aboutsummaryrefslogtreecommitdiffstats
path: root/src/gallium/auxiliary/gallivm/lp_bld_format_float.c
blob: f68a617b81090934f99c790d7f958b0ea5cd2aa7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
/**************************************************************************
 *
 * Copyright 2013 VMware, Inc.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 **************************************************************************/


/**
 * @file
 * Format conversion code for "special" float formats.
 *
 * @author Roland Scheidegger <sroland@vmware.com>
 */


#include "util/u_debug.h"

#include "lp_bld_type.h"
#include "lp_bld_const.h"
#include "lp_bld_arit.h"
#include "lp_bld_bitarit.h"
#include "lp_bld_logic.h"
#include "lp_bld_format.h"


/**
 * Convert float32 to a float-like value with less exponent and mantissa
 * bits. The mantissa is still biased, and the mantissa still has an implied 1,
 * and there may be a sign bit.
 *
 * @param src             (vector) float value to convert
 * @param mantissa_bits   the number of mantissa bits
 * @param exponent_bits   the number of exponent bits
 * @param mantissa_start  the start position of the small float in result value
 * @param has_sign        if the small float has a sign bit
 *
 * This implements round-towards-zero (trunc) hence too large numbers get
 * converted to largest representable number, not infinity.
 * Small numbers may get converted to denorms, depending on normal
 * float denorm handling of the cpu.
 * Note that compared to the references, below, we skip any rounding bias
 * since we do rounding towards zero - OpenGL allows rounding towards zero
 * (though not preferred) and DX10 even seems to require it.
 * Note that this will pack mantissa, exponent and sign bit (if any) together,
 * and shift the result to mantissa_start.
 *
 * ref http://fgiesen.wordpress.com/2012/03/28/half-to-float-done-quic/
 * ref https://gist.github.com/rygorous/2156668
 */
LLVMValueRef
lp_build_float_to_smallfloat(struct gallivm_state *gallivm,
                             struct lp_type i32_type,
                             LLVMValueRef src,
                             unsigned mantissa_bits,
                             unsigned exponent_bits,
                             unsigned mantissa_start,
                             boolean has_sign)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMValueRef i32_floatexpmask, i32_smallexpmask, magic, normal;
   LLVMValueRef rescale_src, i32_roundmask, small_max;
   LLVMValueRef i32_qnanbit, shift, res;
   LLVMValueRef is_nan_or_inf, nan_or_inf, mask, i32_src;
   struct lp_type f32_type = lp_type_float_vec(32, 32 * i32_type.length);
   struct lp_build_context f32_bld, i32_bld;
   LLVMValueRef zero = lp_build_const_vec(gallivm, f32_type, 0.0f);
   unsigned exponent_start = mantissa_start + mantissa_bits;
   boolean always_preserve_nans = true;
   boolean maybe_correct_denorm_rounding = true;

   lp_build_context_init(&f32_bld, gallivm, f32_type);
   lp_build_context_init(&i32_bld, gallivm, i32_type);

   i32_smallexpmask = lp_build_const_int_vec(gallivm, i32_type,
                                             ((1 << exponent_bits) - 1) << 23);
   i32_floatexpmask = lp_build_const_int_vec(gallivm, i32_type, 0xff << 23);

   i32_src = LLVMBuildBitCast(builder, src, i32_bld.vec_type, "");

   if (has_sign) {
      rescale_src = src;
   }
   else {
      /* clamp to pos range (can still have sign bit if NaN or negative zero) */
      rescale_src = lp_build_max(&f32_bld, zero, src);
   }
   rescale_src = LLVMBuildBitCast(builder, rescale_src, i32_bld.vec_type, "");

   /* "ordinary" number */
   /*
    * get rid of excess mantissa bits and sign bit
    * This is only really needed for correct rounding of denorms I think
    * but only if we use the preserve NaN path does using
    * src_abs instead save us any instruction.
    */
   if (maybe_correct_denorm_rounding || !always_preserve_nans) {
      i32_roundmask = lp_build_const_int_vec(gallivm, i32_type,
                                             ~((1 << (23 - mantissa_bits)) - 1) &
                                             0x7fffffff);
      rescale_src = LLVMBuildBitCast(builder, rescale_src, i32_bld.vec_type, "");
      rescale_src = lp_build_and(&i32_bld, rescale_src, i32_roundmask);
      rescale_src = LLVMBuildBitCast(builder, rescale_src, f32_bld.vec_type, "");
   }
   else {
      rescale_src = lp_build_abs(&f32_bld, src);
   }

