aboutsummaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/etnaviv/etnaviv_compiler_nir_emit.h
blob: 0948a5b307f04249bdea3320c3c2789d12650c77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
/*
 * Copyright (c) 2019 Zodiac Inflight Innovations
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sub license,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 *
 * Authors:
 *    Jonathan Marek <jonathan@marek.ca>
 */

#include "etnaviv_asm.h"
#include "etnaviv_context.h"

#include "compiler/nir/nir.h"
#include "compiler/nir/nir_builder.h"
#include "compiler/nir/nir_worklist.h"
#include "util/register_allocate.h"

#define ALU_SWIZ(s) INST_SWIZ((s)->swizzle[0], (s)->swizzle[1], (s)->swizzle[2], (s)->swizzle[3])
#define SRC_DISABLE ((hw_src){})
#define SRC_CONST(idx, s) ((hw_src){.use=1, .rgroup = INST_RGROUP_UNIFORM_0, .reg=idx, .swiz=s})
#define SRC_REG(idx, s) ((hw_src){.use=1, .rgroup = INST_RGROUP_TEMP, .reg=idx, .swiz=s})

#define emit(type, args...) etna_emit_##type(state->c, args)

typedef struct etna_inst_dst hw_dst;
typedef struct etna_inst_src hw_src;

enum {
   BYPASS_DST = 1,
   BYPASS_SRC = 2,
};

struct state {
   struct etna_compile *c;

   unsigned const_count;

   nir_shader *shader;
   nir_function_impl *impl;

   /* ra state */
   struct ra_graph *g;
   struct ra_regs *regs;
   unsigned *live_map;
   unsigned num_nodes;
};

#define compile_error(ctx, args...) ({ \
   printf(args); \
   ctx->error = true; \
   assert(0); \
})

static inline hw_src
src_swizzle(hw_src src, unsigned swizzle)
{
   if (src.rgroup != INST_RGROUP_IMMEDIATE)
      src.swiz = inst_swiz_compose(src.swiz, swizzle);

   return src;
}

static inline bool is_sysval(nir_instr *instr)
{
   if (instr->type != nir_instr_type_intrinsic)
      return false;

   nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
   return intr->intrinsic == nir_intrinsic_load_front_face ||
          intr->intrinsic == nir_intrinsic_load_frag_coord;
}

/* constants are represented as 64-bit ints
 * 32-bit for the value and 32-bit for the type (imm, uniform, etc)
 */

#define CONST_VAL(a, b) (nir_const_value) {.u64 = (uint64_t)(a) << 32 | (uint64_t)(b)}
#define CONST(x) CONST_VAL(ETNA_IMMEDIATE_CONSTANT, x)
#define UNIFORM(x) CONST_VAL(ETNA_IMMEDIATE_UNIFORM, x)
#define UNIFORM_BASE(x) CONST_VAL(ETNA_IMMEDIATE_UBO0_ADDR, x)
#define TEXSCALE(x, i) CONST_VAL(ETNA_IMMEDIATE_TEXRECT_SCALE_X + (i), x)

static int
const_add(uint64_t *c, uint64_t value)
{
   for (unsigned i = 0; i < 4; i++) {
      if (c[i] == value || !c[i]) {
         c[i] = value;
         return i;
      }
   }
   return -1;
}

static hw_src
const_src(struct state *state, nir_const_value *value, unsigned num_components)
{
   /* use inline immediates if possible */
   if (state->c->specs->halti >= 2 && num_components == 1 &&
       value[0].u64 >> 32 == ETNA_IMMEDIATE_CONSTANT) {
      uint32_t bits = value[0].u32;

      /* "float" - shifted by 12 */
      if ((bits & 0xfff) == 0)
         return etna_immediate_src(0, bits >> 12);

      /* "unsigned" - raw 20 bit value */
      if (bits < (1 << 20))
         return etna_immediate_src(2, bits);

      /* "signed" - sign extended 20-bit (sign included) value */
      if (bits >= 0xfff80000)
         return etna_immediate_src(1, bits);
   }

   unsigned i;
   int swiz = -1;
   for (i = 0; swiz < 0; i++) {
      uint64_t *a = &state->c->consts[i*4];
      uint64_t save[4];
      memcpy(save, a, sizeof(save));
      swiz = 0;
      for (unsigned j = 0; j < num_components; j++) {
         int c = const_add(a, value[j].u64);
         if (c < 0) {
            memcpy(a, save, sizeof(save));
            swiz = -1;
            break;
         }
         swiz |= c << j * 2;
      }
   }

   assert(i <= ETNA_MAX_IMM / 4);
   state->const_count = MAX2(state->const_count, i);

   return SRC_CONST(i - 1, swiz);
}

struct ssa_reg {
   uint8_t idx;
   uint8_t src_swizzle;
   uint8_t dst_swizzle;
   uint8_t write_mask;
};

/* Swizzles and write masks can be used to layer virtual non-interfering
 * registers on top of the real VEC4 registers. For example, the virtual
 * VEC3_XYZ register and the virtual SCALAR_W register that use the same
 * physical VEC4 base register do not interfere.
 */
enum {
   REG_CLASS_VIRT_SCALAR,
   REG_CLASS_VIRT_VEC2,
   REG_CLASS_VIRT_VEC3,
   REG_CLASS_VEC4,
   /* special vec2 class for fast transcendentals, limited to XY or ZW */
   REG_CLASS_VIRT_VEC2T,
   /* special classes for LOAD - contiguous components */
   REG_CLASS_VIRT_VEC2C,
   REG_CLASS_VIRT_VEC3C,
   NUM_REG_CLASSES,
} reg_class;

enum {
   REG_TYPE_VEC4,
   REG_TYPE_VIRT_VEC3_XYZ,
   REG_TYPE_VIRT_VEC3_XYW,
   REG_TYPE_VIRT_VEC3_XZW,
   REG_TYPE_VIRT_VEC3_YZW,
   REG_TYPE_VIRT_VEC2_XY,
   REG_TYPE_VIRT_VEC2_XZ,
   REG_TYPE_VIRT_VEC2_XW,
   REG_TYPE_VIRT_VEC2_YZ,
   REG_TYPE_VIRT_VEC2_YW,
   REG_TYPE_VIRT_VEC2_ZW,
   REG_TYPE_VIRT_SCALAR_X,
   REG_TYPE_VIRT_SCALAR_Y,
   REG_TYPE_VIRT_SCALAR_Z,
   REG_TYPE_VIRT_SCALAR_W,
   REG_TYPE_VIRT_VEC2T_XY,
   REG_TYPE_VIRT_VEC2T_ZW,
   REG_TYPE_VIRT_VEC2C_XY,
   REG_TYPE_VIRT_VEC2C_YZ,
   REG_TYPE_VIRT_VEC2C_ZW,
   REG_TYPE_VIRT_VEC3C_XYZ,
   REG_TYPE_VIRT_VEC3C_YZW,
   NUM_REG_TYPES,
} reg_type;

