aboutsummaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/freedreno/a2xx/ir2_nir.c
blob: 36f3a679ff6df3596f270f9a34b593bf0eac518a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
/*
 * Copyright (C) 2018 Jonathan Marek <jonathan@marek.ca>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 * Authors:
 *    Jonathan Marek <jonathan@marek.ca>
 */

#include "ir2_private.h"

#include "freedreno_util.h"
#include "fd2_program.h"

static const nir_shader_compiler_options options = {
	.lower_fpow = true,
	.lower_flrp32 = true,
	.lower_fmod = true,
	.lower_fdiv = true,
	.lower_fceil = true,
	.fuse_ffma = true,
	/* .fdot_replicates = true, it is replicated, but it makes things worse */
	.lower_all_io_to_temps = true,
	.vertex_id_zero_based = true, /* its not implemented anyway */
	.lower_bitshift = true,
};

const nir_shader_compiler_options *
ir2_get_compiler_options(void)
{
	return &options;
}

#define OPT(nir, pass, ...) ({                             \
   bool this_progress = false;                             \
   NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__);      \
   this_progress;                                          \
})
#define OPT_V(nir, pass, ...) NIR_PASS_V(nir, pass, ##__VA_ARGS__)

static void
ir2_optimize_loop(nir_shader *s)
{
	bool progress;
	do {
		progress = false;

		OPT_V(s, nir_lower_vars_to_ssa);
		progress |= OPT(s, nir_opt_copy_prop_vars);
		progress |= OPT(s, nir_copy_prop);
		progress |= OPT(s, nir_opt_dce);
		progress |= OPT(s, nir_opt_cse);
		/* progress |= OPT(s, nir_opt_gcm, true); */
		progress |= OPT(s, nir_opt_peephole_select, UINT_MAX, true, true);
		progress |= OPT(s, nir_opt_intrinsics);
		progress |= OPT(s, nir_opt_algebraic);
		progress |= OPT(s, nir_opt_constant_folding);
		progress |= OPT(s, nir_opt_dead_cf);
		if (OPT(s, nir_opt_trivial_continues)) {
			progress |= true;
			/* If nir_opt_trivial_continues makes progress, then we need to clean
			 * things up if we want any hope of nir_opt_if or nir_opt_loop_unroll
			 * to make progress.
			 */
			OPT(s, nir_copy_prop);
			OPT(s, nir_opt_dce);
		}
		progress |= OPT(s, nir_opt_loop_unroll, nir_var_all);
		progress |= OPT(s, nir_opt_if, false);
		progress |= OPT(s, nir_opt_remove_phis);
		progress |= OPT(s, nir_opt_undef);

	}
	while (progress);
}

/* trig workarounds is the same as ir3.. but we don't want to include ir3 */
bool ir3_nir_apply_trig_workarounds(nir_shader * shader);

int
ir2_optimize_nir(nir_shader *s, bool lower)
{
	struct nir_lower_tex_options tex_options = {
		.lower_txp = ~0u,
		.lower_rect = 0,
	};

	if (fd_mesa_debug & FD_DBG_DISASM) {
		debug_printf("----------------------\n");
		nir_print_shader(s, stdout);
		debug_printf("----------------------\n");
	}

	OPT_V(s, nir_lower_regs_to_ssa);
	OPT_V(s, nir_lower_vars_to_ssa);
	OPT_V(s, nir_lower_indirect_derefs, nir_var_shader_in | nir_var_shader_out);

	if (lower) {
		OPT_V(s, ir3_nir_apply_trig_workarounds);
		OPT_V(s, nir_lower_tex, &tex_options);
	}

	ir2_optimize_loop(s);

	OPT_V(s, nir_remove_dead_variables, nir_var_function_temp);
	OPT_V(s, nir_move_load_const);

	/* TODO we dont want to get shaders writing to depth for depth textures */
	if (s->info.stage == MESA_SHADER_FRAGMENT) {
		nir_foreach_variable(var, &s->outputs) {
			if (var->data.location == FRAG_RESULT_DEPTH)
				return -1;
		}
	}

	return 0;
}

static struct ir2_src
load_const(struct ir2_context *ctx, float *value_f, unsigned ncomp)
{
	struct fd2_shader_stateobj *so = ctx->so;
	unsigned imm_ncomp, swiz, idx, i, j;
	uint32_t *value = (uint32_t*) value_f;

	/* try to merge with existing immediate (TODO: try with neg) */
	for (idx = 0; idx < so->num_immediates; idx++) {
		swiz = 0;
		imm_ncomp = so->immediates[idx].ncomp;
		for (i = 0; i < ncomp; i++) {
			for (j = 0; j < imm_ncomp; j++) {
				if (value[i] == so->immediates[idx].val[j])
					break;
			}
			if (j == imm_ncomp) {
				if (j == 4)
					break;
				so->immediates[idx].val[imm_ncomp++] = value[i];
			}
			swiz |= swiz_set(j, i);
		}
		/* matched all components */
		if (i == ncomp)
			break;
	}

