aboutsummaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/llvmpipe/lp_bld_interp.c
blob: 745a6ca7c3bfba9cc5cb6031b4ef568272a1d0fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
/**************************************************************************
 * 
 * Copyright 2009 VMware, Inc.
 * Copyright 2007-2008 VMware, Inc.
 * All Rights Reserved.
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 * 
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 * 
 **************************************************************************/

/**
 * @file
 * Position and shader input interpolation.
 *
 * @author Jose Fonseca <jfonseca@vmware.com>
 */

#include "pipe/p_shader_tokens.h"
#include "util/u_debug.h"
#include "util/u_memory.h"
#include "util/u_math.h"
#include "tgsi/tgsi_scan.h"
#include "gallivm/lp_bld_debug.h"
#include "gallivm/lp_bld_const.h"
#include "gallivm/lp_bld_arit.h"
#include "gallivm/lp_bld_swizzle.h"
#include "gallivm/lp_bld_flow.h"
#include "gallivm/lp_bld_logic.h"
#include "gallivm/lp_bld_struct.h"
#include "lp_bld_interp.h"


/*
 * The shader JIT function operates on blocks of quads.
 * Each block has 2x2 quads and each quad has 2x2 pixels.
 *
 * We iterate over the quads in order 0, 1, 2, 3:
 *
 * #################
 * #   |   #   |   #
 * #---0---#---1---#
 * #   |   #   |   #
 * #################
 * #   |   #   |   #
 * #---2---#---3---#
 * #   |   #   |   #
 * #################
 *
 * If we iterate over multiple quads at once, quads 01 and 23 are processed
 * together.
 *
 * Within each quad, we have four pixels which are represented in SOA
 * order:
 *
 * #########
 * # 0 | 1 #
 * #---+---#
 * # 2 | 3 #
 * #########
 *
 * So the green channel (for example) of the four pixels is stored in
 * a single vector register: {g0, g1, g2, g3}.
 * The order stays the same even with multiple quads:
 * 0 1 4 5
 * 2 3 6 7
 * is stored as g0..g7
 */


/**
 * Do one perspective divide per quad.
 *
 * For perspective interpolation, the final attribute value is given
 *
 *  a' = a/w = a * oow
 *
 * where
 *
 *  a = a0 + dadx*x + dady*y
 *  w = w0 + dwdx*x + dwdy*y
 *  oow = 1/w = 1/(w0 + dwdx*x + dwdy*y)
 *
 * Instead of computing the division per pixel, with this macro we compute the
 * division on the upper left pixel of each quad, and use a linear
 * approximation in the remaining pixels, given by:
 *
 *  da'dx = (dadx - dwdx*a)*oow
 *  da'dy = (dady - dwdy*a)*oow
 *
 * Ironically, this actually makes things slower -- probably because the
 * divide hardware unit is rarely used, whereas the multiply unit is typically
 * already saturated.
 */
#define PERSPECTIVE_DIVIDE_PER_QUAD 0


static const unsigned char quad_offset_x[16] = {0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3};
static const unsigned char quad_offset_y[16] = {0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3};


static void
attrib_name(LLVMValueRef val, unsigned attrib, unsigned chan, const char *suffix)
{
   if(attrib == 0)
      lp_build_name(val, "pos.%c%s", "xyzw"[chan], suffix);
   else
      lp_build_name(val, "input%u.%c%s", attrib - 1, "xyzw"[chan], suffix);
}

static void
calc_offsets(struct lp_build_context *coeff_bld,
             unsigned quad_start_index,
             LLVMValueRef *pixoffx,
             LLVMValueRef *pixoffy)
{
   unsigned i;
   unsigned num_pix = coeff_bld->type.length;
   struct gallivm_state *gallivm = coeff_bld->gallivm;
   LLVMBuilderRef builder = coeff_bld->gallivm->builder;
   LLVMValueRef nr, pixxf, pixyf;

   *pixoffx = coeff_bld->undef;
   *pixoffy = coeff_bld->undef;

   for (i = 0; i < num_pix; i++) {
      nr = lp_build_const_int32(gallivm, i);
      pixxf = lp_build_const_float(gallivm, quad_offset_x[i % num_pix] +
                                   (quad_start_index & 1) * 2);
      pixyf = lp_build_const_float(gallivm, quad_offset_y[i % num_pix] +
                                   (quad_start_index & 2));
      *pixoffx = LLVMBuildInsertElement(builder, *pixoffx, pixxf, nr, "");
      *pixoffy = LLVMBuildInsertElement(builder, *pixoffy, pixyf, nr, "");
   }
}