/* writemask when used as dest */
static const uint8_t
reg_writemask[NUM_REG_TYPES] = {
   [REG_TYPE_VEC4] = 0xf,
   [REG_TYPE_VIRT_SCALAR_X] = 0x1,
   [REG_TYPE_VIRT_SCALAR_Y] = 0x2,
   [REG_TYPE_VIRT_VEC2_XY] = 0x3,
   [REG_TYPE_VIRT_VEC2T_XY] = 0x3,
   [REG_TYPE_VIRT_VEC2C_XY] = 0x3,
   [REG_TYPE_VIRT_SCALAR_Z] = 0x4,
   [REG_TYPE_VIRT_VEC2_XZ] = 0x5,
   [REG_TYPE_VIRT_VEC2_YZ] = 0x6,
   [REG_TYPE_VIRT_VEC2C_YZ] = 0x6,
   [REG_TYPE_VIRT_VEC3_XYZ] = 0x7,
   [REG_TYPE_VIRT_VEC3C_XYZ] = 0x7,
   [REG_TYPE_VIRT_SCALAR_W] = 0x8,
   [REG_TYPE_VIRT_VEC2_XW] = 0x9,
   [REG_TYPE_VIRT_VEC2_YW] = 0xa,
   [REG_TYPE_VIRT_VEC3_XYW] = 0xb,
   [REG_TYPE_VIRT_VEC2_ZW] = 0xc,
   [REG_TYPE_VIRT_VEC2T_ZW] = 0xc,
   [REG_TYPE_VIRT_VEC2C_ZW] = 0xc,
   [REG_TYPE_VIRT_VEC3_XZW] = 0xd,
   [REG_TYPE_VIRT_VEC3_YZW] = 0xe,
   [REG_TYPE_VIRT_VEC3C_YZW] = 0xe,
};

/* how to swizzle when used as a src */
static const uint8_t
reg_swiz[NUM_REG_TYPES] = {
   [REG_TYPE_VEC4] = INST_SWIZ_IDENTITY,
   [REG_TYPE_VIRT_SCALAR_X] = INST_SWIZ_IDENTITY,
   [REG_TYPE_VIRT_SCALAR_Y] = SWIZZLE(Y, Y, Y, Y),
   [REG_TYPE_VIRT_VEC2_XY] = INST_SWIZ_IDENTITY,
   [REG_TYPE_VIRT_VEC2T_XY] = INST_SWIZ_IDENTITY,
   [REG_TYPE_VIRT_VEC2C_XY] = INST_SWIZ_IDENTITY,
   [REG_TYPE_VIRT_SCALAR_Z] = SWIZZLE(Z, Z, Z, Z),
   [REG_TYPE_VIRT_VEC2_XZ] = SWIZZLE(X, Z, X, Z),
   [REG_TYPE_VIRT_VEC2_YZ] = SWIZZLE(Y, Z, Y, Z),
   [REG_TYPE_VIRT_VEC2C_YZ] = SWIZZLE(Y, Z, Y, Z),
   [REG_TYPE_VIRT_VEC3_XYZ] = INST_SWIZ_IDENTITY,
   [REG_TYPE_VIRT_VEC3C_XYZ] = INST_SWIZ_IDENTITY,
   [REG_TYPE_VIRT_SCALAR_W] = SWIZZLE(W, W, W, W),
   [REG_TYPE_VIRT_VEC2_XW] = SWIZZLE(X, W, X, W),
   [REG_TYPE_VIRT_VEC2_YW] = SWIZZLE(Y, W, Y, W),
   [REG_TYPE_VIRT_VEC3_XYW] = SWIZZLE(X, Y, W, X),
   [REG_TYPE_VIRT_VEC2_ZW] = SWIZZLE(Z, W, Z, W),
   [REG_TYPE_VIRT_VEC2T_ZW] = SWIZZLE(Z, W, Z, W),
   [REG_TYPE_VIRT_VEC2C_ZW] = SWIZZLE(Z, W, Z, W),
   [REG_TYPE_VIRT_VEC3_XZW] = SWIZZLE(X, Z, W, X),
   [REG_TYPE_VIRT_VEC3_YZW] = SWIZZLE(Y, Z, W, X),
   [REG_TYPE_VIRT_VEC3C_YZW] = SWIZZLE(Y, Z, W, X),
};

/* how to swizzle when used as a dest */
static const uint8_t
reg_dst_swiz[NUM_REG_TYPES] = {
   [REG_TYPE_VEC4] = INST_SWIZ_IDENTITY,
   [REG_TYPE_VIRT_SCALAR_X] = INST_SWIZ_IDENTITY,
   [REG_TYPE_VIRT_SCALAR_Y] = SWIZZLE(X, X, X, X),
   [REG_TYPE_VIRT_VEC2_XY] = INST_SWIZ_IDENTITY,
   [REG_TYPE_VIRT_VEC2T_XY] = INST_SWIZ_IDENTITY,
   [REG_TYPE_VIRT_VEC2C_XY] = INST_SWIZ_IDENTITY,
   [REG_TYPE_VIRT_SCALAR_Z] = SWIZZLE(X, X, X, X),
   [REG_TYPE_VIRT_VEC2_XZ] = SWIZZLE(X, X, Y, Y),
   [REG_TYPE_VIRT_VEC2_YZ] = SWIZZLE(X, X, Y, Y),
   [REG_TYPE_VIRT_VEC2C_YZ] = SWIZZLE(X, X, Y, Y),
   [REG_TYPE_VIRT_VEC3_XYZ] = INST_SWIZ_IDENTITY,
   [REG_TYPE_VIRT_VEC3C_XYZ] = INST_SWIZ_IDENTITY,
   [REG_TYPE_VIRT_SCALAR_W] = SWIZZLE(X, X, X, X),
   [REG_TYPE_VIRT_VEC2_XW] = SWIZZLE(X, X, Y, Y),
   [REG_TYPE_VIRT_VEC2_YW] = SWIZZLE(X, X, Y, Y),
   [REG_TYPE_VIRT_VEC3_XYW] = SWIZZLE(X, Y, Z, Z),
   [REG_TYPE_VIRT_VEC2_ZW] = SWIZZLE(X, X, X, Y),
   [REG_TYPE_VIRT_VEC2T_ZW] = SWIZZLE(X, X, X, Y),
   [REG_TYPE_VIRT_VEC2C_ZW] = SWIZZLE(X, X, X, Y),
   [REG_TYPE_VIRT_VEC3_XZW] = SWIZZLE(X, Y, Y, Z),
   [REG_TYPE_VIRT_VEC3_YZW] = SWIZZLE(X, X, Y, Z),
   [REG_TYPE_VIRT_VEC3C_YZW] = SWIZZLE(X, X, Y, Z),
};

static inline int reg_get_type(int virt_reg)
{
   return virt_reg % NUM_REG_TYPES;
}

static inline int reg_get_base(struct state *state, int virt_reg)
{
   /* offset by 1 to avoid reserved position register */
   if (state->shader->info.stage == MESA_SHADER_FRAGMENT)
      return (virt_reg / NUM_REG_TYPES + 1) % ETNA_MAX_TEMPS;
   return virt_reg / NUM_REG_TYPES;
}