	/* need to allocate new immediate */
	if (idx == so->num_immediates) {
		swiz = 0;
		imm_ncomp = 0;
		for (i = 0; i < ncomp; i++) {
			for (j = 0; j < imm_ncomp; j++) {
				if (value[i] == ctx->so->immediates[idx].val[j])
					break;
			}
			if (j == imm_ncomp) {
				so->immediates[idx].val[imm_ncomp++] = value[i];
			}
			swiz |= swiz_set(j, i);
		}
		so->num_immediates++;
	}
	so->immediates[idx].ncomp = imm_ncomp;

	if (ncomp == 1)
		swiz = swiz_merge(swiz, IR2_SWIZZLE_XXXX);

	return ir2_src(so->first_immediate + idx, swiz, IR2_SRC_CONST);
}

struct ir2_src
ir2_zero(struct ir2_context *ctx)
{
	return load_const(ctx, (float[]) {0.0f}, 1);
}

static void
update_range(struct ir2_context *ctx, struct ir2_reg *reg)
{
	if (!reg->initialized) {
		reg->initialized = true;
		reg->loop_depth = ctx->loop_depth;
	}

	if (ctx->loop_depth > reg->loop_depth) {
		reg->block_idx_free = ctx->loop_last_block[reg->loop_depth + 1];
	} else {
		reg->loop_depth = ctx->loop_depth;
		reg->block_idx_free = -1;
	}

	/* for regs we want to free at the end of the loop in any case
	 * XXX dont do this for ssa
	 */
	if (reg->loop_depth)
		reg->block_idx_free = ctx->loop_last_block[reg->loop_depth];
}

static struct ir2_src
make_src(struct ir2_context *ctx, nir_src src)
{
	struct ir2_src res = {};
	struct ir2_reg *reg;

	nir_const_value *const_value = nir_src_as_const_value(src);

	if (const_value) {
		assert(src.is_ssa);
		float c[src.ssa->num_components];
		nir_const_value_to_array(c, const_value, src.ssa->num_components, f32);
		return load_const(ctx, c, src.ssa->num_components);
	}

	if (!src.is_ssa) {
		res.num = src.reg.reg->index;
		res.type = IR2_SRC_REG;
		reg = &ctx->reg[res.num];
	} else {
		assert(ctx->ssa_map[src.ssa->index] >= 0);
		res.num = ctx->ssa_map[src.ssa->index];
		res.type = IR2_SRC_SSA;
		reg = &ctx->instr[res.num].ssa;
	}

	update_range(ctx, reg);
	return res;
}

static void
set_index(struct ir2_context *ctx, nir_dest * dst,
		  struct ir2_instr *instr)
{
	struct ir2_reg *reg = &instr->ssa;

	if (dst->is_ssa) {
		ctx->ssa_map[dst->ssa.index] = instr->idx;
	} else {
		assert(instr->is_ssa);
		reg = &ctx->reg[dst->reg.reg->index];

		instr->is_ssa = false;
		instr->reg = reg;
	}
	update_range(ctx, reg);
}

static struct ir2_instr *
ir2_instr_create(struct ir2_context *ctx, int type)
{
	struct ir2_instr *instr;

	instr = &ctx->instr[ctx->instr_count++];
	instr->idx = ctx->instr_count - 1;
	instr->type = type;
	instr->block_idx = ctx->block_idx;
	instr->pred = ctx->pred;
	instr->is_ssa = true;
	return instr;
}

static struct ir2_instr *
instr_create_alu(struct ir2_context *ctx, nir_op opcode, unsigned ncomp)
{
	/* emit_alu will fixup instrs that don't map directly */
	static const struct ir2_opc {
		int8_t scalar, vector;
	} nir_ir2_opc[nir_num_opcodes+1] = {
		[0 ... nir_num_opcodes - 1] = {-1, -1},

		[nir_op_mov] = {MAXs, MAXv},
		[nir_op_fsign] = {-1, CNDGTEv},
		[nir_op_fnot] = {SETEs, SETEv},
		[nir_op_for] = {MAXs, MAXv},
		[nir_op_fand] = {MINs, MINv},
		[nir_op_fxor] = {-1, SETNEv},
		[nir_op_fadd] = {ADDs, ADDv},
		[nir_op_fsub] = {ADDs, ADDv},
		[nir_op_fmul] = {MULs, MULv},
		[nir_op_ffma] = {-1, MULADDv},
		[nir_op_fmax] = {MAXs, MAXv},
		[nir_op_fmin] = {MINs, MINv},
		[nir_op_ffloor] = {FLOORs, FLOORv},
		[nir_op_ffract] = {FRACs, FRACv},
		[nir_op_ftrunc] = {TRUNCs, TRUNCv},
		[nir_op_fdot2] = {-1, DOT2ADDv},
		[nir_op_fdot3] = {-1, DOT3v},
		[nir_op_fdot4] = {-1, DOT4v},
		[nir_op_sge] = {-1, SETGTEv},
		[nir_op_slt] = {-1, SETGTv},
		[nir_op_sne] = {-1, SETNEv},
		[nir_op_seq] = {-1, SETEv},
		[nir_op_fcsel] = {-1, CNDEv},
		[nir_op_frsq] = {RECIPSQ_IEEE, -1},
		[nir_op_frcp] = {RECIP_IEEE, -1},
		[nir_op_flog2] = {LOG_IEEE, -1},
		[nir_op_fexp2] = {EXP_IEEE, -1},
		[nir_op_fsqrt] = {SQRT_IEEE, -1},
		[nir_op_fcos] = {COS, -1},
		[nir_op_fsin] = {SIN, -1},
		/* no fsat, fneg, fabs since source mods deal with those */

