1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
|
/**************************************************************************
*
* Copyright 2007-2010 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Rasterization for binned triangles within a tile
*/
/**
* Prototype for a 8 plane rasterizer function. Will codegenerate
* several of these.
*
* XXX: Varients for more/fewer planes.
* XXX: Need ways of dropping planes as we descend.
* XXX: SIMD
*/
static void
TAG(do_block_4)(struct lp_rasterizer_task *task,
const struct lp_rast_triangle *tri,
const struct lp_rast_plane *plane,
int x, int y,
const int64_t *c)
{
unsigned mask = 0xffff;
int j;
for (j = 0; j < NR_PLANES; j++) {
#ifdef RASTER_64
mask &= ~BUILD_MASK_LINEAR(((c[j] - 1) >> (int64_t)FIXED_ORDER),
-plane[j].dcdx >> FIXED_ORDER,
plane[j].dcdy >> FIXED_ORDER);
#else
mask &= ~BUILD_MASK_LINEAR((c[j] - 1),
-plane[j].dcdx,
plane[j].dcdy);
#endif
}
/* Now pass to the shader:
*/
if (mask)
lp_rast_shade_quads_mask(task, &tri->inputs, x, y, mask);
}
/**
* Evaluate a 16x16 block of pixels to determine which 4x4 subblocks are in/out
* of the triangle's bounds.
*/
static void
TAG(do_block_16)(struct lp_rasterizer_task *task,
const struct lp_rast_triangle *tri,
const struct lp_rast_plane *plane,
int x, int y,
const int64_t *c)
{
unsigned outmask, inmask, partmask, partial_mask;
unsigned j;
outmask = 0; /* outside one or more trivial reject planes */
partmask = 0; /* outside one or more trivial accept planes */
for (j = 0; j < NR_PLANES; j++) {
#ifdef RASTER_64
int32_t dcdx = -plane[j].dcdx >> FIXED_ORDER;
int32_t dcdy = plane[j].dcdy >> FIXED_ORDER;
const int32_t cox = plane[j].eo >> FIXED_ORDER;
const int32_t ei = (dcdy + dcdx - cox) << 2;
const int32_t cox_s = cox << 2;
const int32_t co = (int32_t)(c[j] >> (int64_t)FIXED_ORDER) + cox_s;
int32_t cdiff;
cdiff = ei - cox_s + ((int32_t)((c[j] - 1) >> (int64_t)FIXED_ORDER) -
(int32_t)(c[j] >> (int64_t)FIXED_ORDER));
dcdx <<= 2;
dcdy <<= 2;
#else
const int64_t dcdx = -IMUL64(plane[j].dcdx, 4);
const int64_t dcdy = IMUL64(plane[j].dcdy, 4);
const int64_t cox = IMUL64(plane[j].eo, 4);
const int32_t ei = plane[j].dcdy - plane[j].dcdx - (int64_t)plane[j].eo;
const int64_t cio = IMUL64(ei, 4) - 1;
int32_t co, cdiff;
co = c[j] + cox;
cdiff = cio - cox;
#endif
BUILD_MASKS(co, cdiff,
dcdx, dcdy,
&outmask, /* sign bits from c[i][0..15] + cox */
&partmask); /* sign bits from c[i][0..15] + cio */
}
if (outmask == 0xffff)
return;
/* Mask of sub-blocks which are inside all trivial accept planes:
*/
inmask = ~partmask & 0xffff;
/* Mask of sub-blocks which are inside all trivial reject planes,
* but outside at least one trivial accept plane:
*/
partial_mask = partmask & ~outmask;
assert((partial_mask & inmask) == 0);
LP_COUNT_ADD(nr_empty_4, util_bitcount(0xffff & ~(partial_mask | inmask)));
/* Iterate over partials:
*/
while (partial_mask) {
int i = ffs(partial_mask) - 1;
int ix = (i & 3) * 4;
int iy = (i >> 2) * 4;
int px = x + ix;
int py = y + iy;
int64_t cx[NR_PLANES];
partial_mask &= ~(1 << i);
LP_COUNT(nr_partially_covered_4);
for (j = 0; j < NR_PLANES; j++)
cx[j] = (c[j]
- IMUL64(plane[j].dcdx, ix)
+ IMUL64(plane[j].dcdy, iy));
TAG(do_block_4)(task, tri, plane, px, py, cx);
}
/* Iterate over fulls:
*/
while (inmask) {
int i = ffs(inmask) - 1;
int ix = (i & 3) * 4;
int iy = (i >> 2) * 4;
int px = x + ix;
int py = y + iy;
inmask &= ~(1 << i);
LP_COUNT(nr_fully_covered_4);
block_full_4(task, tri, px, py);
}
}
/**
* Scan the tile in chunks and figure out which pixels to rasterize
* for this triangle.