/* use "r63.z" for depth reg, it will wrap around to r0.z by reg_get_base
 * (fs registers are offset by 1 to avoid reserving r0)
 */
#define REG_FRAG_DEPTH ((ETNA_MAX_TEMPS - 1) * NUM_REG_TYPES + REG_TYPE_VIRT_SCALAR_Z)

static inline int reg_get_class(int virt_reg)
{
   switch (reg_get_type(virt_reg)) {
   case REG_TYPE_VEC4:
      return REG_CLASS_VEC4;
   case REG_TYPE_VIRT_VEC3_XYZ:
   case REG_TYPE_VIRT_VEC3_XYW:
   case REG_TYPE_VIRT_VEC3_XZW:
   case REG_TYPE_VIRT_VEC3_YZW:
      return REG_CLASS_VIRT_VEC3;
   case REG_TYPE_VIRT_VEC2_XY:
   case REG_TYPE_VIRT_VEC2_XZ:
   case REG_TYPE_VIRT_VEC2_XW:
   case REG_TYPE_VIRT_VEC2_YZ:
   case REG_TYPE_VIRT_VEC2_YW:
   case REG_TYPE_VIRT_VEC2_ZW:
      return REG_CLASS_VIRT_VEC2;
   case REG_TYPE_VIRT_SCALAR_X:
   case REG_TYPE_VIRT_SCALAR_Y:
   case REG_TYPE_VIRT_SCALAR_Z:
   case REG_TYPE_VIRT_SCALAR_W:
      return REG_CLASS_VIRT_SCALAR;
   case REG_TYPE_VIRT_VEC2T_XY:
   case REG_TYPE_VIRT_VEC2T_ZW:
      return REG_CLASS_VIRT_VEC2T;
   case REG_TYPE_VIRT_VEC2C_XY:
   case REG_TYPE_VIRT_VEC2C_YZ:
   case REG_TYPE_VIRT_VEC2C_ZW:
      return REG_CLASS_VIRT_VEC2C;
   case REG_TYPE_VIRT_VEC3C_XYZ:
   case REG_TYPE_VIRT_VEC3C_YZW:
      return REG_CLASS_VIRT_VEC3C;
   }

   assert(false);
   return 0;
}

/* get unique ssa/reg index for nir_src */
static unsigned
src_index(nir_function_impl *impl, nir_src *src)
{
   return src->is_ssa ? src->ssa->index : (src->reg.reg->index + impl->ssa_alloc);
}

/* get unique ssa/reg index for nir_dest */
static unsigned
dest_index(nir_function_impl *impl, nir_dest *dest)
{
   return dest->is_ssa ? dest->ssa.index : (dest->reg.reg->index + impl->ssa_alloc);
}

/* nir_src to allocated register */
static hw_src
ra_src(struct state *state, nir_src *src)
{
   unsigned reg = ra_get_node_reg(state->g, state->live_map[src_index(state->impl, src)]);
   return SRC_REG(reg_get_base(state, reg), reg_swiz[reg_get_type(reg)]);
}

static hw_src
get_src(struct state *state, nir_src *src)
{
   if (!src->is_ssa)
      return ra_src(state, src);

   nir_instr *instr = src->ssa->parent_instr;

   if (instr->pass_flags & BYPASS_SRC) {
      assert(instr->type == nir_instr_type_alu);
      nir_alu_instr *alu = nir_instr_as_alu(instr);
      assert(alu->op == nir_op_mov);
      return src_swizzle(get_src(state, &alu->src[0].src), ALU_SWIZ(&alu->src[0]));
   }

   switch (instr->type) {
   case nir_instr_type_load_const:
      return const_src(state, nir_instr_as_load_const(instr)->value, src->ssa->num_components);
   case nir_instr_type_intrinsic: {
      nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
      switch (intr->intrinsic) {
      case nir_intrinsic_load_input:
      case nir_intrinsic_load_instance_id:
      case nir_intrinsic_load_uniform:
         return ra_src(state, src);
      case nir_intrinsic_load_front_face:
         return (hw_src) { .use = 1, .rgroup = INST_RGROUP_INTERNAL };
      case nir_intrinsic_load_frag_coord:
         return SRC_REG(0, INST_SWIZ_IDENTITY);
      default:
         compile_error(state->c, "Unhandled NIR intrinsic type: %s\n",
                       nir_intrinsic_infos[intr->intrinsic].name);
         break;
      }
   } break;
   case nir_instr_type_alu:
   case nir_instr_type_tex:
      return ra_src(state, src);
   case nir_instr_type_ssa_undef: {
      /* return zero to deal with broken Blur demo */
      nir_const_value value = CONST(0);
      return src_swizzle(const_src(state, &value, 1), SWIZZLE(X,X,X,X));
   }
   default:
      compile_error(state->c, "Unhandled NIR instruction type: %d\n", instr->type);
      break;
   }

   return SRC_DISABLE;
}

static void
update_swiz_mask(nir_alu_instr *alu, nir_dest *dest, unsigned *swiz, unsigned *mask)
{
   if (!swiz)
      return;

   bool is_vec = dest != NULL;
   unsigned swizzle = 0, write_mask = 0;
   for (unsigned i = 0; i < 4; i++) {
      /* channel not written */
      if (!(alu->dest.write_mask & (1 << i)))
         continue;
      /* src is different (only check for vecN) */
      if (is_vec && alu->src[i].src.ssa != &dest->ssa)
         continue;

      unsigned src_swiz = is_vec ? alu->src[i].swizzle[0] : alu->src[0].swizzle[i];
      swizzle |= (*swiz >> src_swiz * 2 & 3) << i * 2;
      /* this channel isn't written through this chain */
      if (*mask & (1 << src_swiz))
         write_mask |= 1 << i;
   }
   *swiz = swizzle;
   *mask = write_mask;
}

static bool
vec_dest_has_swizzle(nir_alu_instr *vec, nir_ssa_def *ssa)
{
   for (unsigned i = 0; i < 4; i++) {
      if (!(vec->dest.write_mask & (1 << i)) || vec->src[i].src.ssa != ssa)
         continue;

      if (vec->src[i].swizzle[0] != i)
         return true;
   }

   /* don't deal with possible bypassed vec/mov chain */
   nir_foreach_use(use_src, ssa) {
      nir_instr *instr = use_src->parent_instr;
      if (instr->type != nir_instr_type_alu)
         continue;

      nir_alu_instr *alu = nir_instr_as_alu(instr);

      switch (alu->op) {
      case nir_op_mov:
      case nir_op_vec2:
      case nir_op_vec3:
      case nir_op_vec4:
         return true;
      default:
         break;
      }
   }
   return false;
}

static nir_dest *
real_dest(nir_dest *dest, unsigned *swiz, unsigned *mask)
{
   if (!dest || !dest->is_ssa)
      return dest;

   bool can_bypass_src = !list_length(&dest->ssa.if_uses);
   nir_instr *p_instr = dest->ssa.parent_instr;