		/* so we can use this function with non-nir op */
#define ir2_op_cube nir_num_opcodes
		[ir2_op_cube] = {-1, CUBEv},
	};

	struct ir2_opc op = nir_ir2_opc[opcode];
	assert(op.vector >= 0 || op.scalar >= 0);

	struct ir2_instr *instr = ir2_instr_create(ctx, IR2_ALU);
	instr->alu.vector_opc = op.vector;
	instr->alu.scalar_opc = op.scalar;
	instr->alu.export = -1;
	instr->alu.write_mask = (1 << ncomp) - 1;
	instr->src_count = opcode == ir2_op_cube ? 2 :
		nir_op_infos[opcode].num_inputs;
	instr->ssa.ncomp = ncomp;
	return instr;
}

static struct ir2_instr *
instr_create_alu_reg(struct ir2_context *ctx, nir_op opcode,
		uint8_t write_mask, struct ir2_instr *share_reg)
{
	struct ir2_instr *instr;
	struct ir2_reg *reg;

	reg = share_reg ? share_reg->reg : &ctx->reg[ctx->reg_count++];
	reg->ncomp = MAX2(reg->ncomp, util_logbase2(write_mask) + 1);

	instr = instr_create_alu(ctx, opcode, util_bitcount(write_mask));
	instr->alu.write_mask = write_mask;
	instr->reg = reg;
	instr->is_ssa = false;
	return instr;
}


static struct ir2_instr *
instr_create_alu_dest(struct ir2_context *ctx, nir_op opcode, nir_dest *dst)
{
	struct ir2_instr *instr;
	instr = instr_create_alu(ctx, opcode, nir_dest_num_components(*dst));
	set_index(ctx, dst, instr);
	return instr;
}

static struct ir2_instr *
ir2_instr_create_fetch(struct ir2_context *ctx, nir_dest *dst,
		instr_fetch_opc_t opc)
{
	struct ir2_instr *instr = ir2_instr_create(ctx, IR2_FETCH);
	instr->fetch.opc = opc;
	instr->src_count = 1;
	instr->ssa.ncomp = nir_dest_num_components(*dst);
	set_index(ctx, dst, instr);
	return instr;
}

static struct ir2_src
make_src_noconst(struct ir2_context *ctx, nir_src src)
{
	struct ir2_instr *instr;

	if (nir_src_as_const_value(src)) {
		assert(src.is_ssa);
		instr = instr_create_alu(ctx, nir_op_mov, src.ssa->num_components);
		instr->src[0] = make_src(ctx, src);
		return ir2_src(instr->idx, 0, IR2_SRC_SSA);
	}

	return make_src(ctx, src);
}

static void
emit_alu(struct ir2_context *ctx, nir_alu_instr * alu)
{
	const nir_op_info *info = &nir_op_infos[alu->op];
	nir_dest *dst = &alu->dest.dest;
	struct ir2_instr *instr;
	struct ir2_src tmp;
	unsigned ncomp;

	/* get the number of dst components */
	if (dst->is_ssa) {
		ncomp = dst->ssa.num_components;
	} else {
		ncomp = 0;
		for (int i = 0; i < 4; i++)
			ncomp += !!(alu->dest.write_mask & 1 << i);
	}

	instr = instr_create_alu(ctx, alu->op, ncomp);
	set_index(ctx, dst, instr);
	instr->alu.saturate = alu->dest.saturate;
	instr->alu.write_mask = alu->dest.write_mask;

	for (int i = 0; i < info->num_inputs; i++) {
		nir_alu_src *src = &alu->src[i];

		/* compress swizzle with writemask when applicable */
		unsigned swiz = 0, j = 0;
		for (int i = 0; i < 4; i++) {
			if (!(alu->dest.write_mask & 1 << i) && !info->output_size)
				continue;
			swiz |= swiz_set(src->swizzle[i], j++);
		}

		instr->src[i] = make_src(ctx, src->src);
		instr->src[i].swizzle = swiz_merge(instr->src[i].swizzle, swiz);
		instr->src[i].negate = src->negate;
		instr->src[i].abs = src->abs;
	}

	/* workarounds for NIR ops that don't map directly to a2xx ops */
	switch (alu->op) {
	case nir_op_slt:
		tmp = instr->src[0];
		instr->src[0] = instr->src[1];
		instr->src[1] = tmp;
		break;
	case nir_op_fcsel:
		tmp = instr->src[1];
		instr->src[1] = instr->src[2];
		instr->src[2] = tmp;
		break;
	case nir_op_fsub:
		instr->src[1].negate = !instr->src[1].negate;
		break;
	case nir_op_fdot2:
		instr->src_count = 3;
		instr->src[2] = ir2_zero(ctx);
		break;
	case nir_op_fsign: {
		/* we need an extra instruction to deal with the zero case */
		struct ir2_instr *tmp;