/* Much easier, and significantly less instructions in the per-stamp
 * part (less than half) but overall more instructions so a loss if
 * most quads are active. Might be a win though with larger vectors.
 * No ability to do per-quad divide (doable but not implemented)
 * Could be made to work with passed in pixel offsets (i.e. active quad merging).
 */
static void
coeffs_init_simple(struct lp_build_interp_soa_context *bld,
                   LLVMValueRef a0_ptr,
                   LLVMValueRef dadx_ptr,
                   LLVMValueRef dady_ptr)
{
   struct lp_build_context *coeff_bld = &bld->coeff_bld;
   struct lp_build_context *setup_bld = &bld->setup_bld;
   struct gallivm_state *gallivm = coeff_bld->gallivm;
   LLVMBuilderRef builder = gallivm->builder;
   unsigned attrib;

   for (attrib = 0; attrib < bld->num_attribs; ++attrib) {
      /*
       * always fetch all 4 values for performance/simplicity
       * Note: we do that here because it seems to generate better
       * code. It generates a lot of moves initially but less
       * moves later. As far as I can tell this looks like a
       * llvm issue, instead of simply reloading the values from
       * the passed in pointers it if it runs out of registers
       * it spills/reloads them. Maybe some optimization passes
       * would help.
       * Might want to investigate this again later.
       */
      const unsigned interp = bld->interp[attrib];
      LLVMValueRef index = lp_build_const_int32(gallivm,
                                attrib * TGSI_NUM_CHANNELS);
      LLVMValueRef ptr;
      LLVMValueRef dadxaos = setup_bld->zero;
      LLVMValueRef dadyaos = setup_bld->zero;
      LLVMValueRef a0aos = setup_bld->zero;

      switch (interp) {
      case LP_INTERP_PERSPECTIVE:
         /* fall-through */

      case LP_INTERP_LINEAR:
         ptr = LLVMBuildGEP(builder, dadx_ptr, &index, 1, "");
         ptr = LLVMBuildBitCast(builder, ptr,
               LLVMPointerType(setup_bld->vec_type, 0), "");
         dadxaos = LLVMBuildLoad(builder, ptr, "");

         ptr = LLVMBuildGEP(builder, dady_ptr, &index, 1, "");
         ptr = LLVMBuildBitCast(builder, ptr,
               LLVMPointerType(setup_bld->vec_type, 0), "");
         dadyaos = LLVMBuildLoad(builder, ptr, "");

         attrib_name(dadxaos, attrib, 0, ".dadxaos");
         attrib_name(dadyaos, attrib, 0, ".dadyaos");
         /* fall-through */

      case LP_INTERP_CONSTANT:
      case LP_INTERP_FACING:
         ptr = LLVMBuildGEP(builder, a0_ptr, &index, 1, "");
         ptr = LLVMBuildBitCast(builder, ptr,
               LLVMPointerType(setup_bld->vec_type, 0), "");
         a0aos = LLVMBuildLoad(builder, ptr, "");
         attrib_name(a0aos, attrib, 0, ".a0aos");
         break;

      case LP_INTERP_POSITION:
         /* Nothing to do as the position coeffs are already setup in slot 0 */
         continue;

      default:
         assert(0);
         break;
      }
      bld->a0aos[attrib] = a0aos;
      bld->dadxaos[attrib] = dadxaos;
      bld->dadyaos[attrib] = dadyaos;
   }
}

/**
 * Interpolate the shader input attribute values.
 * This is called for each (group of) quad(s).
 */
static void
attribs_update_simple(struct lp_build_interp_soa_context *bld,
                      struct gallivm_state *gallivm,
                      LLVMValueRef loop_iter,
                      LLVMValueRef mask_store,
                      LLVMValueRef sample_id,
                      int start,
                      int end)
{
   LLVMBuilderRef builder = gallivm->builder;
   struct lp_build_context *coeff_bld = &bld->coeff_bld;
   struct lp_build_context *setup_bld = &bld->setup_bld;
   LLVMValueRef oow = NULL;
   unsigned attrib;
   LLVMValueRef pixoffx;
   LLVMValueRef pixoffy;
   LLVMValueRef ptr;