   /* if used by a vecN, the "real" destination becomes the vecN destination
    * lower_alu guarantees that values used by a vecN are only used by that vecN
    * we can apply the same logic to movs in a some cases too
    */
   nir_foreach_use(use_src, &dest->ssa) {
      nir_instr *instr = use_src->parent_instr;

      /* src bypass check: for now only deal with tex src mov case
       * note: for alu don't bypass mov for multiple uniform sources
       */
      switch (instr->type) {
      case nir_instr_type_tex:
         if (p_instr->type == nir_instr_type_alu &&
             nir_instr_as_alu(p_instr)->op == nir_op_mov) {
            break;
         }
      default:
         can_bypass_src = false;
         break;
      }

      if (instr->type != nir_instr_type_alu)
         continue;

      nir_alu_instr *alu = nir_instr_as_alu(instr);

      switch (alu->op) {
      case nir_op_vec2:
      case nir_op_vec3:
      case nir_op_vec4:
         assert(list_length(&dest->ssa.if_uses) == 0);
         nir_foreach_use(use_src, &dest->ssa)
            assert(use_src->parent_instr == instr);

         update_swiz_mask(alu, dest, swiz, mask);
         break;
      case nir_op_mov: {
         switch (dest->ssa.parent_instr->type) {
         case nir_instr_type_alu:
         case nir_instr_type_tex:
            break;
         default:
            continue;
         }
         if (list_length(&dest->ssa.if_uses) || list_length(&dest->ssa.uses) > 1)
            continue;

         update_swiz_mask(alu, NULL, swiz, mask);
         break;
      };
      default:
         continue;
      }

      assert(!(instr->pass_flags & BYPASS_SRC));
      instr->pass_flags |= BYPASS_DST;
      return real_dest(&alu->dest.dest, swiz, mask);
   }

   if (can_bypass_src && !(p_instr->pass_flags & BYPASS_DST)) {
      p_instr->pass_flags |= BYPASS_SRC;
      return NULL;
   }

   return dest;
}

/* get allocated dest register for nir_dest
 * *p_swiz tells how the components need to be placed into register
 */
static hw_dst
ra_dest(struct state *state, nir_dest *dest, unsigned *p_swiz)
{
   unsigned swiz = INST_SWIZ_IDENTITY, mask = 0xf;
   dest = real_dest(dest, &swiz, &mask);

   unsigned r = ra_get_node_reg(state->g, state->live_map[dest_index(state->impl, dest)]);
   unsigned t = reg_get_type(r);

   *p_swiz = inst_swiz_compose(swiz, reg_dst_swiz[t]);

   return (hw_dst) {
      .use = 1,
      .reg = reg_get_base(state, r),
      .write_mask = inst_write_mask_compose(mask, reg_writemask[t]),
   };
}

/* if instruction dest needs a register, return nir_dest for it */
static nir_dest *
dest_for_instr(nir_instr *instr)
{
   nir_dest *dest = NULL;

   switch (instr->type) {
   case nir_instr_type_alu:
      dest = &nir_instr_as_alu(instr)->dest.dest;
      break;
   case nir_instr_type_tex:
      dest = &nir_instr_as_tex(instr)->dest;
      break;
   case nir_instr_type_intrinsic: {
      nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
      if (intr->intrinsic == nir_intrinsic_load_uniform ||
          intr->intrinsic == nir_intrinsic_load_input ||
          intr->intrinsic == nir_intrinsic_load_instance_id)
         dest = &intr->dest;
   } break;
   case nir_instr_type_deref:
      return NULL;
   default:
      break;
   }
   return real_dest(dest, NULL, NULL);
}

struct live_def {
   nir_instr *instr;
   nir_dest *dest; /* cached dest_for_instr */
   unsigned live_start, live_end; /* live range */
};

static void
range_include(struct live_def *def, unsigned index)
{
   if (def->live_start > index)
      def->live_start = index;
   if (def->live_end < index)
      def->live_end = index;
}

struct live_defs_state {
   unsigned num_defs;
   unsigned bitset_words;

   nir_function_impl *impl;
   nir_block *block; /* current block pointer */
   unsigned index; /* current live index */

   struct live_def *defs;
   unsigned *live_map; /* to map ssa/reg index into defs array */

   nir_block_worklist worklist;
};

static bool
init_liveness_block(nir_block *block,
                    struct live_defs_state *state)
{
   block->live_in = reralloc(block, block->live_in, BITSET_WORD,
                             state->bitset_words);
   memset(block->live_in, 0, state->bitset_words * sizeof(BITSET_WORD));

   block->live_out = reralloc(block, block->live_out, BITSET_WORD,
                              state->bitset_words);
   memset(block->live_out, 0, state->bitset_words * sizeof(BITSET_WORD));

   nir_block_worklist_push_head(&state->worklist, block);

   return true;
}

static bool
set_src_live(nir_src *src, void *void_state)
{
   struct live_defs_state *state = void_state;

   if (src->is_ssa) {
      nir_instr *instr = src->ssa->parent_instr;

      if (is_sysval(instr) || instr->type == nir_instr_type_deref)
         return true;

      switch (instr->type) {
      case nir_instr_type_load_const:
      case nir_instr_type_ssa_undef:
         return true;
      case nir_instr_type_alu: {
         /* alu op bypass */
         nir_alu_instr *alu = nir_instr_as_alu(instr);
         if (instr->pass_flags & BYPASS_SRC) {
            for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++)
               set_src_live(&alu->src[i].src, state);
            return true;
         }
      } break;
      default:
         break;
      }
   }

   unsigned i = state->live_map[src_index(state->impl, src)];
   assert(i != ~0u);