		/* tmp = x == 0 ? 0 : 1 */
		tmp = instr_create_alu(ctx, nir_op_fcsel, ncomp);
		tmp->src[0] = instr->src[0];
		tmp->src[1] = ir2_zero(ctx);
		tmp->src[2] = load_const(ctx, (float[]) {1.0f}, 1);

		/* result = x >= 0 ? tmp : -tmp */
		instr->src[1] = ir2_src(tmp->idx, 0, IR2_SRC_SSA);
		instr->src[2] = instr->src[1];
		instr->src[2].negate = true;
		instr->src_count = 3;
	} break;
	default:
		break;
	}
}

static void
load_input(struct ir2_context *ctx, nir_dest *dst, unsigned idx)
{
	struct ir2_instr *instr;
	int slot = -1;

	if (ctx->so->type == MESA_SHADER_VERTEX) {
		instr = ir2_instr_create_fetch(ctx, dst, 0);
		instr->src[0] = ir2_src(0, 0, IR2_SRC_INPUT);
		instr->fetch.vtx.const_idx = 20 + (idx / 3);
		instr->fetch.vtx.const_idx_sel = idx % 3;
		return;
	}

	/* get slot from idx */
	nir_foreach_variable(var, &ctx->nir->inputs) {
		if (var->data.driver_location == idx) {
			slot = var->data.location;
			break;
		}
	}
	assert(slot >= 0);

	switch (slot) {
	case VARYING_SLOT_PNTC:
		/* need to extract with abs and invert y */
		instr = instr_create_alu_dest(ctx, nir_op_ffma, dst);
		instr->src[0] = ir2_src(ctx->f->inputs_count, IR2_SWIZZLE_ZW, IR2_SRC_INPUT);
		instr->src[0].abs = true;
		instr->src[1] = load_const(ctx, (float[]) {1.0f, -1.0f}, 2);
		instr->src[2] = load_const(ctx, (float[]) {0.0f, 1.0f}, 2);
		break;
	case VARYING_SLOT_POS:
		/* need to extract xy with abs and add tile offset on a20x
		 * zw from fragcoord input (w inverted in fragment shader)
		 * TODO: only components that are required by fragment shader
		 */
		instr = instr_create_alu_reg(ctx,
			ctx->so->is_a20x ? nir_op_fadd : nir_op_mov, 3, NULL);
		instr->src[0] = ir2_src(ctx->f->inputs_count, 0, IR2_SRC_INPUT);
		instr->src[0].abs = true;
		/* on a20x, C64 contains the tile offset */
		instr->src[1] = ir2_src(64, 0, IR2_SRC_CONST);

		instr = instr_create_alu_reg(ctx, nir_op_mov, 4, instr);
		instr->src[0] = ir2_src(ctx->f->fragcoord, 0, IR2_SRC_INPUT);

		instr = instr_create_alu_reg(ctx, nir_op_frcp, 8, instr);
		instr->src[0] = ir2_src(ctx->f->fragcoord, IR2_SWIZZLE_Y, IR2_SRC_INPUT);

		unsigned reg_idx = instr->reg - ctx->reg; /* XXX */
		instr = instr_create_alu_dest(ctx, nir_op_mov, dst);
		instr->src[0] = ir2_src(reg_idx, 0, IR2_SRC_REG);
		break;
	default:
		instr = instr_create_alu_dest(ctx, nir_op_mov, dst);
		instr->src[0] = ir2_src(idx, 0, IR2_SRC_INPUT);
		break;
	}
}

static unsigned
output_slot(struct ir2_context *ctx, nir_intrinsic_instr *intr)
{
	int slot = -1;
	unsigned idx = nir_intrinsic_base(intr);
	nir_foreach_variable(var, &ctx->nir->outputs) {
		if (var->data.driver_location == idx) {
			slot = var->data.location;
			break;
		}
	}
	assert(slot != -1);
	return slot;
}

static void
store_output(struct ir2_context *ctx, nir_src src, unsigned slot, unsigned ncomp)
{
	struct ir2_instr *instr;
	unsigned idx = 0;

	if (ctx->so->type == MESA_SHADER_VERTEX) {
		switch (slot) {
		case VARYING_SLOT_POS:
			ctx->position = make_src(ctx, src);
			idx = 62;
			break;
		case VARYING_SLOT_PSIZ:
			ctx->so->writes_psize = true;
			idx = 63;
			break;
		default:
			/* find matching slot from fragment shader input */
			for (idx = 0; idx < ctx->f->inputs_count; idx++)
				if (ctx->f->inputs[idx].slot == slot)
					break;
			if (idx == ctx->f->inputs_count)
				return;
		}
	} else if (slot != FRAG_RESULT_COLOR && slot != FRAG_RESULT_DATA0) {
		/* only color output is implemented */
		return;
	}

	instr = instr_create_alu(ctx, nir_op_mov, ncomp);
	instr->src[0] = make_src(ctx, src);
	instr->alu.export = idx;
}

static void
emit_intrinsic(struct ir2_context *ctx, nir_intrinsic_instr *intr)
{
	struct ir2_instr *instr;
	nir_const_value *const_offset;
	unsigned idx;