   /* could do this with code-generated passed in pixel offsets too */

   assert(loop_iter);
   ptr = LLVMBuildGEP(builder, bld->xoffset_store, &loop_iter, 1, "");
   pixoffx = LLVMBuildLoad(builder, ptr, "");
   ptr = LLVMBuildGEP(builder, bld->yoffset_store, &loop_iter, 1, "");
   pixoffy = LLVMBuildLoad(builder, ptr, "");

   pixoffx = LLVMBuildFAdd(builder, pixoffx,
                           lp_build_broadcast_scalar(coeff_bld, bld->x), "");
   pixoffy = LLVMBuildFAdd(builder, pixoffy,
                           lp_build_broadcast_scalar(coeff_bld, bld->y), "");

   for (attrib = start; attrib < end; attrib++) {
      const unsigned mask = bld->mask[attrib];
      const unsigned interp = bld->interp[attrib];
      const unsigned loc = bld->interp_loc[attrib];
      unsigned chan;

      for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
         if (mask & (1 << chan)) {
            LLVMValueRef index;
            LLVMValueRef dadx = coeff_bld->zero;
            LLVMValueRef dady = coeff_bld->zero;
            LLVMValueRef a = coeff_bld->zero;
            LLVMValueRef chan_pixoffx = pixoffx, chan_pixoffy = pixoffy;

            index = lp_build_const_int32(gallivm, chan);
            switch (interp) {
            case LP_INTERP_PERSPECTIVE:
               /* fall-through */

            case LP_INTERP_LINEAR:
               if (attrib == 0 && chan == 0) {
                  dadx = coeff_bld->one;
                  if (bld->pos_offset) {
                     a = lp_build_const_vec(gallivm, coeff_bld->type, bld->pos_offset);
                  }
               }
               else if (attrib == 0 && chan == 1) {
                  dady = coeff_bld->one;
                  if (bld->pos_offset) {
                     a = lp_build_const_vec(gallivm, coeff_bld->type, bld->pos_offset);
                  }
               }
               else {
                  dadx = lp_build_extract_broadcast(gallivm, setup_bld->type,
                                                    coeff_bld->type, bld->dadxaos[attrib],
                                                    index);
                  dady = lp_build_extract_broadcast(gallivm, setup_bld->type,
                                                    coeff_bld->type, bld->dadyaos[attrib],
                                                    index);
                  a = lp_build_extract_broadcast(gallivm, setup_bld->type,
                                                 coeff_bld->type, bld->a0aos[attrib],
                                                 index);

                  if (bld->coverage_samples > 1) {
                     LLVMValueRef xoffset = lp_build_const_vec(gallivm, coeff_bld->type, bld->pos_offset);
                     LLVMValueRef yoffset = lp_build_const_vec(gallivm, coeff_bld->type, bld->pos_offset);
                     if (loc == TGSI_INTERPOLATE_LOC_SAMPLE) {
                        LLVMValueRef x_val_idx = LLVMBuildMul(gallivm->builder, sample_id, lp_build_const_int32(gallivm, 2), "");
                        LLVMValueRef y_val_idx = LLVMBuildAdd(gallivm->builder, x_val_idx, lp_build_const_int32(gallivm, 1), "");

                        x_val_idx = LLVMBuildGEP(builder, bld->sample_pos_array, &x_val_idx, 1, "");
                        y_val_idx = LLVMBuildGEP(builder, bld->sample_pos_array, &y_val_idx, 1, "");
                        xoffset = lp_build_broadcast_scalar(coeff_bld, LLVMBuildLoad(builder, x_val_idx, ""));
                        yoffset = lp_build_broadcast_scalar(coeff_bld, LLVMBuildLoad(builder, y_val_idx, ""));
                     } else if (loc == TGSI_INTERPOLATE_LOC_CENTROID) {
                        LLVMValueRef centroid_x_offset = lp_build_const_vec(gallivm, coeff_bld->type, bld->pos_offset);
                        LLVMValueRef centroid_y_offset = lp_build_const_vec(gallivm, coeff_bld->type, bld->pos_offset);

                        /* for centroid find covered samples for this quad. */
                        /* if all samples are covered use pixel centers */
                        LLVMValueRef s_mask_and = NULL;
                        for (int s = bld->coverage_samples - 1; s >= 0; s--) {
                           LLVMValueRef sample_cov;
                           LLVMValueRef s_mask_idx = LLVMBuildMul(builder, bld->num_loop, lp_build_const_int32(gallivm, s), "");

