aboutsummaryrefslogtreecommitdiffstats
path: root/src/gallium/auxiliary/gallivm/lp_bld_swizzle.c
blob: f5718389f33cc3442fc3e44084cd31341b894d28 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
/**************************************************************************
 *
 * Copyright 2009 VMware, Inc.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 **************************************************************************/

/**
 * @file
 * Helper functions for swizzling/shuffling.
 *
 * @author Jose Fonseca <jfonseca@vmware.com>
 */

#include <inttypes.h>  /* for PRIx64 macro */
#include "util/u_debug.h"

#include "lp_bld_type.h"
#include "lp_bld_const.h"
#include "lp_bld_init.h"
#include "lp_bld_logic.h"
#include "lp_bld_swizzle.h"
#include "lp_bld_pack.h"


LLVMValueRef
lp_build_broadcast(struct gallivm_state *gallivm,
                   LLVMTypeRef vec_type,
                   LLVMValueRef scalar)
{
   LLVMValueRef res;

   if (LLVMGetTypeKind(vec_type) != LLVMVectorTypeKind) {
      /* scalar */
      assert(vec_type == LLVMTypeOf(scalar));
      res = scalar;
   } else {
      LLVMBuilderRef builder = gallivm->builder;
      const unsigned length = LLVMGetVectorSize(vec_type);
      LLVMValueRef undef = LLVMGetUndef(vec_type);
      /* The shuffle vector is always made of int32 elements */
      LLVMTypeRef i32_type = LLVMInt32TypeInContext(gallivm->context);
      LLVMTypeRef i32_vec_type = LLVMVectorType(i32_type, length);

      assert(LLVMGetElementType(vec_type) == LLVMTypeOf(scalar));

      res = LLVMBuildInsertElement(builder, undef, scalar, LLVMConstNull(i32_type), "");
      res = LLVMBuildShuffleVector(builder, res, undef, LLVMConstNull(i32_vec_type), "");
   }

   return res;
}


/**
 * Broadcast
 */
LLVMValueRef
lp_build_broadcast_scalar(struct lp_build_context *bld,
                          LLVMValueRef scalar)
{
   assert(lp_check_elem_type(bld->type, LLVMTypeOf(scalar)));

   return lp_build_broadcast(bld->gallivm, bld->vec_type, scalar);
}


/**
 * Combined extract and broadcast (mere shuffle in most cases)
 */
LLVMValueRef
lp_build_extract_broadcast(struct gallivm_state *gallivm,
                           struct lp_type src_type,
                           struct lp_type dst_type,
                           LLVMValueRef vector,
                           LLVMValueRef index)
{
   LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
   LLVMValueRef res;

   assert(src_type.floating == dst_type.floating);
   assert(src_type.width    == dst_type.width);

   assert(lp_check_value(src_type, vector));
   assert(LLVMTypeOf(index) == i32t);

   if (src_type.length == 1) {
      if (dst_type.length == 1) {
         /*
          * Trivial scalar -> scalar.
          */

         res = vector;
      }
      else {
         /*
          * Broadcast scalar -> vector.
          */

         res = lp_build_broadcast(gallivm,
                                  lp_build_vec_type(gallivm, dst_type),
                                  vector);
      }
   }
   else {
      if (dst_type.length > 1) {
         /*
          * shuffle - result can be of different length.
          */

         LLVMValueRef shuffle;
         shuffle = lp_build_broadcast(gallivm,
                                      LLVMVectorType(i32t, dst_type.length),
                                      index);
         res = LLVMBuildShuffleVector(gallivm->builder, vector,
                                      LLVMGetUndef(lp_build_vec_type(gallivm, src_type)),
                                      shuffle, "");
      }
      else {
         /*
          * Trivial extract scalar from vector.
          */
          res = LLVMBuildExtractElement(gallivm->builder, vector, index, "");
      }
   }

   return res;
}


/**
 * Swizzle one channel into other channels.
 */
LLVMValueRef
lp_build_swizzle_scalar_aos(struct lp_build_context *bld,
                            LLVMValueRef a,
                            unsigned channel,
                            unsigned num_channels)
{
   LLVMBuilderRef builder = bld->gallivm->builder;
   const struct lp_type type = bld->type;
   const unsigned n = type.length;
   unsigned i, j;

   if(a == bld->undef || a == bld->zero || a == bld->one || num_channels == 1)
      return a;

   assert(num_channels == 2 || num_channels == 4);

