1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
/**************************************************************************
*
* Copyright 2012 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include "pipe/p_state.h"
#include "util/u_debug.h"
#include "gallivm/lp_bld_type.h"
#include "gallivm/lp_bld_arit.h"
#include "gallivm/lp_bld_const.h"
#include "gallivm/lp_bld_logic.h"
#include "gallivm/lp_bld_swizzle.h"
#include "gallivm/lp_bld_flow.h"
#include "gallivm/lp_bld_debug.h"
#include "gallivm/lp_bld_pack.h"
#include "lp_bld_blend.h"
/**
* Is (a OP b) == (b OP a)?
*/
boolean
lp_build_blend_func_commutative(unsigned func)
{
switch (func) {
case PIPE_BLEND_ADD:
case PIPE_BLEND_MIN:
case PIPE_BLEND_MAX:
return TRUE;
case PIPE_BLEND_SUBTRACT:
case PIPE_BLEND_REVERSE_SUBTRACT:
return FALSE;
default:
assert(0);
return TRUE;
}
}
/**
* Whether the blending functions are the reverse of each other.
*/
boolean
lp_build_blend_func_reverse(unsigned rgb_func, unsigned alpha_func)
{
if (rgb_func == alpha_func)
return FALSE;
if (rgb_func == PIPE_BLEND_SUBTRACT && alpha_func == PIPE_BLEND_REVERSE_SUBTRACT)
return TRUE;
if (rgb_func == PIPE_BLEND_REVERSE_SUBTRACT && alpha_func == PIPE_BLEND_SUBTRACT)
return TRUE;
return FALSE;
}
/**
* Whether the blending factors are complementary of each other.
*/
static inline boolean
lp_build_blend_factor_complementary(unsigned src_factor, unsigned dst_factor)
{
STATIC_ASSERT((PIPE_BLENDFACTOR_ZERO ^ 0x10) == PIPE_BLENDFACTOR_ONE);
STATIC_ASSERT((PIPE_BLENDFACTOR_CONST_COLOR ^ 0x10) ==
PIPE_BLENDFACTOR_INV_CONST_COLOR);
return dst_factor == (src_factor ^ 0x10);
}
/**
* Whether this is a inverse blend factor
*/
static inline boolean
is_inverse_factor(unsigned factor)
{
STATIC_ASSERT(PIPE_BLENDFACTOR_ZERO == 0x11);
return factor > 0x11;
}
/**
* Calculates the (expanded to wider type) multiplication
* of 2 normalized numbers.
*/
static void
lp_build_mul_norm_expand(struct lp_build_context *bld,
LLVMValueRef a, LLVMValueRef b,
LLVMValueRef *resl, LLVMValueRef *resh,
boolean signedness_differs)
{
const struct lp_type type = bld->type;
struct lp_type wide_type = lp_wider_type(type);
struct lp_type wide_type2 = wide_type;
struct lp_type type2 = type;
LLVMValueRef al, ah, bl, bh;
assert(lp_check_value(type, a));
assert(lp_check_value(type, b));
assert(!type.floating && !type.fixed && type.norm);
if (a == bld->zero || b == bld->zero) {
LLVMValueRef zero = LLVMConstNull(lp_build_vec_type(bld->gallivm, wide_type));
*resl = zero;
*resh = zero;
return;
}
if (signedness_differs) {
type2.sign = !type.sign;
wide_type2.sign = !wide_type2.sign;
}
lp_build_unpack2_native(bld->gallivm, type, wide_type, a, &al, &ah);
lp_build_unpack2_native(bld->gallivm, type2, wide_type2, b, &bl, &bh);
*resl = lp_build_mul_norm(bld->gallivm, wide_type, al, bl);
*resh = lp_build_mul_norm(bld->gallivm, wide_type, ah, bh);
}
/**
* @sa http://www.opengl.org/sdk/docs/man/xhtml/glBlendEquationSeparate.xml
*/
LLVMValueRef
lp_build_blend_func(struct lp_build_context *bld,
unsigned func,
LLVMValueRef term1,
LLVMValueRef term2)
{
switch (func) {
case PIPE_BLEND_ADD:
return lp_build_add(bld, term1, term2);
case PIPE_BLEND_SUBTRACT:
return lp_build_sub(bld, term1, term2);
case PIPE_BLEND_REVERSE_SUBTRACT:
return lp_build_sub(bld, term2, term1);
case PIPE_BLEND_MIN:
return lp_build_min(bld, term1, term2);
case PIPE_BLEND_MAX:
return lp_build_max(bld, term1, term2);
default:
assert(0);
return bld->zero;
}
}
/**
* Performs optimisations and blending independent of SoA/AoS
*
* @param func the blend function
* @param factor_src PIPE_BLENDFACTOR_xxx
* @param factor_dst PIPE_BLENDFACTOR_xxx
* @param src source rgba
* @param dst dest rgba
* @param src_factor src factor computed value
* @param dst_factor dst factor computed value
* @param not_alpha_dependent same factors accross all channels of src/dst
*
* not_alpha_dependent should be:
* SoA: always true as it is only one channel at a time
* AoS: rgb_src_factor == alpha_src_factor && rgb_dst_factor == alpha_dst_factor
*
* Note that pretty much every possible optimisation can only be done on non-unorm targets
* due to unorm values not going above 1.0 meaning factorisation can change results.
* e.g. (0.9 * 0.9) + (0.9 * 0.9) != 0.9 * (0.9 + 0.9) as result of + is always <= 1.