   BITSET_SET(state->block->live_in, i);
   range_include(&state->defs[i], state->index);

   return true;
}

static bool
propagate_across_edge(nir_block *pred, nir_block *succ,
                      struct live_defs_state *state)
{
   BITSET_WORD progress = 0;
   for (unsigned i = 0; i < state->bitset_words; ++i) {
      progress |= succ->live_in[i] & ~pred->live_out[i];
      pred->live_out[i] |= succ->live_in[i];
   }
   return progress != 0;
}

static unsigned
live_defs(nir_function_impl *impl, struct live_def *defs, unsigned *live_map)
{
   struct live_defs_state state;
   unsigned block_live_index[impl->num_blocks + 1];

   state.impl = impl;
   state.defs = defs;
   state.live_map = live_map;

   state.num_defs = 0;
   nir_foreach_block(block, impl) {
      block_live_index[block->index] = state.num_defs;
      nir_foreach_instr(instr, block) {
         nir_dest *dest = dest_for_instr(instr);
         if (!dest)
            continue;

         unsigned idx = dest_index(impl, dest);
         /* register is already in defs */
         if (live_map[idx] != ~0u)
            continue;

         defs[state.num_defs] = (struct live_def) {instr, dest, state.num_defs, 0};

         /* input live from the start */
         if (instr->type == nir_instr_type_intrinsic) {
            nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
            if (intr->intrinsic == nir_intrinsic_load_input ||
                intr->intrinsic == nir_intrinsic_load_instance_id)
               defs[state.num_defs].live_start = 0;
         }

         live_map[idx] = state.num_defs;
         state.num_defs++;
      }
   }
   block_live_index[impl->num_blocks] = state.num_defs;

   nir_block_worklist_init(&state.worklist, impl->num_blocks, NULL);

   /* We now know how many unique ssa definitions we have and we can go
    * ahead and allocate live_in and live_out sets and add all of the
    * blocks to the worklist.
    */
   state.bitset_words = BITSET_WORDS(state.num_defs);
   nir_foreach_block(block, impl) {
      init_liveness_block(block, &state);
   }

   /* We're now ready to work through the worklist and update the liveness
    * sets of each of the blocks.  By the time we get to this point, every
    * block in the function implementation has been pushed onto the
    * worklist in reverse order.  As long as we keep the worklist
    * up-to-date as we go, everything will get covered.
    */
   while (!nir_block_worklist_is_empty(&state.worklist)) {
      /* We pop them off in the reverse order we pushed them on.  This way
       * the first walk of the instructions is backwards so we only walk
       * once in the case of no control flow.
       */
      nir_block *block = nir_block_worklist_pop_head(&state.worklist);
      state.block = block;

      memcpy(block->live_in, block->live_out,
             state.bitset_words * sizeof(BITSET_WORD));

      state.index = block_live_index[block->index + 1];

      nir_if *following_if = nir_block_get_following_if(block);
      if (following_if)
         set_src_live(&following_if->condition, &state);

      nir_foreach_instr_reverse(instr, block) {
         /* when we come across the next "live" instruction, decrement index */
         if (state.index && instr == defs[state.index - 1].instr) {
            state.index--;
            /* the only source of writes to registers is phis:
             * we don't expect any partial write_mask alus
             * so clearing live_in here is OK
             */
            BITSET_CLEAR(block->live_in, state.index);
         }

         /* don't set_src_live for not-emitted instructions */
         if (instr->pass_flags)
            continue;

         unsigned index = state.index;

         /* output live till the end */
         if (instr->type == nir_instr_type_intrinsic) {
            nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
            if (intr->intrinsic == nir_intrinsic_store_deref)
               state.index = ~0u;
         }

         nir_foreach_src(instr, set_src_live, &state);

         state.index = index;
      }
      assert(state.index == block_live_index[block->index]);

      /* Walk over all of the predecessors of the current block updating
       * their live in with the live out of this one.  If anything has
       * changed, add the predecessor to the work list so that we ensure
       * that the new information is used.
       */
      set_foreach(block->predecessors, entry) {
         nir_block *pred = (nir_block *)entry->key;
         if (propagate_across_edge(pred, block, &state))
            nir_block_worklist_push_tail(&state.worklist, pred);
      }
   }

   nir_block_worklist_fini(&state.worklist);

   /* apply live_in/live_out to ranges */

   nir_foreach_block(block, impl) {
      BITSET_WORD tmp;
      int i;

      BITSET_FOREACH_SET(i, tmp, block->live_in, state.num_defs)
         range_include(&state.defs[i], block_live_index[block->index]);

      BITSET_FOREACH_SET(i, tmp, block->live_out, state.num_defs)
         range_include(&state.defs[i], block_live_index[block->index + 1]);
   }

   return state.num_defs;
}

/* precomputed by register_allocate  */
static unsigned int *q_values[] = {
   (unsigned int[]) {1, 2, 3, 4, 2, 2, 3, },
   (unsigned int[]) {3, 5, 6, 6, 5, 5, 6, },
   (unsigned int[]) {3, 4, 4, 4, 4, 4, 4, },
   (unsigned int[]) {1, 1, 1, 1, 1, 1, 1, },
   (unsigned int[]) {1, 2, 2, 2, 1, 2, 2, },
   (unsigned int[]) {2, 3, 3, 3, 2, 3, 3, },
   (unsigned int[]) {2, 2, 2, 2, 2, 2, 2, },
};

static void
ra_assign(struct state *state, nir_shader *shader)
{
   struct ra_regs *regs = ra_alloc_reg_set(NULL, ETNA_MAX_TEMPS *
                  NUM_REG_TYPES, false);

   /* classes always be created from index 0, so equal to the class enum
    * which represents a register with (c+1) components
    */
   for (int c = 0; c < NUM_REG_CLASSES; c++)
      ra_alloc_reg_class(regs);
   /* add each register of each class */
   for (int r = 0; r < NUM_REG_TYPES * ETNA_MAX_TEMPS; r++)
      ra_class_add_reg(regs, reg_get_class(r), r);
   /* set conflicts */
   for (int r = 0; r < ETNA_MAX_TEMPS; r++) {
      for (int i = 0; i < NUM_REG_TYPES; i++) {
         for (int j = 0; j < i; j++) {
            if (reg_writemask[i] & reg_writemask[j]) {
               ra_add_reg_conflict(regs, NUM_REG_TYPES * r + i,
                                         NUM_REG_TYPES * r + j);
            }
         }
      }
   }
   ra_set_finalize(regs, q_values);

   nir_function_impl *impl = nir_shader_get_entrypoint(shader);

   /* liveness and interference */

   nir_index_blocks(impl);
   nir_index_ssa_defs(impl);
   nir_foreach_block(block, impl) {
      nir_foreach_instr(instr, block)
         instr->pass_flags = 0;
   }

   /* this gives an approximation/upper limit on how many nodes are needed
    * (some ssa values do not represent an allocated register)
    */
   unsigned max_nodes = impl->ssa_alloc + impl->reg_alloc;
   unsigned *live_map = ralloc_array(NULL, unsigned, max_nodes);
   memset(live_map, 0xff, sizeof(unsigned) * max_nodes);
   struct live_def *defs = rzalloc_array(NULL, struct live_def, max_nodes);

   unsigned num_nodes = live_defs(impl, defs, live_map);
   struct ra_graph *g = ra_alloc_interference_graph(regs, num_nodes);