                           s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_iter, "");
                           sample_cov = lp_build_pointer_get(builder, mask_store, s_mask_idx);
                           if (s == bld->coverage_samples - 1)
                              s_mask_and = sample_cov;
                           else
                              s_mask_and = LLVMBuildAnd(builder, s_mask_and, sample_cov, "");

                           LLVMValueRef x_val_idx = lp_build_const_int32(gallivm, s * 2);
                           LLVMValueRef y_val_idx = lp_build_const_int32(gallivm, s * 2 + 1);

                           x_val_idx = LLVMBuildGEP(builder, bld->sample_pos_array, &x_val_idx, 1, "");
                           y_val_idx = LLVMBuildGEP(builder, bld->sample_pos_array, &y_val_idx, 1, "");
                           x_val_idx = lp_build_broadcast_scalar(coeff_bld, LLVMBuildLoad(builder, x_val_idx, ""));
                           y_val_idx = lp_build_broadcast_scalar(coeff_bld, LLVMBuildLoad(builder, y_val_idx, ""));
                           centroid_x_offset = lp_build_select(coeff_bld, sample_cov, x_val_idx, centroid_x_offset);
                           centroid_y_offset = lp_build_select(coeff_bld, sample_cov, y_val_idx, centroid_y_offset);
                        }
                        xoffset = lp_build_select(coeff_bld, s_mask_and, xoffset, centroid_x_offset);
                        yoffset = lp_build_select(coeff_bld, s_mask_and, yoffset, centroid_y_offset);
                     }
                     chan_pixoffx = lp_build_add(coeff_bld, chan_pixoffx, xoffset);
                     chan_pixoffy = lp_build_add(coeff_bld, chan_pixoffy, yoffset);
                  }
               }
               /*
                * a = a0 + (x * dadx + y * dady)
                */
               a = lp_build_fmuladd(builder, dadx, chan_pixoffx, a);
               a = lp_build_fmuladd(builder, dady, chan_pixoffy, a);

               if (interp == LP_INTERP_PERSPECTIVE) {
                  if (oow == NULL) {
                     LLVMValueRef w = bld->attribs[0][3];
                     assert(attrib != 0);
                     assert(bld->mask[0] & TGSI_WRITEMASK_W);
                     oow = lp_build_rcp(coeff_bld, w);
                  }
                  a = lp_build_mul(coeff_bld, a, oow);
               }
               break;

            case LP_INTERP_CONSTANT:
            case LP_INTERP_FACING:
               a = lp_build_extract_broadcast(gallivm, setup_bld->type,
                                              coeff_bld->type, bld->a0aos[attrib],
                                              index);
               break;

            case LP_INTERP_POSITION:
               assert(attrib > 0);
               a = bld->attribs[0][chan];
               break;

            default:
               assert(0);
               break;
            }

            if ((attrib == 0) && (chan == 2) && !bld->depth_clamp){
               /* FIXME: Depth values can exceed 1.0, due to the fact that
                * setup interpolation coefficients refer to (0,0) which causes
                * precision loss. So we must clamp to 1.0 here to avoid artifacts.
                * Note though values outside [0,1] are perfectly valid with
                * depth clip disabled.
                * XXX: If depth clip is disabled but we force depth clamp
                * we may get values larger than 1.0 in the fs (but not in
                * depth test). Not sure if that's an issue...
                * Also, on a similar note, it is not obvious if the depth values
                * appearing in fs (with depth clip disabled) should be clamped
                * to [0,1], clamped to near/far or not be clamped at all...
                */
               a = lp_build_min(coeff_bld, a, coeff_bld->one);
            }
            bld->attribs[attrib][chan] = a;
         }
      }
   }
}

