1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
|
/**************************************************************************
*
* Copyright 2009 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include "pipe/p_defines.h"
#include "util/u_format.h"
#include "util/u_memory.h"
#include "util/u_string.h"
#include "util/u_math.h"
#include "lp_bld_type.h"
#include "lp_bld_const.h"
#include "lp_bld_conv.h"
#include "lp_bld_swizzle.h"
#include "lp_bld_gather.h"
#include "lp_bld_debug.h"
#include "lp_bld_format.h"
#include "lp_bld_arit.h"
#include "lp_bld_pack.h"
static void
convert_to_soa(struct gallivm_state *gallivm,
LLVMValueRef src_aos[LP_MAX_VECTOR_WIDTH / 32],
LLVMValueRef dst_soa[4],
const struct lp_type soa_type)
{
unsigned j, k;
struct lp_type aos_channel_type = soa_type;
LLVMValueRef aos_channels[4];
unsigned pixels_per_channel = soa_type.length / 4;
debug_assert((soa_type.length % 4) == 0);
aos_channel_type.length >>= 1;
for (j = 0; j < 4; ++j) {
LLVMValueRef channel[LP_MAX_VECTOR_LENGTH] = { 0 };
assert(pixels_per_channel <= LP_MAX_VECTOR_LENGTH);
for (k = 0; k < pixels_per_channel; ++k) {
channel[k] = src_aos[j + 4 * k];
}
aos_channels[j] = lp_build_concat(gallivm, channel, aos_channel_type, pixels_per_channel);
}
lp_build_transpose_aos(gallivm, soa_type, aos_channels, dst_soa);
}
void
lp_build_format_swizzle_soa(const struct util_format_description *format_desc,
struct lp_build_context *bld,
const LLVMValueRef *unswizzled,
LLVMValueRef swizzled_out[4])
{
if (format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS) {
enum pipe_swizzle swizzle;
LLVMValueRef depth_or_stencil;
if (util_format_has_stencil(format_desc) &&
!util_format_has_depth(format_desc)) {
assert(!bld->type.floating);
swizzle = format_desc->swizzle[1];
}
else {
assert(bld->type.floating);
swizzle = format_desc->swizzle[0];
}
/*
* Return zzz1 or sss1 for depth-stencil formats here.
* Correct swizzling will be handled by apply_sampler_swizzle() later.
*/
depth_or_stencil = lp_build_swizzle_soa_channel(bld, unswizzled, swizzle);
swizzled_out[2] = swizzled_out[1] = swizzled_out[0] = depth_or_stencil;
swizzled_out[3] = bld->one;
}
else {
unsigned chan;
for (chan = 0; chan < 4; ++chan) {
enum pipe_swizzle swizzle = format_desc->swizzle[chan];
swizzled_out[chan] = lp_build_swizzle_soa_channel(bld, unswizzled, swizzle);
}
}
}
static LLVMValueRef
lp_build_extract_soa_chan(struct lp_build_context *bld,
unsigned blockbits,
boolean srgb_chan,
struct util_format_channel_description chan_desc,
LLVMValueRef packed)
{
struct gallivm_state *gallivm = bld->gallivm;
LLVMBuilderRef builder = gallivm->builder;
struct lp_type type = bld->type;
LLVMValueRef input = packed;
const unsigned width = chan_desc.size;
const unsigned start = chan_desc.shift;
const unsigned stop = start + width;
/* Decode the input vector component */
switch(chan_desc.type) {
case UTIL_FORMAT_TYPE_VOID:
input = bld->undef;
break;
case UTIL_FORMAT_TYPE_UNSIGNED:
/*
* Align the LSB
*/
if (start) {
input = LLVMBuildLShr(builder, input,
lp_build_const_int_vec(gallivm, type, start), "");
}
/*
* Zero the MSBs
*/
if (stop < blockbits) {
unsigned mask = ((unsigned long long)1 << width) - 1;
input = LLVMBuildAnd(builder, input,
lp_build_const_int_vec(gallivm, type, mask), "");
}
/*
* Type conversion
*/
if (type.floating) {
if (srgb_chan) {
struct lp_type conv_type = lp_uint_type(type);
input = lp_build_srgb_to_linear(gallivm, conv_type, width, input);
}
else {
if(chan_desc.normalized)
input = lp_build_unsigned_norm_to_float(gallivm, width, type, input);
else
input = LLVMBuildSIToFP(builder, input, bld->vec_type, "");
}
}
else if (chan_desc.pure_integer) {
/* Nothing to do */
} else {
/* FIXME */
assert(0);
}
break;
case UTIL_FORMAT_TYPE_SIGNED:
/*
* Align the sign bit first.