   /* bias exponent (and denormalize if necessary) */
   magic = lp_build_const_int_vec(gallivm, i32_type,
                                  ((1 << (exponent_bits - 1)) - 1) << 23);
   magic = LLVMBuildBitCast(builder, magic, f32_bld.vec_type, "");
   normal = lp_build_mul(&f32_bld, rescale_src, magic);

   /* clamp to max value - largest non-infinity number */
   small_max = lp_build_const_int_vec(gallivm, i32_type,
                                      (((1 << exponent_bits) - 2) << 23) |
                                      (((1 << mantissa_bits) - 1) << (23 - mantissa_bits)));
   small_max = LLVMBuildBitCast(builder, small_max, f32_bld.vec_type, "");
   normal = lp_build_min(&f32_bld, normal, small_max);
   normal = LLVMBuildBitCast(builder, normal, i32_bld.vec_type, "");

   /*
    * handle nan/inf cases
    * a little bit tricky since -Inf -> 0, +Inf -> +Inf, +-Nan -> +Nan
    * (for no sign) else ->Inf -> ->Inf too.
    * could use explicit "unordered" comparison checking for NaNs
    * which might save us from calculating src_abs too.
    * (Cannot actually save the comparison since we need to distinguish
    * Inf and NaN cases anyway, but it would be better for AVX.)
    */
   if (always_preserve_nans) {
      LLVMValueRef infcheck_src, is_inf, is_nan;
      LLVMValueRef src_abs = lp_build_abs(&f32_bld, src);
      src_abs = LLVMBuildBitCast(builder, src_abs, i32_bld.vec_type, "");

      if (has_sign) {
         infcheck_src = src_abs;
      }
      else {
         infcheck_src = i32_src;
      }
      is_nan = lp_build_compare(gallivm, i32_type, PIPE_FUNC_GREATER,
                                src_abs, i32_floatexpmask);
      is_inf = lp_build_compare(gallivm, i32_type, PIPE_FUNC_EQUAL,
                                infcheck_src, i32_floatexpmask);
      is_nan_or_inf = lp_build_or(&i32_bld, is_nan, is_inf);
      /* could also set more mantissa bits but need at least the highest mantissa bit */
      i32_qnanbit = lp_build_const_vec(gallivm, i32_type, 1 << 22);
      /* combine maxexp with qnanbit */
      nan_or_inf = lp_build_or(&i32_bld, i32_smallexpmask,
                               lp_build_and(&i32_bld, is_nan, i32_qnanbit));
   }
   else {
      /*
       * A couple simplifications, with mostly 2 drawbacks (so disabled):
       * - it will promote some SNaNs (those which only had bits set
       * in the mantissa part which got chopped off) to +-Infinity.
       * (Those bits get chopped off anyway later so can as well use
       * rescale_src instead of src_abs here saving the calculation of that.)
       * - for no sign case, it relies on the max() being used for rescale_src
       * to give back the NaN (which is NOT ieee754r behavior, but should work
       * with sse2 on a full moon (rather if I got the operand order right) -
       * we _don't_ have well-defined behavior specified with min/max wrt NaNs,
       * however, and if it gets converted to cmp/select it may not work (we
       * don't really have specified behavior for cmp wrt NaNs neither).
       */
      rescale_src = LLVMBuildBitCast(builder, rescale_src, i32_bld.vec_type, "");
      is_nan_or_inf = lp_build_compare(gallivm, i32_type, PIPE_FUNC_GEQUAL,
                                       rescale_src, i32_floatexpmask);
      /* note this will introduce excess exponent bits */
      nan_or_inf = rescale_src;
   }
   res = lp_build_select(&i32_bld, is_nan_or_inf, nan_or_inf, normal);

   if (mantissa_start > 0 || !always_preserve_nans) {
      /* mask off excess bits */
      unsigned maskbits = (1 << (mantissa_bits + exponent_bits)) - 1;
      mask = lp_build_const_int_vec(gallivm, i32_type,
                                    maskbits << (23 - mantissa_bits));
      res = lp_build_and(&i32_bld, res, mask);
   }