/**
 * Initialize the bld->a, dadq fields.  This involves fetching
 * those values from the arrays which are passed into the JIT function.
 */
static void
coeffs_init(struct lp_build_interp_soa_context *bld,
            LLVMValueRef a0_ptr,
            LLVMValueRef dadx_ptr,
            LLVMValueRef dady_ptr)
{
   struct lp_build_context *coeff_bld = &bld->coeff_bld;
   struct lp_build_context *setup_bld = &bld->setup_bld;
   struct gallivm_state *gallivm = coeff_bld->gallivm;
   LLVMBuilderRef builder = gallivm->builder;
   LLVMValueRef pixoffx, pixoffy;
   unsigned attrib;
   unsigned chan;
   unsigned i;

   pixoffx = coeff_bld->undef;
   pixoffy = coeff_bld->undef;
   for (i = 0; i < coeff_bld->type.length; i++) {
      LLVMValueRef nr = lp_build_const_int32(gallivm, i);
      LLVMValueRef pixxf = lp_build_const_float(gallivm, quad_offset_x[i]);
      LLVMValueRef pixyf = lp_build_const_float(gallivm, quad_offset_y[i]);
      pixoffx = LLVMBuildInsertElement(builder, pixoffx, pixxf, nr, "");
      pixoffy = LLVMBuildInsertElement(builder, pixoffy, pixyf, nr, "");
   }


   for (attrib = 0; attrib < bld->num_attribs; ++attrib) {
      const unsigned mask = bld->mask[attrib];
      const unsigned interp = bld->interp[attrib];
      LLVMValueRef index = lp_build_const_int32(gallivm,
                                attrib * TGSI_NUM_CHANNELS);
      LLVMValueRef ptr;
      LLVMValueRef dadxaos = setup_bld->zero;
      LLVMValueRef dadyaos = setup_bld->zero;
      LLVMValueRef a0aos = setup_bld->zero;

      /* always fetch all 4 values for performance/simplicity */
      switch (interp) {
      case LP_INTERP_PERSPECTIVE:
         /* fall-through */

      case LP_INTERP_LINEAR:
         ptr = LLVMBuildGEP(builder, dadx_ptr, &index, 1, "");
         ptr = LLVMBuildBitCast(builder, ptr,
               LLVMPointerType(setup_bld->vec_type, 0), "");
         dadxaos = LLVMBuildLoad(builder, ptr, "");

         ptr = LLVMBuildGEP(builder, dady_ptr, &index, 1, "");
         ptr = LLVMBuildBitCast(builder, ptr,
               LLVMPointerType(setup_bld->vec_type, 0), "");
         dadyaos = LLVMBuildLoad(builder, ptr, "");

         attrib_name(dadxaos, attrib, 0, ".dadxaos");
         attrib_name(dadyaos, attrib, 0, ".dadyaos");
         /* fall-through */

      case LP_INTERP_CONSTANT:
      case LP_INTERP_FACING:
         ptr = LLVMBuildGEP(builder, a0_ptr, &index, 1, "");
         ptr = LLVMBuildBitCast(builder, ptr,
               LLVMPointerType(setup_bld->vec_type, 0), "");
         a0aos = LLVMBuildLoad(builder, ptr, "");
         attrib_name(a0aos, attrib, 0, ".a0aos");
         break;

      case LP_INTERP_POSITION:
         /* Nothing to do as the position coeffs are already setup in slot 0 */
         continue;

      default:
         assert(0);
         break;
      }

      /*
       * a = a0 + (x * dadx + y * dady)
       * a0aos is the attrib value at top left corner of stamp
       */
      if (interp != LP_INTERP_CONSTANT &&
          interp != LP_INTERP_FACING) {
         LLVMValueRef x = lp_build_broadcast_scalar(setup_bld, bld->x);
         LLVMValueRef y = lp_build_broadcast_scalar(setup_bld, bld->y);
         a0aos = lp_build_fmuladd(builder, x, dadxaos, a0aos);
         a0aos = lp_build_fmuladd(builder, y, dadyaos, a0aos);
      }

      /*
       * dadq = {0, dadx, dady, dadx + dady}
       * for two quads (side by side) this is:
       * {0, dadx, dady, dadx+dady, 2*dadx, 2*dadx+dady, 3*dadx+dady}
       */
      for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
         /* this generates a CRAPLOAD of shuffles... */
         if (mask & (1 << chan)) {
            LLVMValueRef dadx, dady;
            LLVMValueRef dadq, dadq2;
            LLVMValueRef a;
            LLVMValueRef chan_index = lp_build_const_int32(gallivm, chan);

            if (attrib == 0 && chan == 0) {
               a = bld->x;
               if (bld->pos_offset) {
                  a = LLVMBuildFAdd(builder, a, lp_build_const_float(gallivm, bld->pos_offset), "");
               }
               a = lp_build_broadcast_scalar(coeff_bld, a);
               dadx = coeff_bld->one;
               dady = coeff_bld->zero;
            }
            else if (attrib == 0 && chan == 1) {
               a = bld->y;
               if (bld->pos_offset) {
                  a = LLVMBuildFAdd(builder, a, lp_build_const_float(gallivm, bld->pos_offset), "");
               }
               a = lp_build_broadcast_scalar(coeff_bld, a);
               dady = coeff_bld->one;
               dadx = coeff_bld->zero;
            }
            else {
               dadx = lp_build_extract_broadcast(gallivm, setup_bld->type,
                                              coeff_bld->type, dadxaos, chan_index);
               dady = lp_build_extract_broadcast(gallivm, setup_bld->type,
                                              coeff_bld->type, dadyaos, chan_index);