*/
void
TAG(lp_rast_triangle)(struct lp_rasterizer_task *task,
const union lp_rast_cmd_arg arg)
{
const struct lp_rast_triangle *tri = arg.triangle.tri;
unsigned plane_mask = arg.triangle.plane_mask;
const struct lp_rast_plane *tri_plane = GET_PLANES(tri);
const int x = task->x, y = task->y;
struct lp_rast_plane plane[NR_PLANES];
int64_t c[NR_PLANES];
unsigned outmask, inmask, partmask, partial_mask;
unsigned j = 0;
if (tri->inputs.disable) {
/* This triangle was partially binned and has been disabled */
return;
}
outmask = 0; /* outside one or more trivial reject planes */
partmask = 0; /* outside one or more trivial accept planes */
while (plane_mask) {
int i = ffs(plane_mask) - 1;
plane[j] = tri_plane[i];
plane_mask &= ~(1 << i);
c[j] = plane[j].c + IMUL64(plane[j].dcdy, y) - IMUL64(plane[j].dcdx, x);
{
#ifdef RASTER_64
/*
* Strip off lower FIXED_ORDER bits. Note that those bits from
* dcdx, dcdy, eo are always 0 (by definition).
* c values, however, are not. This means that for every
* addition of the form c + n*dcdx the lower FIXED_ORDER bits will
* NOT change. And those bits are not relevant to the sign bit (which
* is only what we need!) that is,
* sign(c + n*dcdx) == sign((c >> FIXED_ORDER) + n*(dcdx >> FIXED_ORDER))
* This means we can get away with using 32bit math for the most part.
* Only tricky part is the -1 adjustment for cdiff.
*/
int32_t dcdx = -plane[j].dcdx >> FIXED_ORDER;
int32_t dcdy = plane[j].dcdy >> FIXED_ORDER;
const int32_t cox = plane[j].eo >> FIXED_ORDER;
const int32_t ei = (dcdy + dcdx - cox) << 4;
const int32_t cox_s = cox << 4;
const int32_t co = (int32_t)(c[j] >> (int64_t)FIXED_ORDER) + cox_s;
int32_t cdiff;
/*
* Plausibility check to ensure the 32bit math works.
* Note that within a tile, the max we can move the edge function
* is essentially dcdx * TILE_SIZE + dcdy * TILE_SIZE.
* TILE_SIZE is 64, dcdx/dcdy are nominally 21 bit (for 8192 max size
* and 8 subpixel bits), I'd be happy with 2 bits more too (1 for
* increasing fb size to 16384, the required d3d11 value, another one
* because I'm not quite sure we can't be _just_ above the max value
* here). This gives us 30 bits max - hence if c would exceed that here
* that means the plane is either trivial reject for the whole tile
* (in which case the tri will not get binned), or trivial accept for
* the whole tile (in which case plane_mask will not include it).
*/
assert((c[j] >> (int64_t)FIXED_ORDER) > (int32_t)0xb0000000 &&
(c[j] >> (int64_t)FIXED_ORDER) < (int32_t)0x3fffffff);
/*
* Note the fixup part is constant throughout the tile - thus could
* just calculate this and avoid _all_ 64bit math in rasterization
* (except exactly this fixup calc).
* In fact theoretically could move that even to setup, albeit that
* seems tricky (pre-bin certainly can have values larger than 32bit,
* and would need to communicate that fixup value through).
* And if we want to support msaa, we'd probably don't want to do the
* downscaling in setup in any case...
*/
cdiff = ei - cox_s + ((int32_t)((c[j] - 1) >> (int64_t)FIXED_ORDER) -
(int32_t)(c[j] >> (int64_t)FIXED_ORDER));
dcdx <<= 4;
dcdy <<= 4;
#else
const int32_t dcdx = -plane[j].dcdx << 4;
const int32_t dcdy = plane[j].dcdy << 4;
const int32_t cox = plane[j].eo << 4;
const int32_t ei = plane[j].dcdy - plane[j].dcdx - (int32_t)plane[j].eo;
const int32_t cio = (ei << 4) - 1;
int32_t co, cdiff;
co = c[j] + cox;
cdiff = cio - cox;
#endif
BUILD_MASKS(co, cdiff,
dcdx, dcdy,
&outmask, /* sign bits from c[i][0..15] + cox */
&partmask); /* sign bits from c[i][0..15] + cio */
}
j++;
}
if (outmask == 0xffff)
return;
/* Mask of sub-blocks which are inside all trivial accept planes:
*/
inmask = ~partmask & 0xffff;
/* Mask of sub-blocks which are inside all trivial reject planes,
* but outside at least one trivial accept plane:
*/
partial_mask = partmask & ~outmask;
assert((partial_mask & inmask) == 0);
LP_COUNT_ADD(nr_empty_16, util_bitcount(0xffff & ~(partial_mask | inmask)));
/* Iterate over partials:
*/
while (partial_mask) {
int i = ffs(partial_mask) - 1;
int ix = (i & 3) * 16;
int iy = (i >> 2) * 16;
int px = x + ix;
int py = y + iy;
int64_t cx[NR_PLANES];
for (j = 0; j < NR_PLANES; j++)
cx[j] = (c[j]
- IMUL64(plane[j].dcdx, ix)
+ IMUL64(plane[j].dcdy, iy));
partial_mask &= ~(1 << i);
LP_COUNT(nr_partially_covered_16);
TAG(do_block_16)(task, tri, plane, px, py, cx);
}
/* Iterate over fulls:
*/
while (inmask) {
int i = ffs(inmask) - 1;
int ix = (i & 3) * 16;
int iy = (i >> 2) * 16;
int px = x + ix;
int py = y + iy;
inmask &= ~(1 << i);
LP_COUNT(nr_fully_covered_16);
block_full_16(task, tri, px, py);
}
}
#if defined(PIPE_ARCH_SSE) && defined(TRI_16)
/* XXX: special case this when intersection is not required.