   /* add back sign bit at right position */
   if (has_sign) {
      LLVMValueRef sign;
      struct lp_type u32_type = lp_type_uint_vec(32, 32 * i32_type.length);
      struct lp_build_context u32_bld;
      lp_build_context_init(&u32_bld, gallivm, u32_type);

      mask = lp_build_const_int_vec(gallivm, i32_type, 0x80000000);
      shift = lp_build_const_int_vec(gallivm, i32_type, 8 - exponent_bits);
      sign = lp_build_and(&i32_bld, mask, i32_src);
      sign = lp_build_shr(&u32_bld, sign, shift);
      res = lp_build_or(&i32_bld, sign, res);
   }

   /* shift to final position */
   if (exponent_start < 23) {
      shift = lp_build_const_int_vec(gallivm, i32_type, 23 - exponent_start);
      res = lp_build_shr(&i32_bld, res, shift);
   }
   else {
      shift = lp_build_const_int_vec(gallivm, i32_type, exponent_start - 23);
      res = lp_build_shl(&i32_bld, res, shift);
   }
   return res;
}


/**
 * Convert rgba float SoA values to packed r11g11b10 values.
 *
 * @param src   SoA float (vector) values to convert.
 */
LLVMValueRef
lp_build_float_to_r11g11b10(struct gallivm_state *gallivm,
                            LLVMValueRef *src)
{
   LLVMValueRef dst, rcomp, bcomp, gcomp;
   struct lp_build_context i32_bld;
   LLVMTypeRef src_type = LLVMTypeOf(*src);
   unsigned src_length = LLVMGetTypeKind(src_type) == LLVMVectorTypeKind ?
                            LLVMGetVectorSize(src_type) : 1;
   struct lp_type i32_type = lp_type_int_vec(32, 32 * src_length);

   lp_build_context_init(&i32_bld, gallivm, i32_type);

   /* "rescale" and put in right position */
   rcomp = lp_build_float_to_smallfloat(gallivm, i32_type, src[0], 6, 5, 0, false);
   gcomp = lp_build_float_to_smallfloat(gallivm, i32_type, src[1], 6, 5, 11, false);
   bcomp = lp_build_float_to_smallfloat(gallivm, i32_type, src[2], 5, 5, 22, false);

   /* combine the values */
   dst = lp_build_or(&i32_bld, rcomp, gcomp);
   return lp_build_or(&i32_bld, dst, bcomp);
}


/**
 * Convert a float-like value with less exponent and mantissa
 * bits than a normal float32 to a float32. The mantissa of
 * the source value is assumed to have an implied 1, and the exponent
 * is biased. There may be a sign bit.
 * The source value to extract must be in a 32bit int (bits not part of
 * the value to convert will be masked off).
 * This works for things like 11-bit floats or half-floats,
 * mantissa, exponent (and sign if present) must be packed
 * the same as they are in a ordinary float.
 *
 * @param src             (vector) value to convert
 * @param mantissa_bits   the number of mantissa bits
 * @param exponent_bits   the number of exponent bits
 * @param mantissa_start  the bit start position of the packed component
 * @param has_sign        if the small float has a sign bit
 *
 * ref http://fgiesen.wordpress.com/2012/03/28/half-to-float-done-quic/
 * ref https://gist.github.com/rygorous/2156668
 */
LLVMValueRef
lp_build_smallfloat_to_float(struct gallivm_state *gallivm,
                             struct lp_type f32_type,
                             LLVMValueRef src,
                             unsigned mantissa_bits,
                             unsigned exponent_bits,
                             unsigned mantissa_start,
                             boolean has_sign)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMValueRef smallexpmask, i32_floatexpmask, magic;
   LLVMValueRef wasinfnan, tmp, res, shift, maskabs, srcabs, sign;
   unsigned exponent_start = mantissa_start + mantissa_bits;
   struct lp_type i32_type = lp_type_int_vec(32, 32 * f32_type.length);
   struct lp_build_context f32_bld, i32_bld;

   lp_build_context_init(&f32_bld, gallivm, f32_type);
   lp_build_context_init(&i32_bld, gallivm, i32_type);

