL. On nve0, the sample id is part of the texture
// coordinate argument.
assert(chipset >= NVISA_GK104_CHIPSET ||
!i->tex.useOffsets || !i->tex.target.isMS());
// offset is between lod and dc
if (i->tex.useOffsets) {
int n, c;
int s = i->srcCount(0xff, true);
if (i->op != OP_TXD || chipset < NVISA_GK104_CHIPSET) {
if (i->tex.target.isShadow())
s--;
if (i->srcExists(s)) // move potential predicate out of the way
i->moveSources(s, 1);
if (i->tex.useOffsets == 4 && i->srcExists(s + 1))
i->moveSources(s + 1, 1);
}
if (i->op == OP_TXG) {
// Either there is 1 offset, which goes into the 2 low bytes of the
// first source, or there are 4 offsets, which go into 2 sources (8
// values, 1 byte each).
Value *offs[2] = {NULL, NULL};
for (n = 0; n < i->tex.useOffsets; n++) {
for (c = 0; c < 2; ++c) {
if ((n % 2) == 0 && c == 0)
offs[n / 2] = i->offset[n][c].get();
else
bld.mkOp3(OP_INSBF, TYPE_U32,
offs[n / 2],
i->offset[n][c].get(),
bld.mkImm(0x800 | ((n * 16 + c * 8) % 32)),
offs[n / 2]);
}
}
i->setSrc(s, offs[0]);
if (offs[1])
i->setSrc(s + 1, offs[1]);
} else {
unsigned imm = 0;
assert(i->tex.useOffsets == 1);
for (c = 0; c < 3; ++c) {
ImmediateValue val;
if (!i->offset[0][c].getImmediate(val))
assert(!"non-immediate offset passed to non-TXG");
imm |= (val.reg.data.u32 & 0xf) << (c * 4);
}
if (i->op == OP_TXD && chipset >= NVISA_GK104_CHIPSET) {
// The offset goes into the upper 16 bits of the array index. So
// create it if it's not already there, and INSBF it if it already
// is.
s = (i->tex.rIndirectSrc >= 0) ? 1 : 0;
if (chipset >= NVISA_GM107_CHIPSET)
s += dim;
if (i->tex.target.isArray()) {
bld.mkOp3(OP_INSBF, TYPE_U32, i->getSrc(s),
bld.loadImm(NULL, imm), bld.mkImm(0xc10),
i->getSrc(s));
} else {
i->moveSources(s, 1);
i->setSrc(s, bld.loadImm(NULL, imm << 16));
}
} else {
i->setSrc(s, bld.loadImm(NULL, imm));
}
}
}
if (chipset >= NVISA_GK104_CHIPSET) {
//
// If TEX requires more than 4 sources, the 2nd register tuple must be
// aligned to 4, even if it consists of just a single 4-byte register.
//
// XXX HACK: We insert 0 sources to avoid the 5 or 6 regs case.
//
int s = i->srcCount(0xff, true);
if (s > 4 && s < 7) {
if (i->srcExists(s)) // move potential predicate out of the way
i->moveSources(s, 7 - s);
while (s < 7)
i->setSrc(s++, bld.loadImm(NULL, 0));
}
}
return true;
}
bool
NVC0LoweringPass::handleManualTXD(TexInstruction *i)
{
static const uint8_t qOps[4][2] =
{
{ QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(MOV2, MOV2, ADD, ADD) }, // l0
{ QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(MOV2, MOV2, ADD, ADD) }, // l1
{ QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l2
{ QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l3
};
Value *def[4][4];
Value *crd[3];
Instruction *tex;
Value *zero = bld.loadImm(bld.getSSA(), 0);
int l, c;
const int dim = i->tex.target.getDim() + i->tex.target.isCube();
const int array = i->tex.target.isArray();
i->op = OP_TEX; // no need to clone dPdx/dPdy later
for (c = 0; c < dim; ++c)
crd[c] = bld.getScratch();
bld.mkOp(OP_QUADON, TYPE_NONE, NULL);
for (l = 0; l < 4; ++l) {
// mov coordinates from lane l to all lanes
for (c = 0; c < dim; ++c)
bld.mkQuadop(0x00, crd[c], l, i->getSrc(c + array), zero);
// add dPdx from lane l to lanes dx
for (c = 0; c < dim; ++c)
bld.mkQuadop(qOps[l][0], crd[c], l, i->dPdx[c].get(), crd[c]);
// add dPdy from lane l to lanes dy
for (c = 0; c < dim; ++c)
bld.mkQuadop(qOps[l][1], crd[c], l, i->dPdy[c].get(), crd[c]);
// texture
bld.insert(tex = cloneForward(func, i));
for (c = 0; c < dim; ++c)
tex->setSrc(c + array, crd[c]);
// save results
for (c = 0; i->defExists(c); ++c) {
Instruction *mov;
def[c][l] = bld.getSSA();
mov = bld.mkMov(def[c][l], tex->getDef(c));
mov->fixed = 1;
mov->lanes = 1 << l;
}
}
bld.mkOp(OP_QUADPOP, TYPE_NONE, NULL);
for (c = 0; i->defExists(c); ++c) {
Instruction *u = bld.mkOp(OP_UNION, TYPE_U32, i->getDef(c));
for (l = 0; l < 4; ++l)
u->setSrc(l, def[c][l]);
}
i->bb->remove(i);
return true;
}
bool
NVC0LoweringPass::handleTXD(TexInstruction *txd)
{
int dim = txd->tex.target.getDim() + txd->tex.target.isCube();
unsigned arg = txd->tex.target.getArgCount();
unsigned expected_args = arg;
const int chipset = prog->getTarget()->getChipset();
if (chipset >= NVISA_GK104_CHIPSET) {
if (!txd->tex.target.isArray() && txd->tex.useOffsets)
expected_args++;
if (txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0)
expected_args++;
} else {
if (txd->tex.useOffsets)
expected_args++;
if (!txd->tex.target.isArray() && (
txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0))
expected_args++;
}
if (expected_args > 4 ||
dim > 2 ||