   /* set classes from num_components */
   for (unsigned i = 0; i < num_nodes; i++) {
      nir_instr *instr = defs[i].instr;
      nir_dest *dest = defs[i].dest;
      unsigned c = nir_dest_num_components(*dest) - 1;

      if (instr->type == nir_instr_type_alu &&
          state->c->specs->has_new_transcendentals) {
         switch (nir_instr_as_alu(instr)->op) {
         case nir_op_fdiv:
         case nir_op_flog2:
         case nir_op_fsin:
         case nir_op_fcos:
            assert(dest->is_ssa);
            c = REG_CLASS_VIRT_VEC2T;
         default:
            break;
         }
      }

      if (instr->type == nir_instr_type_intrinsic) {
         nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
         if (intr->intrinsic == nir_intrinsic_load_uniform) {
            /* make sure there isn't any reswizzling */
            assert(dest == &intr->dest);
            if (dest->ssa.num_components == 2)
               c = REG_CLASS_VIRT_VEC2C;
            if (dest->ssa.num_components == 3)
               c = REG_CLASS_VIRT_VEC3C;
         }
      }

      ra_set_node_class(g, i, c);
   }

   nir_foreach_block(block, impl) {
      nir_foreach_instr(instr, block) {
         if (instr->type != nir_instr_type_intrinsic)
            continue;

         nir_dest *dest = dest_for_instr(instr);
         nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
         unsigned reg;

         switch (intr->intrinsic) {
         case nir_intrinsic_store_deref: {
            /* don't want outputs to be swizzled
             * TODO: better would be to set the type to X/XY/XYZ/XYZW
             * TODO: what if fragcoord.z is read after writing fragdepth?
             */
            nir_deref_instr *deref = nir_src_as_deref(intr->src[0]);
            unsigned index = live_map[src_index(impl, &intr->src[1])];

            if (shader->info.stage == MESA_SHADER_FRAGMENT &&
                deref->var->data.location == FRAG_RESULT_DEPTH) {
               ra_set_node_reg(g, index, REG_FRAG_DEPTH);
            } else {
               ra_set_node_class(g, index, REG_CLASS_VEC4);
            }
         } continue;
         case nir_intrinsic_load_input:
            reg = nir_intrinsic_base(intr) * NUM_REG_TYPES + (unsigned[]) {
               REG_TYPE_VIRT_SCALAR_X,
               REG_TYPE_VIRT_VEC2_XY,
               REG_TYPE_VIRT_VEC3_XYZ,
               REG_TYPE_VEC4,
            }[nir_dest_num_components(*dest) - 1];
            break;
         case nir_intrinsic_load_instance_id:
            reg = state->c->variant->infile.num_reg * NUM_REG_TYPES + REG_TYPE_VIRT_SCALAR_Y;
            break;
         default:
            continue;
         }

         ra_set_node_reg(g, live_map[dest_index(impl, dest)], reg);
      }
   }

   /* add interference for intersecting live ranges */
   for (unsigned i = 0; i < num_nodes; i++) {
      assert(defs[i].live_start < defs[i].live_end);
      for (unsigned j = 0; j < i; j++) {
         if (defs[i].live_start >= defs[j].live_end || defs[j].live_start >= defs[i].live_end)
            continue;
         ra_add_node_interference(g, i, j);
      }
   }

   ralloc_free(defs);

   /* Allocate registers */
   ASSERTED bool ok = ra_allocate(g);
   assert(ok);

   state->g = g;
   state->regs = regs;
   state->live_map = live_map;
   state->num_nodes = num_nodes;
}

static unsigned
ra_finish(struct state *state)
{
   /* TODO: better way to get number of registers used? */
   unsigned j = 0;
   for (unsigned i = 0; i < state->num_nodes; i++) {
      j = MAX2(j, reg_get_base(state, ra_get_node_reg(state->g, i)) + 1);
   }

   ralloc_free(state->g);
   ralloc_free(state->regs);
   ralloc_free(state->live_map);

   return j;
}

static void
emit_alu(struct state *state, nir_alu_instr * alu)
{
   const nir_op_info *info = &nir_op_infos[alu->op];

   /* marked as dead instruction (vecN and other bypassed instr) */
   if (alu->instr.pass_flags)
      return;

   assert(!(alu->op >= nir_op_vec2 && alu->op <= nir_op_vec4));

   unsigned dst_swiz;
   hw_dst dst = ra_dest(state, &alu->dest.dest, &dst_swiz);

   /* compose alu write_mask with RA write mask */
   if (!alu->dest.dest.is_ssa)
      dst.write_mask = inst_write_mask_compose(alu->dest.write_mask, dst.write_mask);

   switch (alu->op) {
   case nir_op_fdot2:
   case nir_op_fdot3:
   case nir_op_fdot4:
      /* not per-component - don't compose dst_swiz */
      dst_swiz = INST_SWIZ_IDENTITY;
      break;
   default:
      break;
   }

   hw_src srcs[3];

   for (int i = 0; i < info->num_inputs; i++) {
      nir_alu_src *asrc = &alu->src[i];
      hw_src src;

      src = src_swizzle(get_src(state, &asrc->src), ALU_SWIZ(asrc));
      src = src_swizzle(src, dst_swiz);

      if (src.rgroup != INST_RGROUP_IMMEDIATE) {
         src.neg = asrc->negate || (alu->op == nir_op_fneg);
         src.abs = asrc->abs || (alu->op == nir_op_fabs);
      } else {
         assert(!asrc->negate && alu->op != nir_op_fneg);
         assert(!asrc->abs && alu->op != nir_op_fabs);
      }

      srcs[i] = src;
   }

   emit(alu, alu->op, dst, srcs, alu->dest.saturate || (alu->op == nir_op_fsat));
}

static void
emit_tex(struct state *state, nir_tex_instr * tex)
{
   unsigned dst_swiz;
   hw_dst dst = ra_dest(state, &tex->dest, &dst_swiz);
   nir_src *coord = NULL, *lod_bias = NULL, *compare = NULL;

   for (unsigned i = 0; i < tex->num_srcs; i++) {
      switch (tex->src[i].src_type) {
      case nir_tex_src_coord:
         coord = &tex->src[i].src;
         break;
      case nir_tex_src_bias:
      case nir_tex_src_lod:
         assert(!lod_bias);
         lod_bias = &tex->src[i].src;
         break;
      case nir_tex_src_comparator:
         compare = &tex->src[i].src;
         break;
      default:
         compile_error(state->c, "Unhandled NIR tex src type: %d\n",
                       tex->src[i].src_type);
         break;
      }
   }

   emit(tex, tex->op, tex->sampler_index, dst_swiz, dst, get_src(state, coord),
        lod_bias ? get_src(state, lod_bias) : SRC_DISABLE,
        compare ? get_src(state, compare) : SRC_DISABLE);
}