*/
if (stop < type.width) {
unsigned bits = type.width - stop;
LLVMValueRef bits_val = lp_build_const_int_vec(gallivm, type, bits);
input = LLVMBuildShl(builder, input, bits_val, "");
}
/*
* Align the LSB (with an arithmetic shift to preserve the sign)
*/
if (chan_desc.size < type.width) {
unsigned bits = type.width - chan_desc.size;
LLVMValueRef bits_val = lp_build_const_int_vec(gallivm, type, bits);
input = LLVMBuildAShr(builder, input, bits_val, "");
}
/*
* Type conversion
*/
if (type.floating) {
input = LLVMBuildSIToFP(builder, input, bld->vec_type, "");
if (chan_desc.normalized) {
double scale = 1.0 / ((1 << (chan_desc.size - 1)) - 1);
LLVMValueRef scale_val = lp_build_const_vec(gallivm, type, scale);
input = LLVMBuildFMul(builder, input, scale_val, "");
/*
* The formula above will produce value below -1.0 for most negative
* value but everything seems happy with that hence disable for now.
*/
if (0)
input = lp_build_max(bld, input,
lp_build_const_vec(gallivm, type, -1.0f));
}
}
else if (chan_desc.pure_integer) {
/* Nothing to do */
} else {
/* FIXME */
assert(0);
}
break;
case UTIL_FORMAT_TYPE_FLOAT:
if (type.floating) {
if (chan_desc.size == 16) {
struct lp_type f16i_type = type;
f16i_type.width /= 2;
f16i_type.floating = 0;
if (start) {
input = LLVMBuildLShr(builder, input,
lp_build_const_int_vec(gallivm, type, start), "");
}
input = LLVMBuildTrunc(builder, input,
lp_build_vec_type(gallivm, f16i_type), "");
input = lp_build_half_to_float(gallivm, input);
} else {
assert(start == 0);
assert(stop == 32);
assert(type.width == 32);
}
input = LLVMBuildBitCast(builder, input, bld->vec_type, "");
}
else {
/* FIXME */
assert(0);
input = bld->undef;
}
break;
case UTIL_FORMAT_TYPE_FIXED:
if (type.floating) {
double scale = 1.0 / ((1 << (chan_desc.size/2)) - 1);
LLVMValueRef scale_val = lp_build_const_vec(gallivm, type, scale);
input = LLVMBuildSIToFP(builder, input, bld->vec_type, "");
input = LLVMBuildFMul(builder, input, scale_val, "");
}
else {
/* FIXME */
assert(0);
input = bld->undef;
}
break;
default:
assert(0);
input = bld->undef;
break;
}
return input;
}
/**
* Unpack several pixels in SoA.
*
* It takes a vector of packed pixels:
*
* packed = {P0, P1, P2, P3, ..., Pn}
*
* And will produce four vectors:
*
* red = {R0, R1, R2, R3, ..., Rn}
* green = {G0, G1, G2, G3, ..., Gn}
* blue = {B0, B1, B2, B3, ..., Bn}
* alpha = {A0, A1, A2, A3, ..., An}
*
* It requires that a packed pixel fits into an element of the output
* channels. The common case is when converting pixel with a depth of 32 bit or
* less into floats.
