1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
|
/**************************************************************************
*
* Copyright 2013 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* Format conversion code for srgb formats.
*
* Functions for converting from srgb to linear and vice versa.
* From http://www.opengl.org/registry/specs/EXT/texture_sRGB.txt:
*
* srgb->linear:
* cl = cs / 12.92, cs <= 0.04045
* cl = ((cs + 0.055)/1.055)^2.4, cs > 0.04045
*
* linear->srgb:
* if (isnan(cl)) {
* Map IEEE-754 Not-a-number to zero.
* cs = 0.0;
* } else if (cl > 1.0) {
* cs = 1.0;
* } else if (cl < 0.0) {
* cs = 0.0;
* } else if (cl < 0.0031308) {
* cs = 12.92 * cl;
* } else {
* cs = 1.055 * pow(cl, 0.41666) - 0.055;
* }
*
* This does not need to be accurate, however at least for d3d10
* (http://msdn.microsoft.com/en-us/library/windows/desktop/dd607323%28v=vs.85%29.aspx):
* 1) For srgb->linear, it is required that the error on the srgb side is
* not larger than 0.5f, which I interpret that if you map the value back
* to srgb from linear using the ideal conversion, it would not be off by
* more than 0.5f (that is, it would map to the same 8-bit integer value
* as it was before conversion to linear).
* 2) linear->srgb is permitted 0.6f which luckily looks like quite a large
* error is allowed.
* 3) Additionally, all srgb values converted to linear and back must result
* in the same value as they were originally.
*
* @author Roland Scheidegger <sroland@vmware.com>
*/
#include "util/u_debug.h"
#include "lp_bld_type.h"
#include "lp_bld_const.h"
#include "lp_bld_arit.h"
#include "lp_bld_bitarit.h"
#include "lp_bld_logic.h"
#include "lp_bld_format.h"
/**
* Convert srgb int values to linear float values.
* Several possibilities how to do this, e.g.
* - table
* - doing the pow() with int-to-float and float-to-int tricks
* (http://stackoverflow.com/questions/6475373/optimizations-for-pow-with-const-non-integer-exponent)
* - just using standard polynomial approximation
* (3rd order polynomial is required for crappy but just sufficient accuracy)
*
* @param src integer (vector) value(s) to convert
* (chan_bits bit values unpacked to 32 bit already).
*/
LLVMValueRef
lp_build_srgb_to_linear(struct gallivm_state *gallivm,
struct lp_type src_type,
unsigned chan_bits,
LLVMValueRef src)
{
struct lp_type f32_type = lp_type_float_vec(32, src_type.length * 32);
struct lp_build_context f32_bld;
LLVMValueRef srcf, part_lin, part_pow, is_linear, lin_const, lin_thresh;
double coeffs[4] = {0.0023f,
0.0030f / 255.0f,
0.6935f / (255.0f * 255.0f),
0.3012f / (255.0f * 255.0f * 255.0f)
};
assert(src_type.width == 32);
/* Technically this would work with more bits too but would be inaccurate. */
assert(chan_bits <= 8);
lp_build_context_init(&f32_bld, gallivm, f32_type);
/*
* using polynomial: (src * (src * (src * 0.3012 + 0.6935) + 0.0030) + 0.0023)
* ( poly = 0.3012*x^3 + 0.6935*x^2 + 0.0030*x + 0.0023)
* (found with octave polyfit and some magic as I couldn't get the error
* function right). Using the above mentioned error function, the values stay
* within +-0.35, except for the lowest values - hence tweaking linear segment
* to cover the first 16 instead of the first 11 values (the error stays
* just about acceptable there too).
* Hence: lin = src > 15 ? poly : src / 12.6
* This function really only makes sense for vectors, should use LUT otherwise.
* All in all (including float conversion) 11 instructions (with sse4.1),
* 6 constants (polynomial could be done with 1 instruction less at the cost
* of slightly worse dependency chain, fma should also help).
*/
/* doing the 1/255 mul as part of the approximation */
srcf = lp_build_int_to_float(&f32_bld, src);
if (chan_bits != 8) {
/* could adjust all the constants instead */
LLVMValueRef rescale_const = lp_build_const_vec(gallivm, f32_type,
255.0f / ((1 << chan_bits) - 1));
srcf = lp_build_mul(&f32_bld, srcf, rescale_const);
}
lin_const = lp_build_const_vec(gallivm, f32_type, 1.0f / (12.6f * 255.0f));
part_lin = lp_build_mul(&f32_bld, srcf, lin_const);
part_pow = lp_build_polynomial(&f32_bld, srcf, coeffs, 4);
lin_thresh = lp_build_const_vec(gallivm, f32_type, 15.0f);
is_linear = lp_build_compare(gallivm, f32_type, PIPE_FUNC_LEQUAL, srcf, lin_thresh);
return lp_build_select(&f32_bld, is_linear, part_lin, part_pow);
}
/**
* Convert linear float values to srgb int values.