static void
emit_intrinsic(struct state *state, nir_intrinsic_instr * intr)
{
   switch (intr->intrinsic) {
   case nir_intrinsic_store_deref:
      emit(output, nir_src_as_deref(intr->src[0])->var, get_src(state, &intr->src[1]));
      break;
   case nir_intrinsic_discard_if:
      emit(discard, get_src(state, &intr->src[0]));
      break;
   case nir_intrinsic_discard:
      emit(discard, SRC_DISABLE);
      break;
   case nir_intrinsic_load_uniform: {
      unsigned dst_swiz;
      hw_dst dst = ra_dest(state, &intr->dest, &dst_swiz);
      /* TODO: might have a problem with dst_swiz .. */
      emit(load_ubo, dst, get_src(state, &intr->src[0]), const_src(state, &UNIFORM_BASE(nir_intrinsic_base(intr) * 16), 1));
   } break;
   case nir_intrinsic_load_front_face:
   case nir_intrinsic_load_frag_coord:
      assert(intr->dest.is_ssa); /* TODO - lower phis could cause this */
      break;
   case nir_intrinsic_load_input:
   case nir_intrinsic_load_instance_id:
      break;
   default:
      compile_error(state->c, "Unhandled NIR intrinsic type: %s\n",
                    nir_intrinsic_infos[intr->intrinsic].name);
   }
}

static void
emit_instr(struct state *state, nir_instr * instr)
{
   switch (instr->type) {
   case nir_instr_type_alu:
      emit_alu(state, nir_instr_as_alu(instr));
      break;
   case nir_instr_type_tex:
      emit_tex(state, nir_instr_as_tex(instr));
      break;
   case nir_instr_type_intrinsic:
      emit_intrinsic(state, nir_instr_as_intrinsic(instr));
      break;
   case nir_instr_type_jump:
      assert(nir_instr_is_last(instr));
   case nir_instr_type_load_const:
   case nir_instr_type_ssa_undef:
   case nir_instr_type_deref:
      break;
   default:
      compile_error(state->c, "Unhandled NIR instruction type: %d\n", instr->type);
      break;
   }
}

static void
emit_block(struct state *state, nir_block * block)
{
   emit(block_start, block->index);

   nir_foreach_instr(instr, block)
      emit_instr(state, instr);

   /* succs->index < block->index is for the loop case  */
   nir_block *succs = block->successors[0];
   if (nir_block_ends_in_jump(block) || succs->index < block->index)
      emit(jump, succs->index, SRC_DISABLE);
}

static void
emit_cf_list(struct state *state, struct exec_list *list);

static void
emit_if(struct state *state, nir_if * nif)
{
   emit(jump, nir_if_first_else_block(nif)->index, get_src(state, &nif->condition));
   emit_cf_list(state, &nif->then_list);

   /* jump at end of then_list to skip else_list
    * not needed if then_list already ends with a jump or else_list is empty
    */
   if (!nir_block_ends_in_jump(nir_if_last_then_block(nif)) &&
       !nir_cf_list_is_empty_block(&nif->else_list))
      emit(jump, nir_if_last_else_block(nif)->successors[0]->index, SRC_DISABLE);

   emit_cf_list(state, &nif->else_list);
}

static void
emit_cf_list(struct state *state, struct exec_list *list)
{
   foreach_list_typed(nir_cf_node, node, node, list) {
      switch (node->type) {
      case nir_cf_node_block:
         emit_block(state, nir_cf_node_as_block(node));
         break;
      case nir_cf_node_if:
         emit_if(state, nir_cf_node_as_if(node));
         break;
      case nir_cf_node_loop:
         emit_cf_list(state, &nir_cf_node_as_loop(node)->body);
         break;
      default:
         compile_error(state->c, "Unknown NIR node type\n");
         break;
      }
   }
}

/* based on nir_lower_vec_to_movs */
static unsigned
insert_vec_mov(nir_alu_instr *vec, unsigned start_idx, nir_shader *shader)
{
   assert(start_idx < nir_op_infos[vec->op].num_inputs);
   unsigned write_mask = (1u << start_idx);

   nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_mov);
   nir_alu_src_copy(&mov->src[0], &vec->src[start_idx], mov);

   mov->src[0].swizzle[0] = vec->src[start_idx].swizzle[0];
   mov->src[0].negate = vec->src[start_idx].negate;
   mov->src[0].abs = vec->src[start_idx].abs;

   unsigned num_components = 1;

   for (unsigned i = start_idx + 1; i < 4; i++) {
      if (!(vec->dest.write_mask & (1 << i)))
         continue;

      if (nir_srcs_equal(vec->src[i].src, vec->src[start_idx].src) &&
          vec->src[i].negate == vec->src[start_idx].negate &&
          vec->src[i].abs == vec->src[start_idx].abs) {
         write_mask |= (1 << i);
         mov->src[0].swizzle[num_components] = vec->src[i].swizzle[0];
         num_components++;
      }
   }

   mov->dest.write_mask = (1 << num_components) - 1;
   nir_ssa_dest_init(&mov->instr, &mov->dest.dest, num_components, 32, NULL);

   /* replace vec srcs with inserted mov */
   for (unsigned i = 0, j = 0; i < 4; i++) {
      if (!(write_mask & (1 << i)))
         continue;

      nir_instr_rewrite_src(&vec->instr, &vec->src[i].src, nir_src_for_ssa(&mov->dest.dest.ssa));
      vec->src[i].swizzle[0] = j++;
   }

   nir_instr_insert_before(&vec->instr, &mov->instr);

   return write_mask;
}

/*
 * for vecN instructions:
 * -merge constant sources into a single src
 * -insert movs (nir_lower_vec_to_movs equivalent)
 * for non-vecN instructions:
 * -try to merge constants as single constant
 * -insert movs for multiple constants (pre-HALTI5)
 */
static void
lower_alu(struct state *state, nir_alu_instr *alu)
{
   const nir_op_info *info = &nir_op_infos[alu->op];

   nir_builder b;
   nir_builder_init(&b, state->impl);
   b.cursor = nir_before_instr(&alu->instr);

   switch (alu->op) {
   case nir_op_vec2:
   case nir_op_vec3:
   case nir_op_vec4:
      break;
   default:
      /* pre-GC7000L can only have 1 uniform src per instruction */
      if (state->c->specs->halti >= 5)
         return;

      nir_const_value value[4] = {};
      uint8_t swizzle[4][4] = {};
      unsigned swiz_max = 0, num_const = 0;

      for (unsigned i = 0; i < info->num_inputs; i++) {
         nir_const_value *cv = nir_src_as_const_value(alu->src[i].src);
         if (!cv)
            continue;

         unsigned num_components = info->input_sizes[i] ?: alu->dest.dest.ssa.num_components;
         for (unsigned j = 0; j < num_components; j++) {
            int idx = const_add(&value[0].u64, cv[alu->src[i].swizzle[j]].u64);
            swizzle[i][j] = idx;
            swiz_max = MAX2(swiz_max, (unsigned) idx);
         }
         num_const++;
      }