txd->tex.target.isShadow())
txd->op = OP_TEX;
handleTEX(txd);
while (txd->srcExists(arg))
++arg;
txd->tex.derivAll = true;
if (txd->op == OP_TEX)
return handleManualTXD(txd);
assert(arg == expected_args);
for (int c = 0; c < dim; ++c) {
txd->setSrc(arg + c * 2 + 0, txd->dPdx[c]);
txd->setSrc(arg + c * 2 + 1, txd->dPdy[c]);
txd->dPdx[c].set(NULL);
txd->dPdy[c].set(NULL);
}
return true;
}
bool
NVC0LoweringPass::handleTXQ(TexInstruction *txq)
{
const int chipset = prog->getTarget()->getChipset();
if (chipset >= NVISA_GK104_CHIPSET && txq->tex.rIndirectSrc < 0)
txq->tex.r += prog->driver->io.texBindBase / 4;
if (txq->tex.rIndirectSrc < 0)
return true;
Value *ticRel = txq->getIndirectR();
txq->setIndirectS(NULL);
txq->tex.sIndirectSrc = -1;
assert(ticRel);
if (chipset < NVISA_GK104_CHIPSET) {
LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
txq->setSrc(txq->tex.rIndirectSrc, NULL);
if (txq->tex.r)
ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
ticRel, bld.mkImm(txq->tex.r));
bld.mkOp2(OP_SHL, TYPE_U32, src, ticRel, bld.mkImm(0x17));
txq->moveSources(0, 1);
txq->setSrc(0, src);
} else {
Value *hnd = loadTexHandle(
bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
txq->getIndirectR(), bld.mkImm(2)),
txq->tex.r);
txq->tex.r = 0xff;
txq->tex.s = 0x1f;
txq->setIndirectR(NULL);
txq->moveSources(0, 1);
txq->setSrc(0, hnd);
txq->tex.rIndirectSrc = 0;
}
return true;
}
bool
NVC0LoweringPass::handleTXLQ(TexInstruction *i)
{
/* The outputs are inverted compared to what the TGSI instruction
* expects. Take that into account in the mask.
*/
assert((i->tex.mask & ~3) == 0);
if (i->tex.mask == 1)
i->tex.mask = 2;
else if (i->tex.mask == 2)
i->tex.mask = 1;
handleTEX(i);
bld.setPosition(i, true);
/* The returned values are not quite what we want:
* (a) convert from s16/u16 to f32
* (b) multiply by 1/256
*/
for (int def = 0; def < 2; ++def) {
if (!i->defExists(def))
continue;
enum DataType type = TYPE_S16;
if (i->tex.mask == 2 || def > 0)
type = TYPE_U16;
bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(def), type, i->getDef(def));
bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(def),
i->getDef(def), bld.loadImm(NULL, 1.0f / 256));
}
if (i->tex.mask == 3) {
LValue *t = new_LValue(func, FILE_GPR);
bld.mkMov(t, i->getDef(0));
bld.mkMov(i->getDef(0), i->getDef(1));
bld.mkMov(i->getDef(1), t);
}
return true;
}
bool
NVC0LoweringPass::handleSUQ(Instruction *suq)
{
suq->op = OP_MOV;
suq->setSrc(0, loadResLength32(suq->getIndirect(0, 1),
suq->getSrc(0)->reg.fileIndex * 16));
suq->setIndirect(0, 0, NULL);
suq->setIndirect(0, 1, NULL);
return true;
}
void
NVC0LoweringPass::handleSharedATOM(Instruction *atom)
{
assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
BasicBlock *currBB = atom->bb;
BasicBlock *tryLockAndSetBB = atom->bb->splitBefore(atom, false);
BasicBlock *joinBB = atom->bb->splitAfter(atom);
bld.setPosition(currBB, true);
assert(!currBB->joinAt);
currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_ALWAYS, NULL);
currBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::TREE);
bld.setPosition(tryLockAndSetBB, true);
Instruction *ld =
bld.mkLoad(TYPE_U32, atom->getDef(0),
bld.mkSymbol(FILE_MEMORY_SHARED, 0, TYPE_U32, 0), NULL);
ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
Value *stVal;
if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
// Read the old value, and write the new one.
stVal = atom->getSrc(1);
} else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
CmpInstruction *set =
bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
TYPE_U32, ld->getDef(0), atom->getSrc(1));
set->setPredicate(CC_P, ld->getDef(1));
Instruction *selp =
bld.mkOp3(OP_SELP, TYPE_U32, bld.getSSA(), ld->getDef(0),
atom->getSrc(2), set->getDef(0));
selp->src(2).mod = Modifier(NV50_IR_MOD_NOT);
selp->setPredicate(CC_P, ld->getDef(1));
stVal = selp->getDef(0);
} else {
operation op;
switch (atom->subOp) {
case NV50_IR_SUBOP_ATOM_ADD:
op = OP_ADD;
break;
case NV50_IR_SUBOP_ATOM_AND:
op = OP_AND;
break;
case NV50_IR_SUBOP_ATOM_OR:
op = OP_OR;
break;
case NV50_IR_SUBOP_ATOM_XOR:
op = OP_XOR;
break;
case NV50_IR_SUBOP_ATOM_MIN:
op = OP_MIN;
break;
case NV50_IR_SUBOP_ATOM_MAX:
op = OP_MAX;
break;
default:
assert(0);
return;
}
Instruction *i =
bld.mkOp2(op, atom->dType, bld.getSSA(), ld->getDef(0),
atom->getSrc(1));
i->setPredicate(CC_P, ld->getDef(1));
stVal = i->getDef(0);
}
Instruction *st =
bld.mkStore(OP_STORE, TYPE_U32,
bld.mkSymbol(FILE_MEMORY_SHARED, 0, TYPE_U32, 0),
NULL, stVal);
st->setPredicate(CC_P, ld->getDef(1));
st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
// Loop until the lock is acquired.
bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_NOT_P, ld->getDef(1));
tryLockAndSetBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::BACK);
tryLockAndSetBB->cfg.attach(&joinBB->cfg, Graph::Edge::CROSS);
bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
bld.remove(atom);
bld.setPosition(joinBB, false);
bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
}
bool
NVC0LoweringPass::handleATOM(Instruction *atom)
{
SVSemantic sv;
Value *ptr = atom->getIndirect(0, 0), *ind = atom->getIndirect(0, 1), *base;
switch (atom->src(0).getFile()) {
case FILE_MEMORY_LOCAL:
sv = SV_LBASE;
break;
case FILE_MEMORY_SHARED:
handleSharedATOM(atom);
return true;
default:
assert(atom->src(0).getFile() == FILE_MEMORY_GLOBAL);
base = loadResInfo64(ind, atom->getSrc(0)->reg.fileIndex * 16);
assert(base->reg.size == 8);
if (ptr)
base = bld.mkOp2v(OP_ADD, TYPE_U64, base, base, ptr);
assert(base->reg.size == 8);
atom->setIndirect(0, 0, base);
return true;
}
base =
bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(), bld.mkSysVal(sv, 0));
atom->setSrc(0, cloneShallow(func, atom->getSrc(0)));
atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
if (ptr)
base = bld.mkOp2v(OP_ADD, TYPE_U32, base, base, ptr);
atom->setIndirect(0, 1, NULL);
atom->setIndirect(0, 0, base);
return true;
}
bool
NVC0LoweringPass::handleCasExch(Instruction *cas, bool needCctl)
{
if (cas->src(0).getFile() == FILE_MEMORY_SHARED) {
// ATOM_CAS and ATOM_EXCH are handled in handleSharedATOM().
return false;
}
if (cas->subOp != NV50_IR_SUBOP_ATOM_CAS &&
cas->subOp != NV50_IR_SUBOP_ATOM_EXCH)
return false;
bld.setPosition(cas, true);
if (needCctl) {
Instruction *cctl = bld.mkOp1(OP_CCTL, TYPE_NONE, NULL, cas->getSrc(0));
cctl->setIndirect(0, 0, cas->getIndirect(0, 0));
cctl->fixed = 1;
cctl->subOp = NV50_IR_SUBOP_CCTL_IV;
if (cas->isPredicated())
cctl->setPredicate(cas->cc, cas->getPredicate());
}
if (cas->subOp == NV50_IR_SUBOP_ATOM_CAS) {
// CAS is crazy. It's 2nd source is a double reg, and the 3rd source
// should be set to the high part of the double reg or bad things will
// happen elsewhere in the universe.
// Also, it sometimes returns the new value instead of the old one
// under mysterious circumstances.
Value *dreg = bld.getSSA(8);
bld.setPosition(cas, false);
bld.mkOp2(OP_MERGE, TYPE_U64, dreg, cas->getSrc(1), cas->getSrc(2));
cas->setSrc(1, dreg);
cas->setSrc(2, dreg);
}
return true;
}
inline Value *
NVC0LoweringPass::loadResInfo32(Value *ptr, uint32_t off)
{
uint8_t b = prog->driver->io.auxCBSlot;
off += prog->driver->io.suInfoBase;
return bld.
mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
}
inline Value *
NVC0LoweringPass::loadResInfo64(Value *ptr, uint32_t off)
{
uint8_t b = prog->driver->io.auxCBSlot;
off += prog->driver->io.suInfoBase;
if (ptr)
ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
return bld.
mkLoadv(TYPE_U64, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off), ptr);
}
inline Value *
NVC0LoweringPass::loadResLength32(Value *ptr, uint32_t off)
{
uint8_t b = prog->driver->io.auxCBSlot;
off += prog->driver->io.suInfoBase;
if (ptr)
ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
return bld.
mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off + 8), ptr);
}
inline Value *
NVC0LoweringPass::loadMsInfo32(Value *ptr, uint32_t off)
{
uint8_t b = prog->driver->io.msInfoCBSlot;
off += prog->driver->io.msInfoBase;
return bld.
mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
}
/* On nvc0, surface info is obtained via the surface binding points passed
* to the SULD/SUST instructions.
* On nve4, surface info is stored in c[] and is used by various special
* instructions, e.g. for clamping coordiantes or generating an address.
* They couldn't just have added an equivalent to TIC now, couldn't they ?
*/
#define NVE4_SU_INFO_ADDR 0x00
#define NVE4_SU_INFO_FMT 0x04
#define NVE4_SU_INFO_DIM_X 0x08
#define NVE4_SU_INFO_PITCH 0x0c
#define NVE4_SU_INFO_DIM_Y 0x10
#define NVE4_SU_INFO_ARRAY 0x14
#define NVE4_SU_INFO_DIM_Z 0x18
#define NVE4_SU_INFO_UNK1C 0x1c
#define NVE4_SU_INFO_WIDTH 0x20
#define NVE4_SU_INFO_HEIGHT 0x24
#define NVE4_SU_INFO_DEPTH 0x28
#define NVE4_SU_INFO_TARGET 0x2c
#define NVE4_SU_INFO_CALL 0x30
#define NVE4_SU_INFO_RAW_X 0x34
#define NVE4_SU_INFO_MS_X 0x38
#define NVE4_SU_INFO_MS_Y 0x3c
#define NVE4_SU_INFO__STRIDE 0x40
#define NVE4_SU_INFO_DIM(i) (0x08 + (i) * 8)
#define NVE4_SU_INFO_SIZE(i) (0x20 + (i) * 4)
#define NVE4_SU_INFO_MS(i) (0x38 + (i) * 4)
static inline uint16_t getSuClampSubOp(const TexInstruction *su, int c)
{
switch (su->tex.target.getEnum()) {
case TEX_TARGET_BUFFER: return NV50_IR_SUBOP_SUCLAMP_PL(0, 1);
case TEX_TARGET_RECT: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
case TEX_TARGET_1D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
case TEX_TARGET_1D_ARRAY: return (c == 1) ?