*
* \param format_desc the format of the 'packed' incoming pixel vector
* \param type the desired type for rgba_out (type.length = n, above)
* \param packed the incoming vector of packed pixels
* \param rgba_out returns the SoA R,G,B,A vectors
*/
void
lp_build_unpack_rgba_soa(struct gallivm_state *gallivm,
const struct util_format_description *format_desc,
struct lp_type type,
LLVMValueRef packed,
LLVMValueRef rgba_out[4])
{
struct lp_build_context bld;
LLVMValueRef inputs[4];
unsigned chan;
assert(format_desc->layout == UTIL_FORMAT_LAYOUT_PLAIN);
assert(format_desc->block.width == 1);
assert(format_desc->block.height == 1);
assert(format_desc->block.bits <= type.width);
/* FIXME: Support more output types */
assert(type.width == 32);
lp_build_context_init(&bld, gallivm, type);
/* Decode the input vector components */
for (chan = 0; chan < format_desc->nr_channels; ++chan) {
struct util_format_channel_description chan_desc = format_desc->channel[chan];
boolean srgb_chan = FALSE;
if (format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB &&
format_desc->swizzle[3] != chan) {
srgb_chan = TRUE;
}
inputs[chan] = lp_build_extract_soa_chan(&bld,
format_desc->block.bits,
srgb_chan,
chan_desc,
packed);
}
lp_build_format_swizzle_soa(format_desc, &bld, inputs, rgba_out);
}
/**
* Convert a vector of rgba8 values into 32bit wide SoA vectors.
*
* \param dst_type The desired return type. For pure integer formats
* this should be a 32bit wide int or uint vector type,
* otherwise a float vector type.
*
* \param packed The rgba8 values to pack.
*
* \param rgba The 4 SoA return vectors.
*/
void
lp_build_rgba8_to_fi32_soa(struct gallivm_state *gallivm,
struct lp_type dst_type,
LLVMValueRef packed,
LLVMValueRef *rgba)
{
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef mask = lp_build_const_int_vec(gallivm, dst_type, 0xff);
unsigned chan;
/* XXX technically shouldn't use that for uint dst_type */
packed = LLVMBuildBitCast(builder, packed,
lp_build_int_vec_type(gallivm, dst_type), "");
/* Decode the input vector components */
for (chan = 0; chan < 4; ++chan) {
#ifdef PIPE_ARCH_LITTLE_ENDIAN
unsigned start = chan*8;
#else
unsigned start = (3-chan)*8;
#endif
unsigned stop = start + 8;
LLVMValueRef input;
input = packed;
if (start)
input = LLVMBuildLShr(builder, input,
lp_build_const_int_vec(gallivm, dst_type, start), "");
if (stop < 32)
input = LLVMBuildAnd(builder, input, mask, "");
if (dst_type.floating)
input = lp_build_unsigned_norm_to_float(gallivm, 8, dst_type, input);
rgba[chan] = input;
}
}
/**
* Fetch a texels from a texture, returning them in SoA layout.
*
* \param type the desired return type for 'rgba'. The vector length
* is the number of texels to fetch
* \param aligned if the offset is guaranteed to be aligned to element width
*
* \param base_ptr points to the base of the texture mip tree.
* \param offset offset to start of the texture image block. For non-
* compressed formats, this simply is an offset to the texel.
* For compressed formats, it is an offset to the start of the
* compressed data block.
*
* \param i, j the sub-block pixel coordinates. For non-compressed formats
* these will always be (0,0). For compressed formats, i will
* be in [0, block_width-1] and j will be in [0, block_height-1].