   /* extract the component to "float position" */
   if (exponent_start < 23) {
      shift = lp_build_const_int_vec(gallivm, i32_type, 23 - exponent_start);
      src = lp_build_shl(&i32_bld, src, shift);
   }
   else {
      shift = lp_build_const_int_vec(gallivm, i32_type, exponent_start - 23);
      src = lp_build_shr(&i32_bld, src, shift);
   }
   maskabs = lp_build_const_int_vec(gallivm, i32_type,
                                    ((1 << (mantissa_bits + exponent_bits)) - 1)
                                    << (23 - mantissa_bits));
   srcabs = lp_build_and(&i32_bld, src, maskabs);
   srcabs = LLVMBuildBitCast(builder, srcabs, f32_bld.vec_type, "");

   /* now do the actual scaling */
   smallexpmask = lp_build_const_int_vec(gallivm, i32_type,
                                         ((1 << exponent_bits) - 1) << 23);
   i32_floatexpmask = lp_build_const_int_vec(gallivm, i32_type, 0xff << 23);
   /*
    * magic number has exponent new exp bias + (new exp bias - old exp bias),
    * mantissa is 0.
    */
   magic = lp_build_const_int_vec(gallivm, i32_type,
                                  (255 - (1 << (exponent_bits - 1))) << 23);
   magic = LLVMBuildBitCast(builder, magic, f32_bld.vec_type, "");

   /* adjust exponent and fix denorms */
   res = lp_build_mul(&f32_bld, srcabs, magic);

   /*
    * if exp was max (== NaN or Inf) set new exp to max (keep mantissa),
    * so a simple "or" will do (because exp adjust will leave mantissa intact)
    */
   /* use float compare (better for AVX 8-wide / no AVX2 but else should use int) */
   smallexpmask = LLVMBuildBitCast(builder, smallexpmask, f32_bld.vec_type, "");
   wasinfnan = lp_build_compare(gallivm, f32_type, PIPE_FUNC_GEQUAL, srcabs, smallexpmask);
   res = LLVMBuildBitCast(builder, res, i32_bld.vec_type, "");
   tmp = lp_build_and(&i32_bld, i32_floatexpmask, wasinfnan);
   res = lp_build_or(&i32_bld, tmp, res);

   if (has_sign) {
      LLVMValueRef signmask = lp_build_const_int_vec(gallivm, i32_type, 0x80000000);
      shift = lp_build_const_int_vec(gallivm, i32_type, 8 - exponent_bits);
      sign = lp_build_shl(&i32_bld, src, shift);
      sign = lp_build_and(&i32_bld, signmask, sign);
      res = lp_build_or(&i32_bld, res, sign);
   }

   return LLVMBuildBitCast(builder, res, f32_bld.vec_type, "");
}


/**
 * Convert packed float format (r11g11b10) value(s) to rgba float SoA values.
 *
 * @param src   packed AoS r11g11b10 values (as (vector) int32)
 * @param dst   pointer to the SoA result values
 */
void
lp_build_r11g11b10_to_float(struct gallivm_state *gallivm,
                            LLVMValueRef src,
                            LLVMValueRef *dst)
{
   LLVMTypeRef src_type = LLVMTypeOf(src);
   unsigned src_length = LLVMGetTypeKind(src_type) == LLVMVectorTypeKind ?
                            LLVMGetVectorSize(src_type) : 1;
   struct lp_type f32_type = lp_type_float_vec(32, 32 * src_length);

   dst[0] = lp_build_smallfloat_to_float(gallivm, f32_type, src, 6, 5, 0, false);
   dst[1] = lp_build_smallfloat_to_float(gallivm, f32_type, src, 6, 5, 11, false);
   dst[2] = lp_build_smallfloat_to_float(gallivm, f32_type, src, 5, 5, 22, false);