NV50_IR_SUBOP_SUCLAMP_PL(0, 2) :
NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
case TEX_TARGET_2D: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
case TEX_TARGET_2D_MS: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
case TEX_TARGET_2D_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
case TEX_TARGET_2D_MS_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
case TEX_TARGET_3D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
case TEX_TARGET_CUBE: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
case TEX_TARGET_CUBE_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
default:
assert(0);
return 0;
}
}
void
NVC0LoweringPass::adjustCoordinatesMS(TexInstruction *tex)
{
const uint16_t base = tex->tex.r * NVE4_SU_INFO__STRIDE;
const int arg = tex->tex.target.getArgCount();
if (tex->tex.target == TEX_TARGET_2D_MS)
tex->tex.target = TEX_TARGET_2D;
else
if (tex->tex.target == TEX_TARGET_2D_MS_ARRAY)
tex->tex.target = TEX_TARGET_2D_ARRAY;
else
return;
Value *x = tex->getSrc(0);
Value *y = tex->getSrc(1);
Value *s = tex->getSrc(arg - 1);
Value *tx = bld.getSSA(), *ty = bld.getSSA(), *ts = bld.getSSA();
Value *ms_x = loadResInfo32(NULL, base + NVE4_SU_INFO_MS(0));
Value *ms_y = loadResInfo32(NULL, base + NVE4_SU_INFO_MS(1));
bld.mkOp2(OP_SHL, TYPE_U32, tx, x, ms_x);
bld.mkOp2(OP_SHL, TYPE_U32, ty, y, ms_y);
s = bld.mkOp2v(OP_AND, TYPE_U32, ts, s, bld.loadImm(NULL, 0x7));
s = bld.mkOp2v(OP_SHL, TYPE_U32, ts, ts, bld.mkImm(3));
Value *dx = loadMsInfo32(ts, 0x0);
Value *dy = loadMsInfo32(ts, 0x4);
bld.mkOp2(OP_ADD, TYPE_U32, tx, tx, dx);
bld.mkOp2(OP_ADD, TYPE_U32, ty, ty, dy);
tex->setSrc(0, tx);
tex->setSrc(1, ty);
tex->moveSources(arg, -1);
}
// Sets 64-bit "generic address", predicate and format sources for SULD/SUST.
// They're computed from the coordinates using the surface info in c[] space.
void
NVC0LoweringPass::processSurfaceCoordsNVE4(TexInstruction *su)
{
Instruction *insn;
const bool atom = su->op == OP_SUREDB || su->op == OP_SUREDP;
const bool raw =
su->op == OP_SULDB || su->op == OP_SUSTB || su->op == OP_SUREDB;
const int idx = su->tex.r;
const int dim = su->tex.target.getDim();
const int arg = dim + (su->tex.target.isArray() ? 1 : 0);
const uint16_t base = idx * NVE4_SU_INFO__STRIDE;
int c;
Value *zero = bld.mkImm(0);
Value *p1 = NULL;
Value *v;
Value *src[3];
Value *bf, *eau, *off;
Value *addr, *pred;
off = bld.getScratch(4);
bf = bld.getScratch(4);
addr = bld.getSSA(8);
pred = bld.getScratch(1, FILE_PREDICATE);
bld.setPosition(su, false);
adjustCoordinatesMS(su);
// calculate clamped coordinates
for (c = 0; c < arg; ++c) {
src[c] = bld.getScratch();
if (c == 0 && raw)
v = loadResInfo32(NULL, base + NVE4_SU_INFO_RAW_X);
else
v = loadResInfo32(NULL, base + NVE4_SU_INFO_DIM(c));
bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[c], su->getSrc(c), v, zero)
->subOp = getSuClampSubOp(su, c);
}
for (; c < 3; ++c)
src[c] = zero;
// set predicate output
if (su->tex.target == TEX_TARGET_BUFFER) {
src[0]->getInsn()->setFlagsDef(1, pred);
} else
if (su->tex.target.isArray()) {
p1 = bld.getSSA(1, FILE_PREDICATE);
src[dim]->getInsn()->setFlagsDef(1, p1);
}
// calculate pixel offset
if (dim == 1) {
if (su->tex.target != TEX_TARGET_BUFFER)
bld.mkOp2(OP_AND, TYPE_U32, off, src[0], bld.loadImm(NULL, 0xffff));
} else
if (dim == 3) {
v = loadResInfo32(NULL, base + NVE4_SU_INFO_UNK1C);
bld.mkOp3(OP_MADSP, TYPE_U32, off, src[2], v, src[1])
->subOp = NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
v = loadResInfo32(NULL, base + NVE4_SU_INFO_PITCH);
bld.mkOp3(OP_MADSP, TYPE_U32, off, off, v, src[0])
->subOp = NV50_IR_SUBOP_MADSP(0,2,8); // u32 u16l u16l
} else {
assert(dim == 2);
v = loadResInfo32(NULL, base + NVE4_SU_INFO_PITCH);
bld.mkOp3(OP_MADSP, TYPE_U32, off, src[1], v, src[0])
->subOp = su->tex.target.isArray() ?