* \param cache optional value pointing to a lp_build_format_cache structure
*/
void
lp_build_fetch_rgba_soa(struct gallivm_state *gallivm,
const struct util_format_description *format_desc,
struct lp_type type,
boolean aligned,
LLVMValueRef base_ptr,
LLVMValueRef offset,
LLVMValueRef i,
LLVMValueRef j,
LLVMValueRef cache,
LLVMValueRef rgba_out[4])
{
LLVMBuilderRef builder = gallivm->builder;
enum pipe_format format = format_desc->format;
struct lp_type fetch_type;
if (format_desc->layout == UTIL_FORMAT_LAYOUT_PLAIN &&
(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB ||
format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS) &&
format_desc->block.width == 1 &&
format_desc->block.height == 1 &&
format_desc->block.bits <= type.width &&
(format_desc->channel[0].type != UTIL_FORMAT_TYPE_FLOAT ||
format_desc->channel[0].size == 32 ||
format_desc->channel[0].size == 16))
{
/*
* The packed pixel fits into an element of the destination format. Put
* the packed pixels into a vector and extract each component for all
* vector elements in parallel.
*/
LLVMValueRef packed;
/*
* gather the texels from the texture
* Ex: packed = {XYZW, XYZW, XYZW, XYZW}
*/
assert(format_desc->block.bits <= type.width);
fetch_type = lp_type_uint(type.width);
packed = lp_build_gather(gallivm,
type.length,
format_desc->block.bits,
fetch_type,
aligned,
base_ptr, offset, FALSE);
/*
* convert texels to float rgba
*/
lp_build_unpack_rgba_soa(gallivm,
format_desc,
type,
packed, rgba_out);
return;
}
if (format_desc->layout == UTIL_FORMAT_LAYOUT_PLAIN &&
(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB) &&
format_desc->block.width == 1 &&
format_desc->block.height == 1 &&
format_desc->block.bits > type.width &&
((format_desc->block.bits <= type.width * type.length &&
format_desc->channel[0].size <= type.width) ||
(format_desc->channel[0].size == 64 &&
format_desc->channel[0].type == UTIL_FORMAT_TYPE_FLOAT &&
type.floating)))
{
/*
* Similar to above, but the packed pixel is larger than what fits
* into an element of the destination format. The packed pixels will be
* shuffled into SoA vectors appropriately, and then the extraction will
* be done in parallel as much as possible.
* Good for 16xn (n > 2) and 32xn (n > 1) formats, care is taken so
* the gathered vectors can be shuffled easily (even with avx).
* 64xn float -> 32xn float is handled too but it's a bit special as
* it does the conversion pre-shuffle.
*/
LLVMValueRef packed[4], dst[4], output[4], shuffles[LP_MAX_VECTOR_WIDTH/32];
struct lp_type fetch_type, gather_type = type;
unsigned num_gather, fetch_width, i, j;
struct lp_build_context bld;
boolean fp64 = format_desc->channel[0].size == 64;
lp_build_context_init(&bld, gallivm, type);
assert(type.width == 32);
assert(format_desc->block.bits > type.width);
/*
* First, figure out fetch order.
*/
fetch_width = util_next_power_of_two(format_desc->block.bits);
/*
* fp64 are treated like fp32 except we fetch twice wide values
* (as we shuffle after trunc). The shuffles for that work out
* mostly fine (slightly suboptimal for 4-wide, perfect for AVX)
* albeit we miss the potential opportunity for hw gather (as it
* only handles native size).
*/
num_gather = fetch_width / type.width;
gather_type.width *= num_gather;
if (fp64) {
num_gather /= 2;
}
gather_type.length /= num_gather;
for (i = 0; i < num_gather; i++) {
LLVMValueRef offsetr, shuf_vec;
if(num_gather == 4) {
for (j = 0; j < gather_type.length; j++) {
unsigned idx = i + 4*j;
shuffles[j] = lp_build_const_int32(gallivm, idx);
}
shuf_vec = LLVMConstVector(shuffles, gather_type.length);
offsetr = LLVMBuildShuffleVector(builder, offset, offset, shuf_vec, "");
}
else if (num_gather == 2) {
assert(num_gather == 2);
for (j = 0; j < gather_type.length; j++) {
unsigned idx = i*2 + (j%2) + (j/2)*4;
shuffles[j] = lp_build_const_int32(gallivm, idx);
}
shuf_vec = LLVMConstVector(shuffles, gather_type.length);
offsetr = LLVMBuildShuffleVector(builder, offset, offset, shuf_vec, "");
}
else {
assert(num_gather == 1);
offsetr = offset;
}
if (gather_type.length == 1) {
LLVMValueRef zero = lp_build_const_int32(gallivm, 0);
offsetr = LLVMBuildExtractElement(builder, offsetr, zero, "");
}
/*
* Determine whether to use float or int loads. This is mostly
* to outsmart the (stupid) llvm int/float shuffle logic, we
* don't really care much if the data is floats or ints...
