1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
/**************************************************************************
*
* Copyright 2009 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* Helper
*
* LLVM IR doesn't support all basic arithmetic operations we care about (most
* notably min/max and saturated operations), and it is often necessary to
* resort machine-specific intrinsics directly. The functions here hide all
* these implementation details from the other modules.
*
* We also do simple expressions simplification here. Reasons are:
* - it is very easy given we have all necessary information readily available
* - LLVM optimization passes fail to simplify several vector expressions
* - We often know value constraints which the optimization passes have no way
* of knowing, such as when source arguments are known to be in [0, 1] range.
*
* @author Jose Fonseca <jfonseca@vmware.com>
*/
#include "util/u_debug.h"
#include "lp_bld_intr.h"
LLVMValueRef
lp_build_intrinsic(LLVMBuilderRef builder,
const char *name,
LLVMTypeRef ret_type,
LLVMValueRef *args,
unsigned num_args)
{
LLVMModuleRef module = LLVMGetGlobalParent(LLVMGetBasicBlockParent(LLVMGetInsertBlock(builder)));
LLVMValueRef function;
assert(num_args <= LP_MAX_FUNC_ARGS);
function = LLVMGetNamedFunction(module, name);
if(!function) {
LLVMTypeRef arg_types[LP_MAX_FUNC_ARGS];
unsigned i;
for(i = 0; i < num_args; ++i) {
assert(args[i]);
arg_types[i] = LLVMTypeOf(args[i]);
}
function = LLVMAddFunction(module, name, LLVMFunctionType(ret_type, arg_types, num_args, 0));
LLVMSetFunctionCallConv(function, LLVMCCallConv);
LLVMSetLinkage(function, LLVMExternalLinkage);
}
assert(LLVMIsDeclaration(function));
if(name[0] == 'l' &&
name[1] == 'l' &&
name[2] == 'v' &&
name[3] == 'm' &&
name[4] == '.')
assert(LLVMGetIntrinsicID(function));
return LLVMBuildCall(builder, function, args, num_args, "");
}
LLVMValueRef
lp_build_intrinsic_unary(LLVMBuilderRef builder,
const char *name,
LLVMTypeRef ret_type,
LLVMValueRef a)
{
return lp_build_intrinsic(builder, name, ret_type, &a, 1);
}
LLVMValueRef
lp_build_intrinsic_binary(LLVMBuilderRef builder,
const char *name,
LLVMTypeRef ret_type,
LLVMValueRef a,
LLVMValueRef b)
{
LLVMValueRef args[2];
args[0] = a;
args[1] = b;
return lp_build_intrinsic(builder, name, ret_type, args, 2);
}
LLVMValueRef
lp_build_intrinsic_map(LLVMBuilderRef builder,
const char *name,
LLVMTypeRef ret_type,
LLVMValueRef *args,
unsigned num_args)
{
LLVMTypeRef ret_elem_type = LLVMGetElementType(ret_type);
unsigned n = LLVMGetVectorSize(ret_type);
unsigned i, j;
LLVMValueRef res;
assert(num_args <= LP_MAX_FUNC_ARGS);
res = LLVMGetUndef(ret_type);
for(i = 0; i < n; ++i) {
LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
LLVMValueRef arg_elems[LP_MAX_FUNC_ARGS];
LLVMValueRef res_elem;
for(j = 0; j < num_args; ++j)
arg_elems[j] = LLVMBuildExtractElement(builder, args[j], index, "");
res_elem = lp_build_intrinsic(builder, name, ret_elem_type, arg_elems, num_args);
res = LLVMBuildInsertElement(builder, res, res_elem, index, "");
}
return res;
}
LLVMValueRef
lp_build_intrinsic_map_unary(LLVMBuilderRef builder,
const char *name,
LLVMTypeRef ret_type,
LLVMValueRef a)
{
return lp_build_intrinsic_map(builder, name, ret_type, &a, 1);
}
LLVMValueRef
lp_build_intrinsic_map_binary(LLVMBuilderRef builder,
const char *name,
LLVMTypeRef ret_type,
LLVMValueRef a,
LLVMValueRef b)
{
LLVMValueRef args[2];
args[0] = a;
args[1] = b;
return lp_build_intrinsic_map(builder, name, ret_type, args, 2);
}
|