	switch (intr->intrinsic) {
	case nir_intrinsic_load_input:
		load_input(ctx, &intr->dest, nir_intrinsic_base(intr));
		break;
	case nir_intrinsic_store_output:
		store_output(ctx, intr->src[0], output_slot(ctx, intr), intr->num_components);
		break;
	case nir_intrinsic_load_uniform:
		const_offset = nir_src_as_const_value(intr->src[0]);
		assert(const_offset); /* TODO can be false in ES2? */
		idx = nir_intrinsic_base(intr);
		idx += (uint32_t) nir_src_as_const_value(intr->src[0])[0].f32;
		instr = instr_create_alu_dest(ctx, nir_op_mov, &intr->dest);
		instr->src[0] = ir2_src(idx, 0, IR2_SRC_CONST);
		break;
	case nir_intrinsic_discard:
	case nir_intrinsic_discard_if:
		instr = ir2_instr_create(ctx, IR2_ALU);
		instr->alu.vector_opc = VECTOR_NONE;
		if (intr->intrinsic == nir_intrinsic_discard_if) {
			instr->alu.scalar_opc = KILLNEs;
			instr->src[0] = make_src(ctx, intr->src[0]);
		} else {
			instr->alu.scalar_opc = KILLEs;
			instr->src[0] = ir2_zero(ctx);
		}
		instr->alu.export = -1;
		instr->src_count = 1;
		ctx->so->has_kill = true;
		break;
	case nir_intrinsic_load_front_face:
		/* gl_FrontFacing is in the sign of param.x
		 * rcp required because otherwise we can't differentiate -0.0 and +0.0
		 */
		ctx->so->need_param = true;

		struct ir2_instr *tmp = instr_create_alu(ctx, nir_op_frcp, 1);
		tmp->src[0] = ir2_src(ctx->f->inputs_count, 0, IR2_SRC_INPUT);

		instr = instr_create_alu_dest(ctx, nir_op_sge, &intr->dest);
		instr->src[0] = ir2_src(tmp->idx, 0, IR2_SRC_SSA);
		instr->src[1] = ir2_zero(ctx);
		break;
	default:
		compile_error(ctx, "unimplemented intr %d\n", intr->intrinsic);
		break;
	}
}

static void
emit_tex(struct ir2_context *ctx, nir_tex_instr * tex)
{
	bool is_rect = false, is_cube = false;
	struct ir2_instr *instr;
	nir_src *coord, *lod_bias;

	coord = lod_bias = NULL;

	for (unsigned i = 0; i < tex->num_srcs; i++) {
		switch (tex->src[i].src_type) {
		case nir_tex_src_coord:
			coord = &tex->src[i].src;
			break;
		case nir_tex_src_bias:
		case nir_tex_src_lod:
			assert(!lod_bias);
			lod_bias = &tex->src[i].src;
			break;
		default:
			compile_error(ctx, "Unhandled NIR tex src type: %d\n",
						  tex->src[i].src_type);
			return;
		}
	}

	switch (tex->op) {
	case nir_texop_tex:
	case nir_texop_txb:
	case nir_texop_txl:
		break;
	default:
		compile_error(ctx, "unimplemented texop %d\n", tex->op);
		return;
	}

	switch (tex->sampler_dim) {
	case GLSL_SAMPLER_DIM_2D:
		break;
	case GLSL_SAMPLER_DIM_RECT:
		is_rect = true;
		break;
	case GLSL_SAMPLER_DIM_CUBE:
		is_cube = true;
		break;
	default:
		compile_error(ctx, "unimplemented sampler %d\n", tex->sampler_dim);
		return;
	}

	struct ir2_src src_coord = make_src_noconst(ctx, *coord);

	/* for cube maps
	 * tmp = cube(coord)
	 * tmp.xy = tmp.xy / |tmp.z| + 1.5
	 * coord = tmp.xyw
	 */
	if (is_cube) {
		struct ir2_instr *rcp, *coord_xy;
		unsigned reg_idx;

		instr = instr_create_alu_reg(ctx, ir2_op_cube, 15, NULL);
		instr->src[0] = src_coord;
		instr->src[0].swizzle = IR2_SWIZZLE_ZZXY;
		instr->src[1] = src_coord;
		instr->src[1].swizzle = IR2_SWIZZLE_YXZZ;

		reg_idx = instr->reg - ctx->reg; /* hacky */

		rcp = instr_create_alu(ctx, nir_op_frcp, 1);
		rcp->src[0] = ir2_src(reg_idx, IR2_SWIZZLE_Z, IR2_SRC_REG);
		rcp->src[0].abs = true;

		coord_xy = instr_create_alu_reg(ctx, nir_op_ffma, 3, instr);
		coord_xy->src[0] = ir2_src(reg_idx, 0, IR2_SRC_REG);
		coord_xy->src[1] = ir2_src(rcp->idx, IR2_SWIZZLE_XXXX, IR2_SRC_SSA);
		coord_xy->src[2] = load_const(ctx, (float[]) {1.5f}, 1);

		src_coord = ir2_src(reg_idx, 0, IR2_SRC_REG);
		/* TODO: lod/bias transformed by src_coord.z ? */
	}

	instr = ir2_instr_create_fetch(ctx, &tex->dest, TEX_FETCH);
	instr->src[0] = src_coord;
	instr->src[0].swizzle = is_cube ? IR2_SWIZZLE_XYW : 0;
	instr->fetch.tex.is_cube = is_cube;
	instr->fetch.tex.is_rect = is_rect;
	instr->fetch.tex.samp_id = tex->sampler_index;