* But llvm will refuse to use single float shuffle with int data
* and instead use 3 int shuffles instead, the code looks atrocious.
* (Note bitcasts often won't help, as llvm is too smart to be
* fooled by that.)
* Nobody cares about simd float<->int domain transition penalties,
* which usually don't even exist for shuffles anyway.
* With 4x32bit (and 3x32bit) fetch, we use float vec (the data is
* going into transpose, which is unpacks, so doesn't really matter
* much).
* With 2x32bit or 4x16bit fetch, we use float vec, since those
* go into the weird channel separation shuffle. With floats,
* this is (with 128bit vectors):
* - 2 movq, 2 movhpd, 2 shufps
* With ints it would be:
* - 4 movq, 2 punpcklqdq, 4 pshufd, 2 blendw
* I've seen texture functions increase in code size by 15% just due
* to that (there's lots of such fetches in them...)
* (We could chose a different gather order to improve this somewhat
* for the int path, but it would basically just drop the blends,
* so the float path with this order really is optimal.)
* Albeit it is tricky sometimes llvm doesn't ignore the float->int
* casts so must avoid them until we're done with the float shuffle...
* 3x16bit formats (the same is also true for 3x8) are pretty bad but
* there's nothing we can do about them (we could overallocate by
* those couple bytes and use unaligned but pot sized load).
* Note that this is very much x86 specific. I don't know if this
* affect other archs at all.
*/
if (num_gather > 1) {
/*
* We always want some float type here (with x86)
* due to shuffles being float ones afterwards (albeit for
* the num_gather == 4 case int should work fine too
* (unless there's some problems with avx but not avx2).
*/
if (format_desc->channel[0].size == 64) {
fetch_type = lp_type_float_vec(64, gather_type.width);
} else {
fetch_type = lp_type_int_vec(32, gather_type.width);
}
}
else {
/* type doesn't matter much */
if (format_desc->channel[0].type == UTIL_FORMAT_TYPE_FLOAT &&
(format_desc->channel[0].size == 32 ||
format_desc->channel[0].size == 64)) {
fetch_type = lp_type_float(gather_type.width);
} else {
fetch_type = lp_type_uint(gather_type.width);
}
}
/* Now finally gather the values */
packed[i] = lp_build_gather(gallivm, gather_type.length,
format_desc->block.bits,
fetch_type, aligned,
base_ptr, offsetr, FALSE);
if (fp64) {
struct lp_type conv_type = type;
conv_type.width *= 2;
packed[i] = LLVMBuildBitCast(builder, packed[i],
lp_build_vec_type(gallivm, conv_type), "");
packed[i] = LLVMBuildFPTrunc(builder, packed[i], bld.vec_type, "");
}
}
/* shuffle the gathered values to SoA */
if (num_gather == 2) {
for (i = 0; i < num_gather; i++) {
for (j = 0; j < type.length; j++) {
unsigned idx = (j%2)*2 + (j/4)*4 + i;
if ((j/2)%2)
idx += type.length;
shuffles[j] = lp_build_const_int32(gallivm, idx);
}
dst[i] = LLVMBuildShuffleVector(builder, packed[0], packed[1],
LLVMConstVector(shuffles, type.length), "");
}
}
else if (num_gather == 4) {
lp_build_transpose_aos(gallivm, lp_int_type(type), packed, dst);
}
else {
assert(num_gather == 1);
dst[0] = packed[0];
}
/*
* And finally unpack exactly as above, except that
* chan shift is adjusted and the right vector selected.