      /* nothing to do */
      if (num_const <= 1)
         return;

      /* resolve with single combined const src */
      if (swiz_max < 4) {
         nir_ssa_def *def = nir_build_imm(&b, swiz_max + 1, 32, value);

         for (unsigned i = 0; i < info->num_inputs; i++) {
            nir_const_value *cv = nir_src_as_const_value(alu->src[i].src);
            if (!cv)
               continue;

            nir_instr_rewrite_src(&alu->instr, &alu->src[i].src, nir_src_for_ssa(def));

            for (unsigned j = 0; j < 4; j++)
               alu->src[i].swizzle[j] = swizzle[i][j];
         }
         return;
      }

      /* resolve with movs */
      num_const = 0;
      for (unsigned i = 0; i < info->num_inputs; i++) {
         nir_const_value *cv = nir_src_as_const_value(alu->src[i].src);
         if (!cv)
            continue;

         num_const++;
         if (num_const == 1)
            continue;

         nir_ssa_def *mov = nir_mov(&b, alu->src[i].src.ssa);
         nir_instr_rewrite_src(&alu->instr, &alu->src[i].src, nir_src_for_ssa(mov));
      }
      return;
   }

   nir_const_value value[4];
   unsigned num_components = 0;

   for (unsigned i = 0; i < info->num_inputs; i++) {
      nir_const_value *cv = nir_src_as_const_value(alu->src[i].src);
      if (cv)
         value[num_components++] = cv[alu->src[i].swizzle[0]];
   }

   /* if there is more than one constant source to the vecN, combine them
    * into a single load_const (removing the vecN completely if all components
    * are constant)
    */
   if (num_components > 1) {
      nir_ssa_def *def = nir_build_imm(&b, num_components, 32, value);

      if (num_components == info->num_inputs) {
         nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(def));
         nir_instr_remove(&alu->instr);
         return;
      }

      for (unsigned i = 0, j = 0; i < info->num_inputs; i++) {
         nir_const_value *cv = nir_src_as_const_value(alu->src[i].src);
         if (!cv)
            continue;

         nir_instr_rewrite_src(&alu->instr, &alu->src[i].src, nir_src_for_ssa(def));
         alu->src[i].swizzle[0] = j++;
      }
   }

   unsigned finished_write_mask = 0;
   for (unsigned i = 0; i < 4; i++) {
      if (!(alu->dest.write_mask & (1 << i)))
            continue;

      nir_ssa_def *ssa = alu->src[i].src.ssa;

      /* check that vecN instruction is only user of this */
      bool need_mov = list_length(&ssa->if_uses) != 0;
      nir_foreach_use(use_src, ssa) {
         if (use_src->parent_instr != &alu->instr)
            need_mov = true;
      }

      nir_instr *instr = ssa->parent_instr;
      switch (instr->type) {
      case nir_instr_type_alu:
      case nir_instr_type_tex:
         break;
      case nir_instr_type_intrinsic:
         if (nir_instr_as_intrinsic(instr)->intrinsic == nir_intrinsic_load_input) {
            need_mov = vec_dest_has_swizzle(alu, &nir_instr_as_intrinsic(instr)->dest.ssa);
            break;
         }
      default:
         need_mov = true;
      }

      if (need_mov && !(finished_write_mask & (1 << i)))
         finished_write_mask |= insert_vec_mov(alu, i, state->shader);
   }
}

static bool
emit_shader(struct etna_compile *c, unsigned *num_temps, unsigned *num_consts)
{
   nir_shader *shader = c->nir;

   struct state state = {
      .c = c,
      .shader = shader,
      .impl = nir_shader_get_entrypoint(shader),
   };

   nir_builder b;
   nir_builder_init(&b, state.impl);

   /* convert non-dynamic uniform loads to constants, etc */
   nir_foreach_block(block, state.impl) {
      nir_foreach_instr_safe(instr, block) {
         switch(instr->type) {
         case nir_instr_type_alu:
            /* deals with vecN and const srcs */
            lower_alu(&state, nir_instr_as_alu(instr));
            break;
         case nir_instr_type_load_const: {
            nir_load_const_instr *load_const = nir_instr_as_load_const(instr);
            for (unsigned  i = 0; i < load_const->def.num_components; i++)
               load_const->value[i] = CONST(load_const->value[i].u32);
         } break;
         case nir_instr_type_intrinsic: {
            nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
            if (intr->intrinsic != nir_intrinsic_load_uniform)
               break;
            nir_const_value *off = nir_src_as_const_value(intr->src[0]);
            if (!off || off[0].u64 >> 32 != ETNA_IMMEDIATE_CONSTANT)
               break;

            unsigned base = nir_intrinsic_base(intr);
            /* pre halti2 uniform offset will be float */
            if (c->specs->halti < 2)
               base += (unsigned) off[0].f32 / 16;
            else
               base += off[0].u32 / 16;

            nir_const_value value[4];

            for (unsigned i = 0; i < intr->dest.ssa.num_components; i++) {
               if (nir_intrinsic_base(intr) < 0)
                  value[i] = TEXSCALE(~nir_intrinsic_base(intr), i);
               else
                  value[i] = UNIFORM(base * 4 + i);
            }

            b.cursor = nir_after_instr(instr);
            nir_ssa_def *def = nir_build_imm(&b, intr->dest.ssa.num_components, 32, value);

            nir_ssa_def_rewrite_uses(&intr->dest.ssa, nir_src_for_ssa(def));
            nir_instr_remove(instr);
         } break;
         default:
            break;
         }
      }
   }

   /* add mov for any store output using sysval/const  */
   nir_foreach_block(block, state.impl) {
      nir_foreach_instr_safe(instr, block) {
         if (instr->type != nir_instr_type_intrinsic)
            continue;

         nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);

         switch (intr->intrinsic) {
         case nir_intrinsic_store_deref: {
            nir_src *src = &intr->src[1];
            if (nir_src_is_const(*src) || is_sysval(src->ssa->parent_instr)) {
               b.cursor = nir_before_instr(instr);
               nir_instr_rewrite_src(instr, src, nir_src_for_ssa(nir_mov(&b, src->ssa)));
            }
         } break;
         default:
            break;
         }
      }
   }

   /* call directly to avoid validation (load_const don't pass validation at this point) */
   nir_convert_from_ssa(shader, true);
   nir_opt_dce(shader);

   ra_assign(&state, shader);

   emit_cf_list(&state, &nir_shader_get_entrypoint(shader)->body);

   *num_temps = ra_finish(&state);
   *num_consts = state.const_count;
   return true;
}