   /* XXX: SSE3 has PSHUFB which should be better than bitmasks, but forcing
    * using shuffles here actually causes worst results. More investigation is
    * needed. */
   if (LLVMIsConstant(a) ||
       type.width >= 16) {
      /*
       * Shuffle.
       */
      LLVMTypeRef elem_type = LLVMInt32TypeInContext(bld->gallivm->context);
      LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];

      for(j = 0; j < n; j += num_channels)
         for(i = 0; i < num_channels; ++i)
            shuffles[j + i] = LLVMConstInt(elem_type, j + channel, 0);

      return LLVMBuildShuffleVector(builder, a, bld->undef, LLVMConstVector(shuffles, n), "");
   }
   else if (num_channels == 2) {
      /*
       * Bit mask and shifts
       *
       *   XY XY .... XY  <= input
       *   0Y 0Y .... 0Y
       *   YY YY .... YY
       *   YY YY .... YY  <= output
       */
      struct lp_type type2;
      LLVMValueRef tmp = NULL;
      int shift;

      a = LLVMBuildAnd(builder, a,
                       lp_build_const_mask_aos(bld->gallivm,
                                               type, 1 << channel, num_channels), "");

      type2 = type;
      type2.floating = FALSE;
      type2.width *= 2;
      type2.length /= 2;

      a = LLVMBuildBitCast(builder, a, lp_build_vec_type(bld->gallivm, type2), "");

      /*
       * Vector element 0 is always channel X.
       *
       *                        76 54 32 10 (array numbering)
       * Little endian reg in:  YX YX YX YX
       * Little endian reg out: YY YY YY YY if shift right (shift == -1)
       *                        XX XX XX XX if shift left (shift == 1)
       *
       *                        01 23 45 67 (array numbering)
       * Big endian reg in:     XY XY XY XY
       * Big endian reg out:    YY YY YY YY if shift left (shift == 1)
       *                        XX XX XX XX if shift right (shift == -1)
       *
       */
#ifdef PIPE_ARCH_LITTLE_ENDIAN
      shift = channel == 0 ? 1 : -1;
#else
      shift = channel == 0 ? -1 : 1;
#endif

      if (shift > 0) {
         tmp = LLVMBuildShl(builder, a, lp_build_const_int_vec(bld->gallivm, type2, shift * type.width), "");
      } else if (shift < 0) {
         tmp = LLVMBuildLShr(builder, a, lp_build_const_int_vec(bld->gallivm, type2, -shift * type.width), "");
      }

      assert(tmp);
      if (tmp) {
         a = LLVMBuildOr(builder, a, tmp, "");
      }

      return LLVMBuildBitCast(builder, a, lp_build_vec_type(bld->gallivm, type), "");
   }
   else {
      /*
       * Bit mask and recursive shifts
       *
       * Little-endian registers:
       *
       *   7654 3210
       *   WZYX WZYX .... WZYX  <= input
       *   00Y0 00Y0 .... 00Y0  <= mask
       *   00YY 00YY .... 00YY  <= shift right 1 (shift amount -1)
       *   YYYY YYYY .... YYYY  <= shift left 2 (shift amount 2)
       *
       * Big-endian registers:
       *
       *   0123 4567
       *   XYZW XYZW .... XYZW  <= input
       *   0Y00 0Y00 .... 0Y00  <= mask
       *   YY00 YY00 .... YY00  <= shift left 1 (shift amount 1)
       *   YYYY YYYY .... YYYY  <= shift right 2 (shift amount -2)
       *
       * shifts[] gives little-endian shift amounts; we need to negate for big-endian.
       */
      struct lp_type type4;
      const int shifts[4][2] = {
         { 1,  2},
         {-1,  2},
         { 1, -2},
         {-1, -2}
      };
      unsigned i;

      a = LLVMBuildAnd(builder, a,
                       lp_build_const_mask_aos(bld->gallivm,
                                               type, 1 << channel, 4), "");

      /*
       * Build a type where each element is an integer that cover the four
       * channels.
       */

      type4 = type;
      type4.floating = FALSE;
      type4.width *= 4;
      type4.length /= 4;

      a = LLVMBuildBitCast(builder, a, lp_build_vec_type(bld->gallivm, type4), "");

      for(i = 0; i < 2; ++i) {
         LLVMValueRef tmp = NULL;
         int shift = shifts[channel][i];