NV50_IR_SUBOP_MADSP_SD : NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
}
// calculate effective address part 1
if (su->tex.target == TEX_TARGET_BUFFER) {
if (raw) {
bf = src[0];
} else {
v = loadResInfo32(NULL, base + NVE4_SU_INFO_FMT);
bld.mkOp3(OP_VSHL, TYPE_U32, bf, src[0], v, zero)
->subOp = NV50_IR_SUBOP_V1(7,6,8|2);
}
} else {
Value *y = src[1];
Value *z = src[2];
uint16_t subOp = 0;
switch (dim) {
case 1:
y = zero;
z = zero;
break;
case 2:
z = off;
if (!su->tex.target.isArray()) {
z = loadResInfo32(NULL, base + NVE4_SU_INFO_UNK1C);
subOp = NV50_IR_SUBOP_SUBFM_3D;
}
break;
default:
subOp = NV50_IR_SUBOP_SUBFM_3D;
assert(dim == 3);
break;
}
insn = bld.mkOp3(OP_SUBFM, TYPE_U32, bf, src[0], y, z);
insn->subOp = subOp;
insn->setFlagsDef(1, pred);
}
// part 2
v = loadResInfo32(NULL, base + NVE4_SU_INFO_ADDR);
if (su->tex.target == TEX_TARGET_BUFFER) {
eau = v;
} else {
eau = bld.mkOp3v(OP_SUEAU, TYPE_U32, bld.getScratch(4), off, bf, v);
}
// add array layer offset
if (su->tex.target.isArray()) {
v = loadResInfo32(NULL, base + NVE4_SU_INFO_ARRAY);
if (dim == 1)
bld.mkOp3(OP_MADSP, TYPE_U32, eau, src[1], v, eau)
->subOp = NV50_IR_SUBOP_MADSP(4,0,0); // u16 u24 u32
else
bld.mkOp3(OP_MADSP, TYPE_U32, eau, v, src[2], eau)
->subOp = NV50_IR_SUBOP_MADSP(0,0,0); // u32 u24 u32
// combine predicates
assert(p1);
bld.mkOp2(OP_OR, TYPE_U8, pred, pred, p1);
}
if (atom) {
Value *lo = bf;
if (su->tex.target == TEX_TARGET_BUFFER) {
lo = zero;
bld.mkMov(off, bf);
}
// bf == g[] address & 0xff
// eau == g[] address >> 8
bld.mkOp3(OP_PERMT, TYPE_U32, bf, lo, bld.loadImm(NULL, 0x6540), eau);
bld.mkOp3(OP_PERMT, TYPE_U32, eau, zero, bld.loadImm(NULL, 0x0007), eau);
} else
if (su->op == OP_SULDP && su->tex.target == TEX_TARGET_BUFFER) {
// Convert from u32 to u8 address format, which is what the library code
// doing SULDP currently uses.
// XXX: can SUEAU do this ?
// XXX: does it matter that we don't mask high bytes in bf ?
// Grrr.
bld.mkOp2(OP_SHR, TYPE_U32, off, bf, bld.mkImm(8));
bld.mkOp2(OP_ADD, TYPE_U32, eau, eau, off);
}
bld.mkOp2(OP_MERGE, TYPE_U64, addr, bf, eau);
if (atom && su->tex.target == TEX_TARGET_BUFFER)
bld.mkOp2(OP_ADD, TYPE_U64, addr, addr, off);
// let's just set it 0 for raw access and hope it works
v = raw ?
bld.mkImm(0) : loadResInfo32(NULL, base + NVE4_SU_INFO_FMT);
// get rid of old coordinate sources, make space for fmt info and predicate
su->moveSources(arg, 3 - arg);
// set 64 bit address and 32-bit format sources
su->setSrc(0, addr);
su->setSrc(1, v);
su->setSrc(2, pred);
}
void
NVC0LoweringPass::handleSurfaceOpNVE4(TexInstruction *su)
{
processSurfaceCoordsNVE4(su);
// Who do we hate more ? The person who decided that nvc0's SULD doesn't
// have to support conversion or the person who decided that, in OpenCL,
// you don't have to specify the format here like you do in OpenGL ?
if (su->op == OP_SULDP) {
// We don't patch shaders. Ever.
// You get an indirect call to our library blob here.
// But at least it's uniform.
FlowInstruction *call;
LValue *p[3];
LValue *r[5];
uint16_t base = su->tex.r * NVE4_SU_INFO__STRIDE + NVE4_SU_INFO_CALL;
for (int i = 0; i < 4; ++i)
(r[i] = bld.getScratch(4, FILE_GPR))->reg.data.id = i;
for (int i = 0; i < 3; ++i)
(p[i] = bld.getScratch(1, FILE_PREDICATE))->reg.data.id = i;
(r[4] = bld.getScratch(8, FILE_GPR))->reg.data.id = 4;
bld.mkMov(p[1], bld.mkImm((su->cache == CACHE_CA) ? 1 : 0), TYPE_U8);
bld.mkMov(p[2], bld.mkImm((su->cache == CACHE_CG) ? 1 : 0), TYPE_U8);
bld.mkMov(p[0], su->getSrc(2), TYPE_U8);
bld.mkMov(r[4], su->getSrc(0), TYPE_U64);
bld.mkMov(r[2], su->getSrc(1), TYPE_U32);
call = bld.mkFlow(OP_CALL, NULL, su->cc, su->getPredicate());
call->indirect = 1;
call->absolute = 1;
call->setSrc(0, bld.mkSymbol(FILE_MEMORY_CONST,
prog->driver->io.auxCBSlot, TYPE_U32,
prog->driver->io.suInfoBase + base));
call->setSrc(1, r[2]);
call->setSrc(2, r[4]);
for (int i = 0; i < 3; ++i)
call->setSrc(3 + i, p[i]);
for (int i = 0; i < 4; ++i) {
call->setDef(i, r[i]);
bld.mkMov(su->getDef(i), r[i]);
}
call->setDef(4, p[1]);
delete_Instruction(bld.getProgram(), su);
}
if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
// FIXME: for out of bounds access, destination value will be undefined !