               /*
                * a = {a, a, a, a}
                */
               a = lp_build_extract_broadcast(gallivm, setup_bld->type,
                                              coeff_bld->type, a0aos, chan_index);
            }

            dadx = LLVMBuildFMul(builder, dadx, pixoffx, "");
            dady = LLVMBuildFMul(builder, dady, pixoffy, "");
            dadq = LLVMBuildFAdd(builder, dadx, dady, "");

            /*
             * Compute the attrib values on the upper-left corner of each
             * group of quads.
             * Note that if we process 2 quads at once this doesn't
             * really exactly to what we want.
             * We need to access elem 0 and 2 respectively later if we process
             * 2 quads at once.
             */

            if (interp != LP_INTERP_CONSTANT &&
                interp != LP_INTERP_FACING) {
               dadq2 = LLVMBuildFAdd(builder, dadq, dadq, "");
               a = LLVMBuildFAdd(builder, a, dadq2, "");
	    }

#if PERSPECTIVE_DIVIDE_PER_QUAD
            /*
             * a *= 1 / w
             */

            /*
             * XXX since we're only going to access elements 0,2 out of 8
             * if we have 8-wide vectors we should do the division only 4-wide.
             * a is really a 2-elements in a 4-wide vector disguised as 8-wide
             * in this case.
             */
            if (interp == LP_INTERP_PERSPECTIVE) {
               LLVMValueRef w = bld->a[0][3];
               assert(attrib != 0);
               assert(bld->mask[0] & TGSI_WRITEMASK_W);
               if (!bld->oow) {
                  bld->oow = lp_build_rcp(coeff_bld, w);
                  lp_build_name(bld->oow, "oow");
               }
               a = lp_build_mul(coeff_bld, a, bld->oow);
            }
#endif

            attrib_name(a, attrib, chan, ".a");
            attrib_name(dadq, attrib, chan, ".dadq");

            bld->a[attrib][chan] = lp_build_alloca(gallivm,
                                                   LLVMTypeOf(a), "");
            LLVMBuildStore(builder, a, bld->a[attrib][chan]);
            bld->dadq[attrib][chan] = dadq;
         }
      }
   }
}


/**
 * Increment the shader input attribute values.
 * This is called when we move from one quad to the next.
 */
static void
attribs_update(struct lp_build_interp_soa_context *bld,
               struct gallivm_state *gallivm,
               LLVMValueRef loop_iter,
               int start,
               int end)
{
   LLVMBuilderRef builder = gallivm->builder;
   struct lp_build_context *coeff_bld = &bld->coeff_bld;
   LLVMValueRef oow = NULL;
   unsigned attrib;
   unsigned chan;

   for(attrib = start; attrib < end; ++attrib) {
      const unsigned mask = bld->mask[attrib];
      const unsigned interp = bld->interp[attrib];
      for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
         if(mask & (1 << chan)) {
            LLVMValueRef a;
            if (interp == LP_INTERP_CONSTANT ||
                interp == LP_INTERP_FACING) {
               a = LLVMBuildLoad(builder, bld->a[attrib][chan], "");
            }
            else if (interp == LP_INTERP_POSITION) {
               assert(attrib > 0);
               a = bld->attribs[0][chan];
            }
            else {
               LLVMValueRef dadq;

               a = bld->a[attrib][chan];

               /*
                * Broadcast the attribute value for this quad into all elements
                */

               {
                  /* stored as vector load as float */
                  LLVMTypeRef ptr_type = LLVMPointerType(LLVMFloatTypeInContext(
                                                            gallivm->context), 0);
                  LLVMValueRef ptr;
                  a = LLVMBuildBitCast(builder, a, ptr_type, "");
                  ptr = LLVMBuildGEP(builder, a, &loop_iter, 1, "");
                  a = LLVMBuildLoad(builder, ptr, "");
                  a = lp_build_broadcast_scalar(&bld->coeff_bld, a);
               }