	/* for lod/bias, we insert an extra src for the backend to deal with */
	if (lod_bias) {
		instr->src[1] = make_src_noconst(ctx, *lod_bias);
		/* backend will use 2-3 components so apply swizzle */
		swiz_merge_p(&instr->src[1].swizzle, IR2_SWIZZLE_XXXX);
		instr->src_count = 2;
	}
}

static void
setup_input(struct ir2_context *ctx, nir_variable * in)
{
	struct fd2_shader_stateobj *so = ctx->so;
	unsigned array_len = MAX2(glsl_get_length(in->type), 1);
	unsigned n = in->data.driver_location;
	unsigned slot = in->data.location;

	assert(array_len == 1);

	/* handle later */
	if (ctx->so->type == MESA_SHADER_VERTEX)
		return;

	if (ctx->so->type != MESA_SHADER_FRAGMENT)
		compile_error(ctx, "unknown shader type: %d\n", ctx->so->type);

	if (slot == VARYING_SLOT_PNTC) {
		so->need_param = true;
		return;
	}

	n = ctx->f->inputs_count++;

	/* half of fragcoord from param reg, half from a varying */
	if (slot == VARYING_SLOT_POS) {
		ctx->f->fragcoord = n;
		so->need_param = true;
	}

	ctx->f->inputs[n].slot = slot;
	ctx->f->inputs[n].ncomp = glsl_get_components(in->type);

	/* in->data.interpolation?
	 * opengl ES 2.0 can't do flat mode, but we still get it from GALLIUM_HUD
	 */
}

static void
emit_undef(struct ir2_context *ctx, nir_ssa_undef_instr * undef)
{
	/* TODO we don't want to emit anything for undefs */

	struct ir2_instr *instr;

	instr = instr_create_alu_dest(ctx, nir_op_mov,
		&(nir_dest) {.ssa = undef->def,.is_ssa = true});
	instr->src[0] = ir2_src(0, 0, IR2_SRC_CONST);
}

static void
emit_instr(struct ir2_context *ctx, nir_instr * instr)
{
	switch (instr->type) {
	case nir_instr_type_alu:
		emit_alu(ctx, nir_instr_as_alu(instr));
		break;
	case nir_instr_type_deref:
		/* ignored, handled as part of the intrinsic they are src to */
		break;
	case nir_instr_type_intrinsic:
		emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
		break;
	case nir_instr_type_load_const:
		/* dealt with when using nir_src */
		break;
	case nir_instr_type_tex:
		emit_tex(ctx, nir_instr_as_tex(instr));
		break;
	case nir_instr_type_jump:
		ctx->block_has_jump[ctx->block_idx] = true;
		break;
	case nir_instr_type_ssa_undef:
		emit_undef(ctx, nir_instr_as_ssa_undef(instr));
		break;
	default:
		break;
	}
}

/* fragcoord.zw and a20x hw binning outputs */
static void
extra_position_exports(struct ir2_context *ctx, bool binning)
{
	struct ir2_instr *instr, *rcp, *sc, *wincoord, *off;

	if (ctx->f->fragcoord < 0 && !binning)
		return;

	instr = instr_create_alu(ctx, nir_op_fmax, 1);
	instr->src[0] = ctx->position;
	instr->src[0].swizzle = IR2_SWIZZLE_W;
	instr->src[1] = ir2_zero(ctx);

	rcp = instr_create_alu(ctx, nir_op_frcp, 1);
	rcp->src[0] = ir2_src(instr->idx, 0, IR2_SRC_SSA);

	sc = instr_create_alu(ctx, nir_op_fmul, 4);
	sc->src[0] = ctx->position;
	sc->src[1] = ir2_src(rcp->idx, IR2_SWIZZLE_XXXX, IR2_SRC_SSA);

	wincoord = instr_create_alu(ctx, nir_op_ffma, 4);
	wincoord->src[0] = ir2_src(66, 0, IR2_SRC_CONST);
	wincoord->src[1] = ir2_src(sc->idx, 0, IR2_SRC_SSA);
	wincoord->src[2] = ir2_src(65, 0, IR2_SRC_CONST);

	/* fragcoord z/w */
	if (ctx->f->fragcoord >= 0 && !binning) {
		instr = instr_create_alu(ctx, nir_op_mov, 1);
		instr->src[0] = ir2_src(wincoord->idx, IR2_SWIZZLE_Z, IR2_SRC_SSA);
		instr->alu.export = ctx->f->fragcoord;

		instr = instr_create_alu(ctx, nir_op_mov, 1);
		instr->src[0] = ctx->position;
		instr->src[0].swizzle = IR2_SWIZZLE_W;
		instr->alu.export = ctx->f->fragcoord;
		instr->alu.write_mask = 2;
	}

	if (!binning)
		return;

	off = instr_create_alu(ctx, nir_op_fadd, 1);
	off->src[0] = ir2_src(64, 0, IR2_SRC_CONST);
	off->src[1] = ir2_src(2, 0, IR2_SRC_INPUT);