Value *pred = su->getSrc(2);
CondCode cc = CC_NOT_P;
if (su->getPredicate()) {
pred = bld.getScratch(1, FILE_PREDICATE);
cc = su->cc;
if (cc == CC_NOT_P) {
bld.mkOp2(OP_OR, TYPE_U8, pred, su->getPredicate(), su->getSrc(2));
} else {
bld.mkOp2(OP_AND, TYPE_U8, pred, su->getPredicate(), su->getSrc(2));
pred->getInsn()->src(1).mod = Modifier(NV50_IR_MOD_NOT);
}
}
Instruction *red = bld.mkOp(OP_ATOM, su->dType, su->getDef(0));
red->subOp = su->subOp;
if (!gMemBase)
gMemBase = bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, 0);
red->setSrc(0, gMemBase);
red->setSrc(1, su->getSrc(3));
if (su->subOp == NV50_IR_SUBOP_ATOM_CAS)
red->setSrc(2, su->getSrc(4));
red->setIndirect(0, 0, su->getSrc(0));
red->setPredicate(cc, pred);
delete_Instruction(bld.getProgram(), su);
handleCasExch(red, true);
} else {
su->sType = (su->tex.target == TEX_TARGET_BUFFER) ? TYPE_U32 : TYPE_U8;
}
}
bool
NVC0LoweringPass::handleWRSV(Instruction *i)
{
Instruction *st;
Symbol *sym;
uint32_t addr;
// must replace, $sreg are not writeable
addr = targ->getSVAddress(FILE_SHADER_OUTPUT, i->getSrc(0)->asSym());
if (addr >= 0x400)
return false;
sym = bld.mkSymbol(FILE_SHADER_OUTPUT, 0, i->sType, addr);
st = bld.mkStore(OP_EXPORT, i->dType, sym, i->getIndirect(0, 0),
i->getSrc(1));
st->perPatch = i->perPatch;
bld.getBB()->remove(i);
return true;
}
void
NVC0LoweringPass::readTessCoord(LValue *dst, int c)
{
Value *laneid = bld.getSSA();
Value *x, *y;
bld.mkOp1(OP_RDSV, TYPE_U32, laneid, bld.mkSysVal(SV_LANEID, 0));
if (c == 0) {
x = dst;
y = NULL;
} else
if (c == 1) {
x = NULL;
y = dst;
} else {
assert(c == 2);
x = bld.getSSA();
y = bld.getSSA();
}
if (x)
bld.mkFetch(x, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f0, NULL, laneid);
if (y)
bld.mkFetch(y, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f4, NULL, laneid);
if (c == 2) {
bld.mkOp2(OP_ADD, TYPE_F32, dst, x, y);
bld.mkOp2(OP_SUB, TYPE_F32, dst, bld.loadImm(NULL, 1.0f), dst);
}
}
bool
NVC0LoweringPass::handleRDSV(Instruction *i)
{
Symbol *sym = i->getSrc(0)->asSym();
const SVSemantic sv = sym->reg.data.sv.sv;
Value *vtx = NULL;
Instruction *ld;
uint32_t addr = targ->getSVAddress(FILE_SHADER_INPUT, sym);
if (addr >= 0x400) {
// mov $sreg
if (sym->reg.data.sv.index == 3) {
// TGSI backend may use 4th component of TID,NTID,CTAID,NCTAID
i->op = OP_MOV;
i->setSrc(0, bld.mkImm((sv == SV_NTID || sv == SV_NCTAID) ? 1 : 0));
}
if (sv == SV_VERTEX_COUNT) {
bld.setPosition(i, true);
bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0), bld.mkImm(0x808));
}
return true;
}
switch (sv) {
case SV_POSITION:
assert(prog->getType() == Program::TYPE_FRAGMENT);
if (i->srcExists(1)) {
// Pass offset through to the interpolation logic
ld = bld.mkInterp(NV50_IR_INTERP_LINEAR | NV50_IR_INTERP_OFFSET,
i->getDef(0), addr, NULL);
ld->setSrc(1, i->getSrc(1));
} else {
bld.mkInterp(NV50_IR_INTERP_LINEAR, i->getDef(0), addr, NULL);
}
break;
case SV_FACE:
{
Value *face = i->getDef(0);
bld.mkInterp(NV50_IR_INTERP_FLAT, face, addr, NULL);
if (i->dType == TYPE_F32) {
bld.mkOp2(OP_OR, TYPE_U32, face, face, bld.mkImm(0x00000001));
bld.mkOp1(OP_NEG, TYPE_S32, face, face);
bld.mkCvt(OP_CVT, TYPE_F32, face, TYPE_S32, face);
}
}
break;
case SV_TESS_COORD:
assert(prog->getType() == Program::TYPE_TESSELLATION_EVAL);
readTessCoord(i->getDef(0)->asLValue(), i->getSrc(0)->reg.data.sv.index);
break;
case SV_NTID:
case SV_NCTAID:
case SV_GRIDID:
assert(targ->getChipset() >= NVISA_GK104_CHIPSET); // mov $sreg otherwise
if (sym->reg.data.sv.index == 3) {
i->op = OP_MOV;
i->setSrc(0, bld.mkImm(sv == SV_GRIDID ? 0 : 1));
return true;
}
addr += prog->driver->prop.cp.gridInfoBase;
bld.mkLoad(TYPE_U32, i->getDef(0),
bld.mkSymbol(FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
TYPE_U32, addr), NULL);
break;
case SV_SAMPLE_INDEX:
// TODO: Properly pass source as an address in the PIX address space
// (which can be of the form [r0+offset]). But this is currently
// unnecessary.
ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
break;
case SV_SAMPLE_POS: {
Value *off = new_LValue(func, FILE_GPR);
ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
bld.mkOp2(OP_SHL, TYPE_U32, off, i->getDef(0), bld.mkImm(3));
bld.mkLoad(TYPE_F32,
i->getDef(0),
bld.mkSymbol(
FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
TYPE_U32, prog->driver->io.sampleInfoBase +
4 * sym->reg.data.sv.index),
off);
break;
}
case SV_SAMPLE_MASK:
ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
ld->subOp = NV50_IR_SUBOP_PIXLD_COVMASK;
break;
case SV_BASEVERTEX:
case SV_BASEINSTANCE:
case SV_DRAWID:
ld = bld.mkLoad(TYPE_U32, i->getDef(0),
bld.mkSymbol(FILE_MEMORY_CONST,
prog->driver->io.auxCBSlot,
TYPE_U32,
prog->driver->io.drawInfoBase +
4 * (sv - SV_BASEVERTEX)),
NULL);
break;
default:
if (prog->getType() == Program::TYPE_TESSELLATION_EVAL && !i->perPatch)
vtx = bld.mkOp1v(OP_PFETCH, TYPE_U32, bld.getSSA(), bld.mkImm(0));
ld = bld.mkFetch(i->getDef(0), i->dType,
FILE_SHADER_INPUT, addr, i->getIndirect(0, 0), vtx);
ld->perPatch = i->perPatch;
break;
}
bld.getBB()->remove(i);
return true;
}
bool
NVC0LoweringPass::handleDIV(Instruction *i)
{
if (!isFloatType(i->dType))
return true;
bld.setPosition(i, false);
Instruction *rcp = bld.mkOp1(OP_RCP, i->dType, bld.getSSA(typeSizeof(i->dType)), i->getSrc(1));
i->op = OP_MUL;
i->setSrc(1, rcp->getDef(0));
return true;
}
bool
NVC0LoweringPass::handleMOD(Instruction *i)
{
if (!isFloatType(i->dType))
return true;
LValue *value = bld.getScratch(typeSizeof(i->dType));
bld.mkOp1(OP_RCP, i->dType, value, i->getSrc(1));
bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(0), value);
bld.mkOp1(OP_TRUNC, i->dType, value, value);
bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(1), value);
i->op = OP_SUB;
i->setSrc(1, value);
return true;
}
bool
NVC0LoweringPass::handleSQRT(Instruction *i)
{
if (i->dType == TYPE_F64) {
Value *pred = bld.getSSA(1, FILE_PREDICATE);
Value *zero = bld.loadImm(NULL, 0);
Value *dst = bld.getSSA(8);
bld.mkOp1(OP_RSQ, i->dType, dst, i->getSrc(0));
bld.mkCmp(OP_SET, CC_LE, i->dType, pred, i->dType, i->getSrc(0), zero);
bld.mkOp3(OP_SELP, TYPE_U64, dst, zero, dst, pred);
i->op = OP_MUL;
i->setSrc(1, dst);
// TODO: Handle this properly with a library function
} else {
bld.setPosition(i, true);
i->op = OP_RSQ;
bld.mkOp1(OP_RCP, i->dType, i->getDef(0), i->getDef(0));
}
return true;
}
bool
NVC0LoweringPass::handlePOW(Instruction *i)
{
LValue *val = bld.getScratch();
bld.mkOp1(OP_LG2, TYPE_F32, val, i->getSrc(0));
bld.mkOp2(OP_MUL, TYPE_F32, val, i->getSrc(1), val)->dnz = 1;
bld.mkOp1(OP_PREEX2, TYPE_F32, val, val);
i->op = OP_EX2;
i->setSrc(0, val);
i->setSrc(1, NULL);
return true;
}
bool
NVC0LoweringPass::handleEXPORT(Instruction *i)
{
if (prog->getType() == Program::TYPE_FRAGMENT) {
int id = i->getSrc(0)->reg.data.offset / 4;
if (i->src(0).isIndirect(0)) // TODO, ugly
return false;
i->op = OP_MOV;
i->subOp = NV50_IR_SUBOP_MOV_FINAL;
i->src(0).set(i->src(1));
i->setSrc(1, NULL);
i->setDef(0, new_LValue(func, FILE_GPR));
i->getDef(0)->reg.data.id = id;
prog->maxGPR = MAX2(prog->maxGPR, id);
} else
if (prog->getType() == Program::TYPE_GEOMETRY) {
i->setIndirect(0, 1, gpEmitAddress);
}
return true;
}
bool
NVC0LoweringPass::handleOUT(Instruction *i)
{
Instruction *prev = i->prev;
ImmediateValue stream, prevStream;
// Only merge if the stream ids match. Also, note that the previous
// instruction would have already been lowered, so we take arg1 from it.
if (i->op == OP_RESTART && prev && prev->op == OP_EMIT &&
i->src(0).getImmediate(stream) &&
prev->src(1).getImmediate(prevStream) &&
stream.reg.data.u32 == prevStream.reg.data.u32) {
i->prev->subOp = NV50_IR_SUBOP_EMIT_RESTART;
delete_Instruction(prog, i);
} else {
assert(gpEmitAddress);
i->setDef(0, gpEmitAddress);
i->setSrc(1, i->getSrc(0));
i->setSrc(0, gpEmitAddress);
}
return true;
}
// Generate a binary predicate if an instruction is predicated by
// e.g. an f32 value.