*/
if (!fp64) {
for (i = 0; i < num_gather; i++) {
dst[i] = LLVMBuildBitCast(builder, dst[i], bld.int_vec_type, "");
}
for (i = 0; i < format_desc->nr_channels; i++) {
struct util_format_channel_description chan_desc = format_desc->channel[i];
unsigned blockbits = type.width;
unsigned vec_nr = chan_desc.shift / type.width;
chan_desc.shift %= type.width;
output[i] = lp_build_extract_soa_chan(&bld,
blockbits,
FALSE,
chan_desc,
dst[vec_nr]);
}
}
else {
for (i = 0; i < format_desc->nr_channels; i++) {
output[i] = dst[i];
}
}
lp_build_format_swizzle_soa(format_desc, &bld, output, rgba_out);
return;
}
if (format == PIPE_FORMAT_R11G11B10_FLOAT ||
format == PIPE_FORMAT_R9G9B9E5_FLOAT) {
/*
* similar conceptually to above but requiring special
* AoS packed -> SoA float conversion code.
*/
LLVMValueRef packed;
struct lp_type fetch_type = lp_type_uint(type.width);
assert(type.floating);
assert(type.width == 32);
packed = lp_build_gather(gallivm, type.length,
format_desc->block.bits,
fetch_type, aligned,
base_ptr, offset, FALSE);
if (format == PIPE_FORMAT_R11G11B10_FLOAT) {
lp_build_r11g11b10_to_float(gallivm, packed, rgba_out);
}
else {
lp_build_rgb9e5_to_float(gallivm, packed, rgba_out);
}
return;
}
if (format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS &&
format_desc->block.bits == 64) {
/*
* special case the format is 64 bits but we only require
* 32bit (or 8bit) from each block.
*/
LLVMValueRef packed;
struct lp_type fetch_type = lp_type_uint(type.width);
if (format == PIPE_FORMAT_X32_S8X24_UINT) {
/*
* for stencil simply fix up offsets - could in fact change
* base_ptr instead even outside the shader.
*/
unsigned mask = (1 << 8) - 1;
LLVMValueRef s_offset = lp_build_const_int_vec(gallivm, type, 4);
offset = LLVMBuildAdd(builder, offset, s_offset, "");
packed = lp_build_gather(gallivm, type.length, 32, fetch_type,
aligned, base_ptr, offset, FALSE);
packed = LLVMBuildAnd(builder, packed,
lp_build_const_int_vec(gallivm, type, mask), "");
}
else {
assert (format == PIPE_FORMAT_Z32_FLOAT_S8X24_UINT);
packed = lp_build_gather(gallivm, type.length, 32, fetch_type,
aligned, base_ptr, offset, TRUE);
packed = LLVMBuildBitCast(builder, packed,
lp_build_vec_type(gallivm, type), "");
}
/* for consistency with lp_build_unpack_rgba_soa() return sss1 or zzz1 */
rgba_out[0] = rgba_out[1] = rgba_out[2] = packed;
rgba_out[3] = lp_build_const_vec(gallivm, type, 1.0f);
return;
}
/*
* Try calling lp_build_fetch_rgba_aos for all pixels.
* Should only really hit subsampled, compressed
* (for s3tc srgb too, for rgtc the unorm ones only) by now.
* (This is invalid for plain 8unorm formats because we're lazy with
* the swizzle since some results would arrive swizzled, some not.)