         /* See endianness diagram above */
#ifdef PIPE_ARCH_BIG_ENDIAN
         shift = -shift;
#endif

         if(shift > 0)
            tmp = LLVMBuildShl(builder, a, lp_build_const_int_vec(bld->gallivm, type4, shift*type.width), "");
         if(shift < 0)
            tmp = LLVMBuildLShr(builder, a, lp_build_const_int_vec(bld->gallivm, type4, -shift*type.width), "");

         assert(tmp);
         if(tmp)
            a = LLVMBuildOr(builder, a, tmp, "");
      }

      return LLVMBuildBitCast(builder, a, lp_build_vec_type(bld->gallivm, type), "");
   }
}


/**
 * Swizzle a vector consisting of an array of XYZW structs.
 *
 * This fills a vector of dst_len length with the swizzled channels from src.
 *
 * e.g. with swizzles = { 2, 1, 0 } and swizzle_count = 6 results in
 *      RGBA RGBA = BGR BGR BG
 *
 * @param swizzles        the swizzle array
 * @param num_swizzles    the number of elements in swizzles
 * @param dst_len         the length of the result
 */
LLVMValueRef
lp_build_swizzle_aos_n(struct gallivm_state* gallivm,
                       LLVMValueRef src,
                       const unsigned char* swizzles,
                       unsigned num_swizzles,
                       unsigned dst_len)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMValueRef shuffles[LP_MAX_VECTOR_WIDTH];
   unsigned i;

   assert(dst_len < LP_MAX_VECTOR_WIDTH);

   for (i = 0; i < dst_len; ++i) {
      int swizzle = swizzles[i % num_swizzles];

      if (swizzle == LP_BLD_SWIZZLE_DONTCARE) {
         shuffles[i] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
      } else {
         shuffles[i] = lp_build_const_int32(gallivm, swizzle);
      }
   }

   return LLVMBuildShuffleVector(builder, src, LLVMGetUndef(LLVMTypeOf(src)), LLVMConstVector(shuffles, dst_len), "");
}


LLVMValueRef
lp_build_swizzle_aos(struct lp_build_context *bld,
                     LLVMValueRef a,
                     const unsigned char swizzles[4])
{
   LLVMBuilderRef builder = bld->gallivm->builder;
   const struct lp_type type = bld->type;
   const unsigned n = type.length;
   unsigned i, j;

   if (swizzles[0] == PIPE_SWIZZLE_RED &&
       swizzles[1] == PIPE_SWIZZLE_GREEN &&
       swizzles[2] == PIPE_SWIZZLE_BLUE &&
       swizzles[3] == PIPE_SWIZZLE_ALPHA) {
      return a;
   }

   if (swizzles[0] == swizzles[1] &&
       swizzles[1] == swizzles[2] &&
       swizzles[2] == swizzles[3]) {
      switch (swizzles[0]) {
      case PIPE_SWIZZLE_RED:
      case PIPE_SWIZZLE_GREEN:
      case PIPE_SWIZZLE_BLUE:
      case PIPE_SWIZZLE_ALPHA:
         return lp_build_swizzle_scalar_aos(bld, a, swizzles[0], 4);
      case PIPE_SWIZZLE_ZERO:
         return bld->zero;
      case PIPE_SWIZZLE_ONE:
         return bld->one;
      case LP_BLD_SWIZZLE_DONTCARE:
         return bld->undef;
      default:
         assert(0);
         return bld->undef;
      }
   }

   if (LLVMIsConstant(a) ||
       type.width >= 16) {
      /*
       * Shuffle.
       */
      LLVMValueRef undef = LLVMGetUndef(lp_build_elem_type(bld->gallivm, type));
      LLVMTypeRef i32t = LLVMInt32TypeInContext(bld->gallivm->context);
      LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
      LLVMValueRef aux[LP_MAX_VECTOR_LENGTH];

      memset(aux, 0, sizeof aux);