* Several possibilities how to do this, e.g.
* - use table (based on exponent/highest order mantissa bits) and do
* linear interpolation (https://gist.github.com/rygorous/2203834)
* - Chebyshev polynomial
* - Approximation using reciprocals
* - using int-to-float and float-to-int tricks for pow()
* (http://stackoverflow.com/questions/6475373/optimizations-for-pow-with-const-non-integer-exponent)
*
* @param src float (vector) value(s) to convert.
*/
static LLVMValueRef
lp_build_linear_to_srgb(struct gallivm_state *gallivm,
struct lp_type src_type,
unsigned chan_bits,
LLVMValueRef src)
{
LLVMBuilderRef builder = gallivm->builder;
struct lp_build_context f32_bld;
LLVMValueRef lin_thresh, lin, lin_const, is_linear, tmp, pow_final;
lp_build_context_init(&f32_bld, gallivm, src_type);
src = lp_build_clamp(&f32_bld, src, f32_bld.zero, f32_bld.one);
if (0) {
/*
* using int-to-float and float-to-int trick for pow().
* This is much more accurate than necessary thanks to the correction,
* but it most certainly makes no sense without rsqrt available.
* Bonus points if you understand how this works...
* All in all (including min/max clamp, conversion) 19 instructions.
*/
float exp_f = 2.0f / 3.0f;
/* some compilers can't do exp2f, so this is exp2f(127.0f/exp_f - 127.0f) */
float exp2f_c = 1.30438178253e+19f;
float coeff_f = 0.62996f;
LLVMValueRef pow_approx, coeff, x2, exponent, pow_1, pow_2;
struct lp_type int_type = lp_int_type(src_type);
/*
* First calculate approx x^8/12
*/
exponent = lp_build_const_vec(gallivm, src_type, exp_f);
coeff = lp_build_const_vec(gallivm, src_type,
exp2f_c * powf(coeff_f, 1.0f / exp_f));
/* premultiply src */
tmp = lp_build_mul(&f32_bld, coeff, src);
/* "log2" */
tmp = LLVMBuildBitCast(builder, tmp, lp_build_vec_type(gallivm, int_type), "");
tmp = lp_build_int_to_float(&f32_bld, tmp);
/* multiply for pow */
tmp = lp_build_mul(&f32_bld, tmp, exponent);
/* "exp2" */
pow_approx = lp_build_itrunc(&f32_bld, tmp);
pow_approx = LLVMBuildBitCast(builder, pow_approx,
lp_build_vec_type(gallivm, src_type), "");
/*
* Since that pow was inaccurate (like 3 bits, though each sqrt step would
* give another bit), compensate the error (which is why we chose another
* exponent in the first place).
*/
/* x * x^(8/12) = x^(20/12) */
pow_1 = lp_build_mul(&f32_bld, pow_approx, src);
/* x * x * x^(-4/12) = x^(20/12) */
/* Should avoid using rsqrt if it's not available, but
* using x * x^(4/12) * x^(4/12) instead will change error weight */
tmp = lp_build_fast_rsqrt(&f32_bld, pow_approx);
x2 = lp_build_mul(&f32_bld, src, src);
pow_2 = lp_build_mul(&f32_bld, x2, tmp);
/* average the values so the errors cancel out, compensate bias,
* we also squeeze the 1.055 mul of the srgb conversion plus the 255.0 mul
* for conversion to int in here */
tmp = lp_build_add(&f32_bld, pow_1, pow_2);
coeff = lp_build_const_vec(gallivm, src_type,
1.0f / (3.0f * coeff_f) * 0.999852f *
powf(1.055f * 255.0f, 4.0f));
pow_final = lp_build_mul(&f32_bld, tmp, coeff);
/* x^(5/12) = rsqrt(rsqrt(x^20/12)) */
if (lp_build_fast_rsqrt_available(src_type)) {
pow_final = lp_build_fast_rsqrt(&f32_bld,
lp_build_fast_rsqrt(&f32_bld, pow_final));
}
else {
pow_final = lp_build_sqrt(&f32_bld, lp_build_sqrt(&f32_bld, pow_final));
}
pow_final = lp_build_add(&f32_bld, pow_final,
lp_build_const_vec(gallivm, src_type, -0.055f * 255.0f));
}
else {
/*
* using "rational polynomial" approximation here.
* Essentially y = a*x^0.375 + b*x^0.5 + c, with also
* factoring in the 255.0 mul and the scaling mul.
* (a is closer to actual value so has higher weight than b.)
* Note: the constants are magic values. They were found empirically,
* possibly could be improved but good enough (be VERY careful with
* error metric if you'd want to tweak them, they also MUST fit with
* the crappy polynomial above for srgb->linear since it is required
* that each srgb value maps back to the same value).
* This function has an error of max +-0.17. Not sure this is actually
* enough, we require +-0.6 but that may include the +-0.5 from integer
* conversion. Seems to pass all relevant tests though...