               /*
                * Get the derivatives.
                */

               dadq = bld->dadq[attrib][chan];

#if PERSPECTIVE_DIVIDE_PER_QUAD
               if (interp == LP_INTERP_PERSPECTIVE) {
                  LLVMValueRef dwdq = bld->dadq[0][3];

                  if (oow == NULL) {
                     assert(bld->oow);
                     oow = LLVMBuildShuffleVector(coeff_bld->builder,
                                                  bld->oow, coeff_bld->undef,
                                                  shuffle, "");
                  }

                  dadq = lp_build_sub(coeff_bld,
                                      dadq,
                                      lp_build_mul(coeff_bld, a, dwdq));
                  dadq = lp_build_mul(coeff_bld, dadq, oow);
               }
#endif

               /*
                * Add the derivatives
                */

               a = lp_build_add(coeff_bld, a, dadq);

#if !PERSPECTIVE_DIVIDE_PER_QUAD
               if (interp == LP_INTERP_PERSPECTIVE) {
                  if (oow == NULL) {
                     LLVMValueRef w = bld->attribs[0][3];
                     assert(attrib != 0);
                     assert(bld->mask[0] & TGSI_WRITEMASK_W);
                     oow = lp_build_rcp(coeff_bld, w);
                  }
                  a = lp_build_mul(coeff_bld, a, oow);
               }
#endif

               if (attrib == 0 && chan == 2 && !bld->depth_clamp) {
                  /* FIXME: Depth values can exceed 1.0, due to the fact that
                   * setup interpolation coefficients refer to (0,0) which causes
                   * precision loss. So we must clamp to 1.0 here to avoid artifacts.
                   * Note though values outside [0,1] are perfectly valid with
                   * depth clip disabled..
                   * XXX: If depth clip is disabled but we force depth clamp
                   * we may get values larger than 1.0 in the fs (but not in
                   * depth test). Not sure if that's an issue...
                   * Also, on a similar note, it is not obvious if the depth values
                   * appearing in fs (with depth clip disabled) should be clamped
                   * to [0,1], clamped to near/far or not be clamped at all...
                   */
                  a = lp_build_min(coeff_bld, a, coeff_bld->one);
               }

               attrib_name(a, attrib, chan, "");
            }
            bld->attribs[attrib][chan] = a;
         }
      }
   }
}


/**
 * Generate the position vectors.
 *
 * Parameter x0, y0 are the integer values with upper left coordinates.
 */
static void
pos_init(struct lp_build_interp_soa_context *bld,
         LLVMValueRef x0,
         LLVMValueRef y0)
{
   LLVMBuilderRef builder = bld->coeff_bld.gallivm->builder;
   struct lp_build_context *coeff_bld = &bld->coeff_bld;

   bld->x = LLVMBuildSIToFP(builder, x0, coeff_bld->elem_type, "");
   bld->y = LLVMBuildSIToFP(builder, y0, coeff_bld->elem_type, "");
}


/**
 * Initialize fragment shader input attribute info.
 */
void
lp_build_interp_soa_init(struct lp_build_interp_soa_context *bld,
                         struct gallivm_state *gallivm,
                         unsigned num_inputs,
                         const struct lp_shader_input *inputs,
                         boolean pixel_center_integer,
                         unsigned coverage_samples,
                         LLVMValueRef sample_pos_array,
                         LLVMValueRef num_loop,
                         boolean depth_clamp,
                         LLVMBuilderRef builder,
                         struct lp_type type,
                         LLVMValueRef a0_ptr,
                         LLVMValueRef dadx_ptr,
                         LLVMValueRef dady_ptr,
                         LLVMValueRef x0,
                         LLVMValueRef y0)
{
   struct lp_type coeff_type;
   struct lp_type setup_type;
   unsigned attrib;
   unsigned chan;

   memset(bld, 0, sizeof *bld);

   memset(&coeff_type, 0, sizeof coeff_type);
   coeff_type.floating = TRUE;
   coeff_type.sign = TRUE;
   coeff_type.width = 32;
   coeff_type.length = type.length;

   memset(&setup_type, 0, sizeof setup_type);
   setup_type.floating = TRUE;
   setup_type.sign = TRUE;
   setup_type.width = 32;
   setup_type.length = TGSI_NUM_CHANNELS;