	/* 8 max set in freedreno_screen.. unneeded instrs patched out */
	for (int i = 0; i < 8; i++) {
		instr = instr_create_alu(ctx, nir_op_ffma, 4);
		instr->src[0] = ir2_src(1, IR2_SWIZZLE_WYWW, IR2_SRC_CONST);
		instr->src[1] = ir2_src(off->idx, IR2_SWIZZLE_XXXX, IR2_SRC_SSA);
		instr->src[2] = ir2_src(3 + i, 0, IR2_SRC_CONST);
		instr->alu.export = 32;

		instr = instr_create_alu(ctx, nir_op_ffma, 4);
		instr->src[0] = ir2_src(68 + i * 2, 0, IR2_SRC_CONST);
		instr->src[1] = ir2_src(wincoord->idx, 0, IR2_SRC_SSA);
		instr->src[2] = ir2_src(67 + i * 2, 0, IR2_SRC_CONST);
		instr->alu.export = 33;
	}
}

static bool emit_cf_list(struct ir2_context *ctx, struct exec_list *list);

static bool
emit_block(struct ir2_context *ctx, nir_block * block)
{
	struct ir2_instr *instr;
	nir_block *succs = block->successors[0];

	ctx->block_idx = block->index;

	nir_foreach_instr(instr, block)
		emit_instr(ctx, instr);

	if (!succs || !succs->index)
		return false;

	/* we want to be smart and always jump and have the backend cleanup
	 * but we are not, so there are two cases where jump is needed:
	 *  loops (succs index lower)
	 *  jumps (jump instruction seen in block)
	 */
	if (succs->index > block->index && !ctx->block_has_jump[block->index])
		return false;

	assert(block->successors[1] == NULL);

	instr = ir2_instr_create(ctx, IR2_CF);
	instr->cf.block_idx = succs->index;
	/* XXX can't jump to a block with different predicate */
	return true;
}

static void
emit_if(struct ir2_context *ctx, nir_if * nif)
{
	unsigned pred = ctx->pred, pred_idx = ctx->pred_idx;
	struct ir2_instr *instr;

	/* XXX: blob seems to always use same register for condition */

	instr = ir2_instr_create(ctx, IR2_ALU);
	instr->src[0] = make_src(ctx, nif->condition);
	instr->src_count = 1;
	instr->ssa.ncomp = 1;
	instr->alu.vector_opc = VECTOR_NONE;
	instr->alu.scalar_opc = SCALAR_NONE;
	instr->alu.export = -1;
	instr->alu.write_mask = 1;
	instr->pred = 0;

	/* if nested, use PRED_SETNE_PUSHv */
	if (pred) {
		instr->alu.vector_opc = PRED_SETNE_PUSHv;
		instr->src[1] = instr->src[0];
		instr->src[0] = ir2_src(pred_idx, 0, IR2_SRC_SSA);
		instr->src[0].swizzle = IR2_SWIZZLE_XXXX;
		instr->src[1].swizzle = IR2_SWIZZLE_XXXX;
		instr->src_count = 2;
	} else {
		instr->alu.scalar_opc = PRED_SETNEs;
	}

	ctx->pred_idx = instr->idx;
	ctx->pred = 3;

	emit_cf_list(ctx, &nif->then_list);

	/* TODO: if these is no else branch we don't need this
	 * and if the else branch is simple, can just flip ctx->pred instead
	 */
	instr = ir2_instr_create(ctx, IR2_ALU);
	instr->src[0] = ir2_src(ctx->pred_idx, 0, IR2_SRC_SSA);
	instr->src_count = 1;
	instr->ssa.ncomp = 1;
	instr->alu.vector_opc = VECTOR_NONE;
	instr->alu.scalar_opc = PRED_SET_INVs;
	instr->alu.export = -1;
	instr->alu.write_mask = 1;
	instr->pred = 0;
	ctx->pred_idx = instr->idx;

	emit_cf_list(ctx, &nif->else_list);

	/* restore predicate for nested predicates */
	if (pred) {
		instr = ir2_instr_create(ctx, IR2_ALU);
		instr->src[0] = ir2_src(ctx->pred_idx, 0, IR2_SRC_SSA);
		instr->src_count = 1;
		instr->ssa.ncomp = 1;
		instr->alu.vector_opc = VECTOR_NONE;
		instr->alu.scalar_opc = PRED_SET_POPs;
		instr->alu.export = -1;
		instr->alu.write_mask = 1;
		instr->pred = 0;
		ctx->pred_idx = instr->idx;
	}