void
NVC0LoweringPass::checkPredicate(Instruction *insn)
{
Value *pred = insn->getPredicate();
Value *pdst;
if (!pred || pred->reg.file == FILE_PREDICATE)
return;
pdst = new_LValue(func, FILE_PREDICATE);
// CAUTION: don't use pdst->getInsn, the definition might not be unique,
// delay turning PSET(FSET(x,y),0) into PSET(x,y) to a later pass
bld.mkCmp(OP_SET, CC_NEU, insn->dType, pdst, insn->dType, bld.mkImm(0), pred);
insn->setPredicate(insn->cc, pdst);
}
//
// - add quadop dance for texturing
// - put FP outputs in GPRs
// - convert instruction sequences
//
bool
NVC0LoweringPass::visit(Instruction *i)
{
bool ret = true;
bld.setPosition(i, false);
if (i->cc != CC_ALWAYS)
checkPredicate(i);
switch (i->op) {
case OP_TEX:
case OP_TXB:
case OP_TXL:
case OP_TXF:
case OP_TXG:
return handleTEX(i->asTex());
case OP_TXD:
return handleTXD(i->asTex());
case OP_TXLQ:
return handleTXLQ(i->asTex());
case OP_TXQ:
return handleTXQ(i->asTex());
case OP_EX2:
bld.mkOp1(OP_PREEX2, TYPE_F32, i->getDef(0), i->getSrc(0));
i->setSrc(0, i->getDef(0));
break;
case OP_POW:
return handlePOW(i);
case OP_DIV:
return handleDIV(i);
case OP_MOD:
return handleMOD(i);
case OP_SQRT:
return handleSQRT(i);
case OP_EXPORT:
ret = handleEXPORT(i);
break;
case OP_EMIT:
case OP_RESTART:
return handleOUT(i);
case OP_RDSV:
return handleRDSV(i);
case OP_WRSV:
return handleWRSV(i);
case OP_STORE:
case OP_LOAD:
if (i->src(0).getFile() == FILE_SHADER_INPUT) {
if (prog->getType() == Program::TYPE_COMPUTE) {
i->getSrc(0)->reg.file = FILE_MEMORY_CONST;
i->getSrc(0)->reg.fileIndex = 0;
} else
if (prog->getType() == Program::TYPE_GEOMETRY &&
i->src(0).isIndirect(0)) {
// XXX: this assumes vec4 units
Value *ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
i->getIndirect(0, 0), bld.mkImm(4));
i->setIndirect(0, 0, ptr);
i->op = OP_VFETCH;
} else {
i->op = OP_VFETCH;
assert(prog->getType() != Program::TYPE_FRAGMENT); // INTERP
}
} else if (i->src(0).getFile() == FILE_MEMORY_CONST) {
if (i->src(0).isIndirect(1)) {
Value *ptr;
if (i->src(0).isIndirect(0))
ptr = bld.mkOp3v(OP_INSBF, TYPE_U32, bld.getSSA(),
i->getIndirect(0, 1), bld.mkImm(0x1010),
i->getIndirect(0, 0));
else
ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
i->getIndirect(0, 1), bld.mkImm(16));
i->setIndirect(0, 1, NULL);
i->setIndirect(0, 0, ptr);
i->subOp = NV50_IR_SUBOP_LDC_IS;
}
} else if (i->src(0).getFile() == FILE_SHADER_OUTPUT) {
assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
i->op = OP_VFETCH;
} else if (i->src(0).getFile() == FILE_MEMORY_GLOBAL) {
Value *ind = i->getIndirect(0, 1);
Value *ptr = loadResInfo64(ind, i->getSrc(0)->reg.fileIndex * 16);
// XXX come up with a way not to do this for EVERY little access but
// rather to batch these up somehow. Unfortunately we've lost the
// information about the field width by the time we get here.
Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
Value *length = loadResLength32(ind, i->getSrc(0)->reg.fileIndex * 16);
Value *pred = new_LValue(func, FILE_PREDICATE);
if (i->src(0).isIndirect(0)) {
bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
}
i->setIndirect(0, 1, NULL);
i->setIndirect(0, 0, ptr);
bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
i->setPredicate(CC_NOT_P, pred);
if (i->defExists(0)) {
bld.mkMov(i->getDef(0), bld.mkImm(0));
}
}
break;
case OP_ATOM:
{
const bool cctl = i->src(0).getFile() == FILE_MEMORY_GLOBAL;
handleATOM(i);
handleCasExch(i, cctl);
}
break;
case OP_SULDB:
case OP_SULDP:
case OP_SUSTB:
case OP_SUSTP:
case OP_SUREDB:
case OP_SUREDP:
if (targ->getChipset() >= NVISA_GK104_CHIPSET)
handleSurfaceOpNVE4(i->asTex());
break;
case OP_SUQ:
handleSUQ(i);
break;
default:
break;
}
/* Kepler+ has a special opcode to compute a new base address to be used
* for indirect loads.
*/
if (targ->getChipset() >= NVISA_GK104_CHIPSET && !i->perPatch &&
(i->op == OP_VFETCH || i->op == OP_EXPORT) && i->src(0).isIndirect(0)) {
Instruction *afetch = bld.mkOp1(OP_AFETCH, TYPE_U32, bld.getSSA(),
cloneShallow(func, i->getSrc(0)));
afetch->setIndirect(0, 0, i->getIndirect(0, 0));
i->src(0).get()->reg.data.offset = 0;
i->setIndirect(0, 0, afetch->getDef(0));
}
return ret;
}
bool
TargetNVC0::runLegalizePass(Program *prog, CGStage stage) const
{
if (stage == CG_STAGE_PRE_SSA) {
NVC0LoweringPass pass(prog);
return pass.run(prog, false, true);
} else
if (stage == CG_STAGE_POST_RA) {
NVC0LegalizePostRA pass(prog);
return pass.run(prog, false, true);
} else
if (stage == CG_STAGE_SSA) {
NVC0LegalizeSSA pass;
return pass.run(prog, false, true);
}
return false;
}
} // namespace nv50_ir
|