   /* XXX: we don't support interpolating into any other types */
   assert(memcmp(&coeff_type, &type, sizeof coeff_type) == 0);

   lp_build_context_init(&bld->coeff_bld, gallivm, coeff_type);
   lp_build_context_init(&bld->setup_bld, gallivm, setup_type);

   /* For convenience */
   bld->pos = bld->attribs[0];
   bld->inputs = (const LLVMValueRef (*)[TGSI_NUM_CHANNELS]) bld->attribs[1];

   /* Position */
   bld->mask[0] = TGSI_WRITEMASK_XYZW;
   bld->interp[0] = LP_INTERP_LINEAR;
   bld->interp_loc[0] = 0;

   /* Inputs */
   for (attrib = 0; attrib < num_inputs; ++attrib) {
      bld->mask[1 + attrib] = inputs[attrib].usage_mask;
      bld->interp[1 + attrib] = inputs[attrib].interp;
      bld->interp_loc[1 + attrib] = inputs[attrib].location;
   }
   bld->num_attribs = 1 + num_inputs;

   /* Ensure all masked out input channels have a valid value */
   for (attrib = 0; attrib < bld->num_attribs; ++attrib) {
      for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
         bld->attribs[attrib][chan] = bld->coeff_bld.undef;
      }
   }

   if (pixel_center_integer) {
      bld->pos_offset = 0.0;
   } else {
      bld->pos_offset = 0.5;
   }
   bld->depth_clamp = depth_clamp;
   bld->coverage_samples = coverage_samples;
   bld->num_loop = num_loop;
   bld->sample_pos_array = sample_pos_array;

   pos_init(bld, x0, y0);

   /*
    * Simple method (single step interpolation) may be slower if vector length
    * is just 4, but the results are different (generally less accurate) with
    * the other method, so always use more accurate version.
    */
   if (1) {
      bld->simple_interp = TRUE;
      {
         /* XXX this should use a global static table */
         unsigned i;
         unsigned num_loops = 16 / type.length;
         LLVMValueRef pixoffx, pixoffy, index;
         LLVMValueRef ptr;

         bld->xoffset_store = lp_build_array_alloca(gallivm,
                                                    lp_build_vec_type(gallivm, type),
                                                    lp_build_const_int32(gallivm, num_loops),
                                                    "");
         bld->yoffset_store = lp_build_array_alloca(gallivm,
                                                    lp_build_vec_type(gallivm, type),
                                                    lp_build_const_int32(gallivm, num_loops),
                                                    "");
         for (i = 0; i < num_loops; i++) {
            index = lp_build_const_int32(gallivm, i);
            calc_offsets(&bld->coeff_bld, i*type.length/4, &pixoffx, &pixoffy);
            ptr = LLVMBuildGEP(builder, bld->xoffset_store, &index, 1, "");
            LLVMBuildStore(builder, pixoffx, ptr);
            ptr = LLVMBuildGEP(builder, bld->yoffset_store, &index, 1, "");
            LLVMBuildStore(builder, pixoffy, ptr);
         }
      }
      coeffs_init_simple(bld, a0_ptr, dadx_ptr, dady_ptr);
   }
   else {
      bld->simple_interp = FALSE;
      coeffs_init(bld, a0_ptr, dadx_ptr, dady_ptr);
   }

}


/*
 * Advance the position and inputs to the given quad within the block.
 */

void
lp_build_interp_soa_update_inputs_dyn(struct lp_build_interp_soa_context *bld,
                                      struct gallivm_state *gallivm,
                                      LLVMValueRef quad_start_index,
                                      LLVMValueRef mask_store,
                                      LLVMValueRef sample_id)
{
   if (bld->simple_interp) {
      attribs_update_simple(bld, gallivm, quad_start_index, mask_store, sample_id, 1, bld->num_attribs);
   }
   else {
      attribs_update(bld, gallivm, quad_start_index, 1, bld->num_attribs);
   }
}

void
lp_build_interp_soa_update_pos_dyn(struct lp_build_interp_soa_context *bld,
                                   struct gallivm_state *gallivm,
                                   LLVMValueRef quad_start_index)
{
   if (bld->simple_interp) {
      attribs_update_simple(bld, gallivm, quad_start_index, NULL, NULL, 0, 1);
   }
   else {
      attribs_update(bld, gallivm, quad_start_index, 0, 1);
   }
}