*/
if ((format_desc->layout != UTIL_FORMAT_LAYOUT_PLAIN) &&
(util_format_fits_8unorm(format_desc) ||
format_desc->layout == UTIL_FORMAT_LAYOUT_S3TC) &&
type.floating && type.width == 32 &&
(type.length == 1 || (type.length % 4 == 0))) {
struct lp_type tmp_type;
struct lp_build_context bld;
LLVMValueRef packed, rgba[4];
const struct util_format_description *flinear_desc;
const struct util_format_description *frgba8_desc;
unsigned chan;
lp_build_context_init(&bld, gallivm, type);
/*
* Make sure the conversion in aos really only does convert to rgba8
* and not anything more (so use linear format, adjust type).
*/
flinear_desc = util_format_description(util_format_linear(format));
memset(&tmp_type, 0, sizeof tmp_type);
tmp_type.width = 8;
tmp_type.length = type.length * 4;
tmp_type.norm = TRUE;
packed = lp_build_fetch_rgba_aos(gallivm, flinear_desc, tmp_type,
aligned, base_ptr, offset, i, j, cache);
packed = LLVMBuildBitCast(builder, packed, bld.int_vec_type, "");
/*
* The values are now packed so they match ordinary (srgb) RGBA8 format,
* hence need to use matching format for unpack.
*/
frgba8_desc = util_format_description(PIPE_FORMAT_R8G8B8A8_UNORM);
if (format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
assert(format_desc->layout == UTIL_FORMAT_LAYOUT_S3TC);
frgba8_desc = util_format_description(PIPE_FORMAT_R8G8B8A8_SRGB);
}
lp_build_unpack_rgba_soa(gallivm,
frgba8_desc,
type,
packed, rgba);
/*
* We converted 4 channels. Make sure llvm can drop unneeded ones
* (luckily the rgba order is fixed, only LA needs special case).
*/
for (chan = 0; chan < 4; chan++) {
enum pipe_swizzle swizzle = format_desc->swizzle[chan];
if (chan == 3 && util_format_is_luminance_alpha(format)) {
swizzle = PIPE_SWIZZLE_W;
}
rgba_out[chan] = lp_build_swizzle_soa_channel(&bld, rgba, swizzle);
}
return;
}
/*
* Fallback to calling lp_build_fetch_rgba_aos for each pixel.
*
* This is not the most efficient way of fetching pixels, as we
* miss some opportunities to do vectorization, but this is
* convenient for formats or scenarios for which there was no
* opportunity or incentive to optimize.
*
* We do NOT want to end up here, this typically is quite terrible,
* in particular if the formats have less than 4 channels.
*
* Right now, this should only be hit for:
* - RGTC snorm formats
* (those miss fast fetch functions hence they are terrible anyway)
*/
{
unsigned k;
struct lp_type tmp_type;
LLVMValueRef aos_fetch[LP_MAX_VECTOR_WIDTH / 32];
if (gallivm_debug & GALLIVM_DEBUG_PERF) {
debug_printf("%s: AoS fetch fallback for %s\n",
__FUNCTION__, format_desc->short_name);
}
tmp_type = type;
tmp_type.length = 4;
/*
* Note that vector transpose can be worse compared to insert/extract
* for aos->soa conversion (for formats with 1 or 2 channels). However,
* we should try to avoid getting here for just about all formats, so
* don't bother.
*/
/* loop over number of pixels */
for(k = 0; k < type.length; ++k) {
LLVMValueRef index = lp_build_const_int32(gallivm, k);
LLVMValueRef offset_elem;
LLVMValueRef i_elem, j_elem;
offset_elem = LLVMBuildExtractElement(builder, offset,
index, "");
i_elem = LLVMBuildExtractElement(builder, i, index, "");
j_elem = LLVMBuildExtractElement(builder, j, index, "");
/* Get a single float[4]={R,G,B,A} pixel */
aos_fetch[k] = lp_build_fetch_rgba_aos(gallivm, format_desc, tmp_type,
aligned, base_ptr, offset_elem,
i_elem, j_elem, cache);
}
convert_to_soa(gallivm, aos_fetch, rgba_out, type);
}
}
|