	/* restore ctx->pred */
	ctx->pred = pred;
}

/* get the highest block idx in the loop, so we know when
 * we can free registers that are allocated outside the loop
 */
static unsigned
loop_last_block(struct exec_list *list)
{
	nir_cf_node *node =
		exec_node_data(nir_cf_node, exec_list_get_tail(list), node);
	switch (node->type) {
	case nir_cf_node_block:
		return nir_cf_node_as_block(node)->index;
	case nir_cf_node_if:
		assert(0); /* XXX could this ever happen? */
		return 0;
	case nir_cf_node_loop:
		return loop_last_block(&nir_cf_node_as_loop(node)->body);
	default:
		compile_error(ctx, "Not supported\n");
		return 0;
	}
}

static void
emit_loop(struct ir2_context *ctx, nir_loop *nloop)
{
	ctx->loop_last_block[++ctx->loop_depth] = loop_last_block(&nloop->body);
	emit_cf_list(ctx, &nloop->body);
	ctx->loop_depth--;
}

static bool
emit_cf_list(struct ir2_context *ctx, struct exec_list *list)
{
	bool ret = false;
	foreach_list_typed(nir_cf_node, node, node, list) {
		ret = false;
		switch (node->type) {
		case nir_cf_node_block:
			ret = emit_block(ctx, nir_cf_node_as_block(node));
			break;
		case nir_cf_node_if:
			emit_if(ctx, nir_cf_node_as_if(node));
			break;
		case nir_cf_node_loop:
			emit_loop(ctx, nir_cf_node_as_loop(node));
			break;
		case nir_cf_node_function:
			compile_error(ctx, "Not supported\n");
			break;
		}
	}
	return ret;
}

static void cleanup_binning(struct ir2_context *ctx)
{
	assert(ctx->so->type == MESA_SHADER_VERTEX);

	/* kill non-position outputs for binning variant */
	nir_foreach_block(block, nir_shader_get_entrypoint(ctx->nir)) {
		nir_foreach_instr_safe(instr, block) {
			if (instr->type != nir_instr_type_intrinsic)
				continue;

			nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
			if (intr->intrinsic != nir_intrinsic_store_output)
				continue;

			if (output_slot(ctx, intr) != VARYING_SLOT_POS)
				nir_instr_remove(instr);
		}
	}

	ir2_optimize_nir(ctx->nir, false);
}

void
ir2_nir_compile(struct ir2_context *ctx, bool binning)
{
	struct fd2_shader_stateobj *so = ctx->so;

	memset(ctx->ssa_map, 0xff, sizeof(ctx->ssa_map));

	ctx->nir = nir_shader_clone(NULL, so->nir);

	if (binning)
		cleanup_binning(ctx);

	/* postprocess */
	OPT_V(ctx->nir, nir_opt_algebraic_late);

	OPT_V(ctx->nir, nir_lower_to_source_mods, nir_lower_all_source_mods);
	OPT_V(ctx->nir, nir_copy_prop);
	OPT_V(ctx->nir, nir_opt_dce);
	OPT_V(ctx->nir, nir_opt_move_comparisons);

	OPT_V(ctx->nir, nir_lower_bool_to_float);
	OPT_V(ctx->nir, nir_lower_int_to_float);

	/* lower to scalar instructions that can only be scalar on a2xx */
	OPT_V(ctx->nir, ir2_nir_lower_scalar);

	OPT_V(ctx->nir, nir_lower_locals_to_regs);

	OPT_V(ctx->nir, nir_convert_from_ssa, true);

	OPT_V(ctx->nir, nir_move_vec_src_uses_to_dest);
	OPT_V(ctx->nir, nir_lower_vec_to_movs);

	OPT_V(ctx->nir, nir_opt_dce);

	nir_sweep(ctx->nir);

	if (fd_mesa_debug & FD_DBG_DISASM) {
		debug_printf("----------------------\n");
		nir_print_shader(ctx->nir, stdout);
		debug_printf("----------------------\n");
	}

	/* fd2_shader_stateobj init */
	if (so->type == MESA_SHADER_FRAGMENT) {
		ctx->f->fragcoord = -1;
		ctx->f->inputs_count = 0;
		memset(ctx->f->inputs, 0, sizeof(ctx->f->inputs));
	}

	/* Setup inputs: */
	nir_foreach_variable(in, &ctx->nir->inputs)
		setup_input(ctx, in);

	if (so->type == MESA_SHADER_FRAGMENT) {
		unsigned idx;
		for (idx = 0; idx < ctx->f->inputs_count; idx++) {
			ctx->input[idx].ncomp = ctx->f->inputs[idx].ncomp;
			update_range(ctx, &ctx->input[idx]);
		}
		/* assume we have param input and kill it later if not */
		ctx->input[idx].ncomp = 4;
		update_range(ctx, &ctx->input[idx]);
	} else {
		ctx->input[0].ncomp = 1;
		ctx->input[2].ncomp = 1;
		update_range(ctx, &ctx->input[0]);
		update_range(ctx, &ctx->input[2]);
	}

	/* And emit the body: */
	nir_function_impl *fxn = nir_shader_get_entrypoint(ctx->nir);

	nir_foreach_register(reg, &fxn->registers) {
		ctx->reg[reg->index].ncomp = reg->num_components;
		ctx->reg_count = MAX2(ctx->reg_count, reg->index + 1);
	}

	nir_metadata_require(fxn, nir_metadata_block_index);
	emit_cf_list(ctx, &fxn->body);
	/* TODO emit_block(ctx, fxn->end_block); */

	if (so->type == MESA_SHADER_VERTEX)
		extra_position_exports(ctx, binning);

	ralloc_free(ctx->nir);

	/* kill unused param input */
	if (so->type == MESA_SHADER_FRAGMENT && !so->need_param)
		ctx->input[ctx->f->inputs_count].initialized = false;
}