*/
LLVMValueRef
lp_build_blend(struct lp_build_context *bld,
unsigned func,
unsigned factor_src,
unsigned factor_dst,
LLVMValueRef src,
LLVMValueRef dst,
LLVMValueRef src_factor,
LLVMValueRef dst_factor,
boolean not_alpha_dependent,
boolean optimise_only)
{
LLVMValueRef result, src_term, dst_term;
/* If we are not alpha dependent we can mess with the src/dst factors */
if (not_alpha_dependent) {
if (lp_build_blend_factor_complementary(factor_src, factor_dst)) {
if (func == PIPE_BLEND_ADD) {
if (factor_src < factor_dst) {
return lp_build_lerp(bld, src_factor, dst, src, 0);
} else {
return lp_build_lerp(bld, dst_factor, src, dst, 0);
}
} else if (bld->type.floating && func == PIPE_BLEND_SUBTRACT) {
result = lp_build_add(bld, src, dst);
if (factor_src < factor_dst) {
result = lp_build_mul(bld, result, src_factor);
return lp_build_sub(bld, result, dst);
} else {
result = lp_build_mul(bld, result, dst_factor);
return lp_build_sub(bld, src, result);
}
} else if (bld->type.floating && func == PIPE_BLEND_REVERSE_SUBTRACT) {
result = lp_build_add(bld, src, dst);
if (factor_src < factor_dst) {
result = lp_build_mul(bld, result, src_factor);
return lp_build_sub(bld, dst, result);
} else {
result = lp_build_mul(bld, result, dst_factor);
return lp_build_sub(bld, result, src);
}
}
}
if (bld->type.floating && factor_src == factor_dst) {
if (func == PIPE_BLEND_ADD ||
func == PIPE_BLEND_SUBTRACT ||
func == PIPE_BLEND_REVERSE_SUBTRACT) {
LLVMValueRef result;
result = lp_build_blend_func(bld, func, src, dst);
return lp_build_mul(bld, result, src_factor);
}
}
}
if (optimise_only)
return NULL;
if ((bld->type.norm && bld->type.sign) &&
(is_inverse_factor(factor_src) || is_inverse_factor(factor_dst))) {
/*
* With snorm blending, the inverse blend factors range from [0,2]
* instead of [-1,1], so the ordinary signed normalized arithmetic
* doesn't quite work. Unpack must be unsigned, and the add/sub
* must be done with wider type.
* (Note that it's not quite obvious what the blend equation wrt to
* clamping should actually be based on GL spec in this case, but
* really the incoming src values are clamped to [-1,1] (the dst is
* always clamped already), and then NO further clamping occurs until
* the end.)
*/
struct lp_build_context bldw;
struct lp_type wide_type = lp_wider_type(bld->type);
LLVMValueRef src_terml, src_termh, dst_terml, dst_termh;
LLVMValueRef resl, resh;
/*
* We don't need saturate math for the sub/add, since we have
* x+1 bit numbers in x*2 wide type (result is x+2 bits).
* (Doesn't really matter on x86 sse2 though as we use saturated
* intrinsics.)
*/
wide_type.norm = 0;
lp_build_context_init(&bldw, bld->gallivm, wide_type);
/*
* XXX This is a bit hackish. Note that -128 really should
* be -1.0, the same as -127. However, we did not actually clamp
* things anywhere (relying on pack intrinsics instead) therefore
* we will get -128, and the inverted factor then 255. But the mul
* can overflow in this case (rather the rounding fixups for the mul,
* -128*255 will be positive).
* So we clamp the src and dst up here but only when necessary (we
* should do this before calculating blend factors but it's enough
* for avoiding overflow).
*/
if (is_inverse_factor(factor_src)) {
src = lp_build_max(bld, src,
lp_build_const_vec(bld->gallivm, bld->type, -1.0));
}
if (is_inverse_factor(factor_dst)) {
dst = lp_build_max(bld, dst,
lp_build_const_vec(bld->gallivm, bld->type, -1.0));
}
lp_build_mul_norm_expand(bld, src, src_factor, &src_terml, &src_termh,
is_inverse_factor(factor_src) ? TRUE : FALSE);
lp_build_mul_norm_expand(bld, dst, dst_factor, &dst_terml, &dst_termh,
is_inverse_factor(factor_dst) ? TRUE : FALSE);
resl = lp_build_blend_func(&bldw, func, src_terml, dst_terml);
resh = lp_build_blend_func(&bldw, func, src_termh, dst_termh);
/*
* XXX pack2_native is not ok because the values have to be in dst
* range. We need native pack though for the correct order on avx2.
* Will break on everything not implementing clamping pack intrinsics
* (i.e. everything but sse2 and altivec).
*/
return lp_build_pack2_native(bld->gallivm, wide_type, bld->type, resl, resh);
} else {
src_term = lp_build_mul(bld, src, src_factor);
dst_term = lp_build_mul(bld, dst, dst_factor);
return lp_build_blend_func(bld, func, src_term, dst_term);
}
}
void
lp_build_alpha_to_coverage(struct gallivm_state *gallivm,
struct lp_type type,
struct lp_build_mask_context *mask,
LLVMValueRef alpha,
boolean do_branch)
{
struct lp_build_context bld;
LLVMValueRef test;
LLVMValueRef alpha_ref_value;
lp_build_context_init(&bld, gallivm, type);
alpha_ref_value = lp_build_const_vec(gallivm, type, 0.5);
test = lp_build_cmp(&bld, PIPE_FUNC_GREATER, alpha, alpha_ref_value);
lp_build_name(test, "alpha_to_coverage");
lp_build_mask_update(mask, test);
if (do_branch)
lp_build_mask_check(mask);
}
|