   /* Just set alpha to one */
   dst[3] = lp_build_one(gallivm, f32_type);
}


static LLVMValueRef
lp_build_rgb9_to_float_helper(struct gallivm_state *gallivm,
                              struct lp_type f32_type,
                              LLVMValueRef src,
                              LLVMValueRef scale,
                              unsigned mantissa_start)
{
   LLVMValueRef shift, mask;

   struct lp_type i32_type = lp_type_int_vec(32, 32 * f32_type.length);
   struct lp_build_context i32_bld, f32_bld;

   lp_build_context_init(&i32_bld, gallivm, i32_type);
   lp_build_context_init(&f32_bld, gallivm, f32_type);

   /*
    * This is much easier as other weirdo float formats, since
    * there's no sign, no Inf/NaN, and there's nothing special
    * required for normals/denormals neither (as without the implied one
    * for the mantissa for other formats, everything looks like a denormal).
    * So just do (float)comp_bits * scale
    */
   shift = lp_build_const_int_vec(gallivm, i32_type, mantissa_start);
   mask = lp_build_const_int_vec(gallivm, i32_type, 0x1ff);
   src = lp_build_shr(&i32_bld, src, shift);
   src = lp_build_and(&i32_bld, src, mask);
   src = lp_build_int_to_float(&f32_bld, src);
   return lp_build_mul(&f32_bld, src, scale);
}


/**
 * Convert shared exponent format (rgb9e5) value(s) to rgba float SoA values.
 *
 * @param src   packed AoS rgb9e5 values (as (vector) int32)
 * @param dst   pointer to the SoA result values
 */
void
lp_build_rgb9e5_to_float(struct gallivm_state *gallivm,
                         LLVMValueRef src,
                         LLVMValueRef *dst)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMTypeRef src_type = LLVMTypeOf(src);
   LLVMValueRef shift, scale, bias, exp;
   unsigned src_length = LLVMGetTypeKind(src_type) == LLVMVectorTypeKind ?
                            LLVMGetVectorSize(src_type) : 1;
   struct lp_type i32_type = lp_type_int_vec(32, 32 * src_length);
   struct lp_type u32_type = lp_type_uint_vec(32, 32 * src_length);
   struct lp_type f32_type = lp_type_float_vec(32, 32 * src_length);
   struct lp_build_context i32_bld, u32_bld, f32_bld;

   lp_build_context_init(&i32_bld, gallivm, i32_type);
   lp_build_context_init(&u32_bld, gallivm, u32_type);
   lp_build_context_init(&f32_bld, gallivm, f32_type);

   /* extract exponent */
   shift = lp_build_const_int_vec(gallivm, i32_type, 27);
   /* this shift needs to be unsigned otherwise need mask */
   exp = lp_build_shr(&u32_bld, src, shift);

   /*
    * scale factor is 2 ^ (exp - bias)
    * (and additionally corrected here for the mantissa bits)
    * not using shift because
    * a) don't have vector shift in a lot of cases
    * b) shift direction changes hence need 2 shifts + conditional
    *    (or rotate instruction which is even more rare (for instance XOP))
    * so use whacky float 2 ^ function instead manipulating exponent
    * (saves us the float conversion at the end too)
    */
   bias = lp_build_const_int_vec(gallivm, i32_type, 127 - (15 + 9));
   scale = lp_build_add(&i32_bld, exp, bias);
   shift = lp_build_const_int_vec(gallivm, i32_type, 23);
   scale = lp_build_shl(&i32_bld, scale, shift);
   scale = LLVMBuildBitCast(builder, scale, f32_bld.vec_type, "");

   dst[0] = lp_build_rgb9_to_float_helper(gallivm, f32_type, src, scale, 0);
   dst[1] = lp_build_rgb9_to_float_helper(gallivm, f32_type, src, scale, 9);
   dst[2] = lp_build_rgb9_to_float_helper(gallivm, f32_type, src, scale, 18);

   /* Just set alpha to one */
   dst[3] = f32_bld.one;
}