      for(j = 0; j < n; j += 4) {
         for(i = 0; i < 4; ++i) {
            unsigned shuffle;
            switch (swizzles[i]) {
            default:
               assert(0);
               /* fall through */
            case PIPE_SWIZZLE_RED:
            case PIPE_SWIZZLE_GREEN:
            case PIPE_SWIZZLE_BLUE:
            case PIPE_SWIZZLE_ALPHA:
               shuffle = j + swizzles[i];
               shuffles[j + i] = LLVMConstInt(i32t, shuffle, 0);
               break;
            case PIPE_SWIZZLE_ZERO:
               shuffle = type.length + 0;
               shuffles[j + i] = LLVMConstInt(i32t, shuffle, 0);
               if (!aux[0]) {
                  aux[0] = lp_build_const_elem(bld->gallivm, type, 0.0);
               }
               break;
            case PIPE_SWIZZLE_ONE:
               shuffle = type.length + 1;
               shuffles[j + i] = LLVMConstInt(i32t, shuffle, 0);
               if (!aux[1]) {
                  aux[1] = lp_build_const_elem(bld->gallivm, type, 1.0);
               }
               break;
            case LP_BLD_SWIZZLE_DONTCARE:
               shuffles[j + i] = LLVMGetUndef(i32t);
               break;
            }
         }
      }

      for (i = 0; i < n; ++i) {
         if (!aux[i]) {
            aux[i] = undef;
         }
      }

      return LLVMBuildShuffleVector(builder, a,
                                    LLVMConstVector(aux, n),
                                    LLVMConstVector(shuffles, n), "");
   } else {
      /*
       * Bit mask and shifts.
       *
       * For example, this will convert BGRA to RGBA by doing
       *
       * Little endian:
       *   rgba = (bgra & 0x00ff0000) >> 16
       *        | (bgra & 0xff00ff00)
       *        | (bgra & 0x000000ff) << 16
       *
       * Big endian:A
       *   rgba = (bgra & 0x0000ff00) << 16
       *        | (bgra & 0x00ff00ff)
       *        | (bgra & 0xff000000) >> 16
       *
       * This is necessary not only for faster cause, but because X86 backend
       * will refuse shuffles of <4 x i8> vectors
       */
      LLVMValueRef res;
      struct lp_type type4;
      unsigned cond = 0;
      unsigned chan;
      int shift;

      /*
       * Start with a mixture of 1 and 0.
       */
      for (chan = 0; chan < 4; ++chan) {
         if (swizzles[chan] == PIPE_SWIZZLE_ONE) {
            cond |= 1 << chan;
         }
      }
      res = lp_build_select_aos(bld, cond, bld->one, bld->zero, 4);

      /*
       * Build a type where each element is an integer that cover the four
       * channels.
       */
      type4 = type;
      type4.floating = FALSE;
      type4.width *= 4;
      type4.length /= 4;

      a = LLVMBuildBitCast(builder, a, lp_build_vec_type(bld->gallivm, type4), "");
      res = LLVMBuildBitCast(builder, res, lp_build_vec_type(bld->gallivm, type4), "");

      /*
       * Mask and shift the channels, trying to group as many channels in the
       * same shift as possible.  The shift amount is positive for shifts left
       * and negative for shifts right.
       */
      for (shift = -3; shift <= 3; ++shift) {
         uint64_t mask = 0;

         assert(type4.width <= sizeof(mask)*8);

         /*
          * Vector element numbers follow the XYZW order, so 0 is always X, etc.
          * After widening 4 times we have:
          *
          *                                3210
          * Little-endian register layout: WZYX
          *
          *                                0123
          * Big-endian register layout:    XYZW
          *
          * For little-endian, higher-numbered channels are obtained by a shift right
          * (negative shift amount) and lower-numbered channels by a shift left
          * (positive shift amount).  The opposite is true for big-endian.
          */
         for (chan = 0; chan < 4; ++chan) {
            if (swizzles[chan] < 4) {
               /* We need to move channel swizzles[chan] into channel chan */
#ifdef PIPE_ARCH_LITTLE_ENDIAN
               if (swizzles[chan] - chan == -shift) {
                  mask |= ((1ULL << type.width) - 1) << (swizzles[chan] * type.width);
               }
#else
               if (swizzles[chan] - chan == shift) {
                  mask |= ((1ULL << type.width) - 1) << (type4.width - type.width) >> (swizzles[chan] * type.width);
               }
#endif
            }
         }

         if (mask) {
            LLVMValueRef masked;
            LLVMValueRef shifted;
            if (0)
               debug_printf("shift = %i, mask = %" PRIx64 "\n", shift, mask);

            masked = LLVMBuildAnd(builder, a,
                                  lp_build_const_int_vec(bld->gallivm, type4, mask), "");
            if (shift > 0) {
               shifted = LLVMBuildShl(builder, masked,
                                      lp_build_const_int_vec(bld->gallivm, type4, shift*type.width), "");
            } else if (shift < 0) {
               shifted = LLVMBuildLShr(builder, masked,
                                       lp_build_const_int_vec(bld->gallivm, type4, -shift*type.width), "");
            } else {
               shifted = masked;
            }

            res = LLVMBuildOr(builder, res, shifted, "");
         }
      }

      return LLVMBuildBitCast(builder, res,
                              lp_build_vec_type(bld->gallivm, type), "");
   }
}