* For the approximated srgb->linear values the error is naturally larger
* (+-0.42) but still accurate enough (required +-0.5 essentially).
* All in all (including min/max clamp, conversion) 15 instructions.
* FMA would help (minus 2 instructions).
*/
LLVMValueRef x05, x0375, a_const, b_const, c_const, tmp2;
if (lp_build_fast_rsqrt_available(src_type)) {
tmp = lp_build_fast_rsqrt(&f32_bld, src);
x05 = lp_build_mul(&f32_bld, src, tmp);
}
else {
/*
* I don't really expect this to be practical without rsqrt
* but there's no reason for triple punishment so at least
* save the otherwise resulting division and unnecessary mul...
*/
x05 = lp_build_sqrt(&f32_bld, src);
}
tmp = lp_build_mul(&f32_bld, x05, src);
if (lp_build_fast_rsqrt_available(src_type)) {
x0375 = lp_build_fast_rsqrt(&f32_bld, lp_build_fast_rsqrt(&f32_bld, tmp));
}
else {
x0375 = lp_build_sqrt(&f32_bld, lp_build_sqrt(&f32_bld, tmp));
}
a_const = lp_build_const_vec(gallivm, src_type, 0.675f * 1.0622 * 255.0f);
b_const = lp_build_const_vec(gallivm, src_type, 0.325f * 1.0622 * 255.0f);
c_const = lp_build_const_vec(gallivm, src_type, -0.0620f * 255.0f);
tmp = lp_build_mul(&f32_bld, a_const, x0375);
tmp2 = lp_build_mad(&f32_bld, b_const, x05, c_const);
pow_final = lp_build_add(&f32_bld, tmp, tmp2);
}
/* linear part is easy */
lin_const = lp_build_const_vec(gallivm, src_type, 12.92f * 255.0f);
lin = lp_build_mul(&f32_bld, src, lin_const);
lin_thresh = lp_build_const_vec(gallivm, src_type, 0.0031308f);
is_linear = lp_build_compare(gallivm, src_type, PIPE_FUNC_LEQUAL, src, lin_thresh);
tmp = lp_build_select(&f32_bld, is_linear, lin, pow_final);
if (chan_bits != 8) {
/* could adjust all the constants instead */
LLVMValueRef rescale_const = lp_build_const_vec(gallivm, src_type,
((1 << chan_bits) - 1) / 255.0f);
tmp = lp_build_mul(&f32_bld, tmp, rescale_const);
}
f32_bld.type.sign = 0;
return lp_build_iround(&f32_bld, tmp);
}
/**
* Convert linear float soa values to packed srgb AoS values.
* This only handles packed formats which are 4x8bit in size
* (rgba and rgbx plus swizzles), and 16bit 565-style formats
* with no alpha. (In the latter case the return values won't be
* fully packed, it will look like r5g6b5x16r5g6b5x16...)
*
* @param src float SoA (vector) values to convert.
*/
LLVMValueRef
lp_build_float_to_srgb_packed(struct gallivm_state *gallivm,
const struct util_format_description *dst_fmt,
struct lp_type src_type,
LLVMValueRef *src)
{
LLVMBuilderRef builder = gallivm->builder;
unsigned chan;
struct lp_build_context f32_bld;
struct lp_type int32_type = lp_int_type(src_type);
LLVMValueRef tmpsrgb[4], alpha, dst;
lp_build_context_init(&f32_bld, gallivm, src_type);
/* rgb is subject to linear->srgb conversion, alpha is not */
for (chan = 0; chan < 3; chan++) {
unsigned chan_bits = dst_fmt->channel[dst_fmt->swizzle[chan]].size;
tmpsrgb[chan] = lp_build_linear_to_srgb(gallivm, src_type, chan_bits, src[chan]);
}
/*
* can't use lp_build_conv since we want to keep values as 32bit
* here so we can interleave with rgb to go from SoA->AoS.
*/
alpha = lp_build_clamp_zero_one_nanzero(&f32_bld, src[3]);
alpha = lp_build_mul(&f32_bld, alpha,
lp_build_const_vec(gallivm, src_type, 255.0f));
tmpsrgb[3] = lp_build_iround(&f32_bld, alpha);
dst = lp_build_zero(gallivm, int32_type);
for (chan = 0; chan < dst_fmt->nr_channels; chan++) {
if (dst_fmt->swizzle[chan] <= PIPE_SWIZZLE_W) {
unsigned ls;
LLVMValueRef shifted, shift_val;
ls = dst_fmt->channel[dst_fmt->swizzle[chan]].shift;
shift_val = lp_build_const_int_vec(gallivm, int32_type, ls);
shifted = LLVMBuildShl(builder, tmpsrgb[chan], shift_val, "");
dst = LLVMBuildOr(builder, dst, shifted, "");
}
}
return dst;
}
|