* - tile completely within bbox,
* - bbox completely within tile.
*/
void
TRI_16(struct lp_rasterizer_task *task,
const union lp_rast_cmd_arg arg)
{
const struct lp_rast_triangle *tri = arg.triangle.tri;
const struct lp_rast_plane *plane = GET_PLANES(tri);
unsigned mask = arg.triangle.plane_mask;
unsigned outmask, partial_mask;
unsigned j;
__m128i cstep4[NR_PLANES][4];
int x = (mask & 0xff);
int y = (mask >> 8);
outmask = 0; /* outside one or more trivial reject planes */
x += task->x;
y += task->y;
for (j = 0; j < NR_PLANES; j++) {
const int dcdx = -plane[j].dcdx * 4;
const int dcdy = plane[j].dcdy * 4;
__m128i xdcdy = _mm_set1_epi32(dcdy);
cstep4[j][0] = _mm_setr_epi32(0, dcdx, dcdx*2, dcdx*3);
cstep4[j][1] = _mm_add_epi32(cstep4[j][0], xdcdy);
cstep4[j][2] = _mm_add_epi32(cstep4[j][1], xdcdy);
cstep4[j][3] = _mm_add_epi32(cstep4[j][2], xdcdy);
{
const int c = plane[j].c + plane[j].dcdy * y - plane[j].dcdx * x;
const int cox = plane[j].eo * 4;
outmask |= sign_bits4(cstep4[j], c + cox);
}
}
if (outmask == 0xffff)
return;
/* Mask of sub-blocks which are inside all trivial reject planes,
* but outside at least one trivial accept plane:
*/
partial_mask = 0xffff & ~outmask;
/* Iterate over partials:
*/
while (partial_mask) {
int i = ffs(partial_mask) - 1;
int ix = (i & 3) * 4;
int iy = (i >> 2) * 4;
int px = x + ix;
int py = y + iy;
unsigned mask = 0xffff;
partial_mask &= ~(1 << i);
for (j = 0; j < NR_PLANES; j++) {
const int cx = (plane[j].c - 1
- plane[j].dcdx * px
+ plane[j].dcdy * py) * 4;
mask &= ~sign_bits4(cstep4[j], cx);
}
if (mask)
lp_rast_shade_quads_mask(task, &tri->inputs, px, py, mask);
}
}
#endif
#if defined(PIPE_ARCH_SSE) && defined(TRI_4)
void
TRI_4(struct lp_rasterizer_task *task,
const union lp_rast_cmd_arg arg)
{
const struct lp_rast_triangle *tri = arg.triangle.tri;
const struct lp_rast_plane *plane = GET_PLANES(tri);
unsigned mask = arg.triangle.plane_mask;
const int x = task->x + (mask & 0xff);
const int y = task->y + (mask >> 8);
unsigned j;
/* Iterate over partials:
*/
{
unsigned mask = 0xffff;
for (j = 0; j < NR_PLANES; j++) {
const int cx = (plane[j].c
- plane[j].dcdx * x
+ plane[j].dcdy * y);
const int dcdx = -plane[j].dcdx;
const int dcdy = plane[j].dcdy;
__m128i xdcdy = _mm_set1_epi32(dcdy);
__m128i cstep0 = _mm_setr_epi32(cx, cx + dcdx, cx + dcdx*2, cx + dcdx*3);
__m128i cstep1 = _mm_add_epi32(cstep0, xdcdy);
__m128i cstep2 = _mm_add_epi32(cstep1, xdcdy);
__m128i cstep3 = _mm_add_epi32(cstep2, xdcdy);
__m128i cstep01 = _mm_packs_epi32(cstep0, cstep1);
__m128i cstep23 = _mm_packs_epi32(cstep2, cstep3);
__m128i result = _mm_packs_epi16(cstep01, cstep23);
/* Extract the sign bits
*/
mask &= ~_mm_movemask_epi8(result);
}
if (mask)
lp_rast_shade_quads_mask(task, &tri->inputs, x, y, mask);
}
}
#endif
#undef TAG
#undef TRI_4
#undef TRI_16
#undef NR_PLANES
|