/**
 * Extended swizzle of a single channel of a SoA vector.
 *
 * @param bld         building context
 * @param unswizzled  array with the 4 unswizzled values
 * @param swizzle     one of the PIPE_SWIZZLE_*
 *
 * @return  the swizzled value.
 */
LLVMValueRef
lp_build_swizzle_soa_channel(struct lp_build_context *bld,
                             const LLVMValueRef *unswizzled,
                             unsigned swizzle)
{
   switch (swizzle) {
   case PIPE_SWIZZLE_RED:
   case PIPE_SWIZZLE_GREEN:
   case PIPE_SWIZZLE_BLUE:
   case PIPE_SWIZZLE_ALPHA:
      return unswizzled[swizzle];
   case PIPE_SWIZZLE_ZERO:
      return bld->zero;
   case PIPE_SWIZZLE_ONE:
      return bld->one;
   default:
      assert(0);
      return bld->undef;
   }
}


/**
 * Extended swizzle of a SoA vector.
 *
 * @param bld         building context
 * @param unswizzled  array with the 4 unswizzled values
 * @param swizzles    array of PIPE_SWIZZLE_*
 * @param swizzled    output swizzled values
 */
void
lp_build_swizzle_soa(struct lp_build_context *bld,
                     const LLVMValueRef *unswizzled,
                     const unsigned char swizzles[4],
                     LLVMValueRef *swizzled)
{
   unsigned chan;

   for (chan = 0; chan < 4; ++chan) {
      swizzled[chan] = lp_build_swizzle_soa_channel(bld, unswizzled,
                                                    swizzles[chan]);
   }
}


/**
 * Do an extended swizzle of a SoA vector inplace.
 *
 * @param bld         building context
 * @param values      intput/output array with the 4 values
 * @param swizzles    array of PIPE_SWIZZLE_*
 */
void
lp_build_swizzle_soa_inplace(struct lp_build_context *bld,
                             LLVMValueRef *values,
                             const unsigned char swizzles[4])
{
   LLVMValueRef unswizzled[4];
   unsigned chan;

   for (chan = 0; chan < 4; ++chan) {
      unswizzled[chan] = values[chan];
   }

   lp_build_swizzle_soa(bld, unswizzled, swizzles, values);
}


/**
 * Transpose from AOS <-> SOA
 *
 * @param single_type_lp   type of pixels
 * @param src              the 4 * n pixel input
 * @param dst              the 4 * n pixel output
 */
void
lp_build_transpose_aos(struct gallivm_state *gallivm,
                       struct lp_type single_type_lp,
                       const LLVMValueRef src[4],
                       LLVMValueRef dst[4])
{
   struct lp_type double_type_lp = single_type_lp;
   LLVMTypeRef single_type;
   LLVMTypeRef double_type;
   LLVMValueRef t0, t1, t2, t3;

   double_type_lp.length >>= 1;
   double_type_lp.width  <<= 1;

   double_type = lp_build_vec_type(gallivm, double_type_lp);
   single_type = lp_build_vec_type(gallivm, single_type_lp);

   /* Interleave x, y, z, w -> xy and zw */
   t0 = lp_build_interleave2_half(gallivm, single_type_lp, src[0], src[1], 0);
   t1 = lp_build_interleave2_half(gallivm, single_type_lp, src[2], src[3], 0);
   t2 = lp_build_interleave2_half(gallivm, single_type_lp, src[0], src[1], 1);
   t3 = lp_build_interleave2_half(gallivm, single_type_lp, src[2], src[3], 1);

   /* Cast to double width type for second interleave */
   t0 = LLVMBuildBitCast(gallivm->builder, t0, double_type, "t0");
   t1 = LLVMBuildBitCast(gallivm->builder, t1, double_type, "t1");
   t2 = LLVMBuildBitCast(gallivm->builder, t2, double_type, "t2");
   t3 = LLVMBuildBitCast(gallivm->builder, t3, double_type, "t3");

   /* Interleave xy, zw -> xyzw */
   dst[0] = lp_build_interleave2_half(gallivm, double_type_lp, t0, t1, 0);
   dst[1] = lp_build_interleave2_half(gallivm, double_type_lp, t0, t1, 1);
   dst[2] = lp_build_interleave2_half(gallivm, double_type_lp, t2, t3, 0);
   dst[3] = lp_build_interleave2_half(gallivm, double_type_lp, t2, t3, 1);

   /* Cast back to original single width type */
   dst[0] = LLVMBuildBitCast(gallivm->builder, dst[0], single_type, "dst0");
   dst[1] = LLVMBuildBitCast(gallivm->builder, dst[1], single_type, "dst1");
   dst[2] = LLVMBuildBitCast(gallivm->builder, dst[2], single_type, "dst2");
   dst[3] = LLVMBuildBitCast(gallivm->builder, dst[3], single_type, "dst3");
}


/**
 * Transpose from AOS <-> SOA for num_srcs
 */
void
lp_build_transpose_aos_n(struct gallivm_state *gallivm,
                         struct lp_type type,
                         const LLVMValueRef* src,
                         unsigned num_srcs,
                         LLVMValueRef* dst)
{
   switch (num_srcs) {
      case 1:
         dst[0] = src[0];
         break;

      case 2:
      {
         /* Note: we must use a temporary incase src == dst */
         LLVMValueRef lo, hi;

         lo = lp_build_interleave2_half(gallivm, type, src[0], src[1], 0);
         hi = lp_build_interleave2_half(gallivm, type, src[0], src[1], 1);

         dst[0] = lo;
         dst[1] = hi;
         break;
      }

      case 4:
         lp_build_transpose_aos(gallivm, type, src, dst);
         break;

      default:
         assert(0);
   }
}


/**
 * Pack n-th element of aos values,
 * pad out to destination size.
 * i.e. x1 y1 _ _ x2 y2 _ _ will become x1 x2 _ _
 */
LLVMValueRef
lp_build_pack_aos_scalars(struct gallivm_state *gallivm,
                          struct lp_type src_type,
                          struct lp_type dst_type,
                          const LLVMValueRef src,
                          unsigned channel)
{
   LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
   LLVMValueRef undef = LLVMGetUndef(i32t);
   LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
   unsigned num_src = src_type.length / 4;
   unsigned num_dst = dst_type.length;
   unsigned i;

   assert(num_src <= num_dst);

   for (i = 0; i < num_src; i++) {
      shuffles[i] = LLVMConstInt(i32t, i * 4 + channel, 0);
   }
   for (i = num_src; i < num_dst; i++) {
      shuffles[i] = undef;
   }

   if (num_dst == 1) {
      return LLVMBuildExtractElement(gallivm->builder, src, shuffles[0], "");
   }
   else {
      return LLVMBuildShuffleVector(gallivm->builder, src, src,
                                    LLVMConstVector(shuffles, num_dst), "");
   }
}


/**
 * Unpack and broadcast packed aos values consisting of only the
 * first value, i.e. x1 x2 _ _ will become x1 x1 x1 x1 x2 x2 x2 x2
 */
LLVMValueRef
lp_build_unpack_broadcast_aos_scalars(struct gallivm_state *gallivm,
                                      struct lp_type src_type,
                                      struct lp_type dst_type,
                                      const LLVMValueRef src)
{
   LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
   LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
   unsigned num_dst = dst_type.length;
   unsigned num_src = dst_type.length / 4;
   unsigned i;

   assert(num_dst / 4 <= src_type.length);

   for (i = 0; i < num_src; i++) {
      shuffles[i*4] = LLVMConstInt(i32t, i, 0);
      shuffles[i*4+1] = LLVMConstInt(i32t, i, 0);
      shuffles[i*4+2] = LLVMConstInt(i32t, i, 0);
      shuffles[i*4+3] = LLVMConstInt(i32t, i, 0);
   }

   if (num_src == 1) {
      return lp_build_extract_broadcast(gallivm, src_type, dst_type,
                                        src, shuffles[0]);
   }
   else {
      return LLVMBuildShuffleVector(gallivm->builder, src, src,
                                    LLVMConstVector(shuffles, num_dst), "");
   }
}