1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
|
/*
* Copyright © 2019 Google LLC
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "tu_private.h"
#include <fcntl.h>
#include <libsync.h>
#include <unistd.h>
#include "util/os_time.h"
/**
* Internally, a fence can be in one of these states.
*/
enum tu_fence_state
{
TU_FENCE_STATE_RESET,
TU_FENCE_STATE_PENDING,
TU_FENCE_STATE_SIGNALED,
};
static enum tu_fence_state
tu_fence_get_state(const struct tu_fence *fence)
{
if (fence->signaled)
assert(fence->fd < 0);
if (fence->signaled)
return TU_FENCE_STATE_SIGNALED;
else if (fence->fd >= 0)
return TU_FENCE_STATE_PENDING;
else
return TU_FENCE_STATE_RESET;
}
static void
tu_fence_set_state(struct tu_fence *fence, enum tu_fence_state state, int fd)
{
if (fence->fd >= 0)
close(fence->fd);
switch (state) {
case TU_FENCE_STATE_RESET:
assert(fd < 0);
fence->signaled = false;
fence->fd = -1;
break;
case TU_FENCE_STATE_PENDING:
assert(fd >= 0);
fence->signaled = false;
fence->fd = fd;
break;
case TU_FENCE_STATE_SIGNALED:
assert(fd < 0);
fence->signaled = true;
fence->fd = -1;
break;
default:
unreachable("unknown fence state");
break;
}
}
void
tu_fence_init(struct tu_fence *fence, bool signaled)
{
fence->signaled = signaled;
fence->fd = -1;
}
void
tu_fence_finish(struct tu_fence *fence)
{
if (fence->fd >= 0)
close(fence->fd);
}
/**
* Update the associated fd of a fence. Ownership of \a fd is transferred to
* \a fence.
*
* This function does not block. \a fence can also be in any state when this
* function is called. To be able to do that, the caller must make sure that,
* when both the currently associated fd and the new fd are valid, they are on
* the same timeline with the new fd being later on the timeline.
*/
void
tu_fence_update_fd(struct tu_fence *fence, int fd)
{
const enum tu_fence_state state =
fd >= 0 ? TU_FENCE_STATE_PENDING : TU_FENCE_STATE_SIGNALED;
tu_fence_set_state(fence, state, fd);
}
/**
* Make a fence a copy of another fence. \a fence must be in the reset state.
*/
void
tu_fence_copy(struct tu_fence *fence, const struct tu_fence *src)
{
assert(tu_fence_get_state(fence) == TU_FENCE_STATE_RESET);
/* dup src->fd */
int fd = -1;
if (src->fd >= 0) {
fd = fcntl(src->fd, F_DUPFD_CLOEXEC, 0);
if (fd < 0) {
tu_loge("failed to dup fd %d for fence", src->fd);
sync_wait(src->fd, -1);
}
}
tu_fence_update_fd(fence, fd);
}
/**
* Signal a fence. \a fence must be in the reset state.
*/
void
tu_fence_signal(struct tu_fence *fence)
{
assert(tu_fence_get_state(fence) == TU_FENCE_STATE_RESET);
tu_fence_set_state(fence, TU_FENCE_STATE_SIGNALED, -1);
}
/**
* Wait until a fence is idle (i.e., not pending).
*/
void
tu_fence_wait_idle(struct tu_fence *fence)
{
if (fence->fd >= 0) {
if (sync_wait(fence->fd, -1))
tu_loge("sync_wait on fence fd %d failed", fence->fd);
tu_fence_set_state(fence, TU_FENCE_STATE_SIGNALED, -1);
}
}
VkResult
tu_CreateFence(VkDevice _device,
const VkFenceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkFence *pFence)
{
TU_FROM_HANDLE(tu_device, device, _device);
struct tu_fence *fence =
vk_alloc2(&device->alloc, pAllocator, sizeof(*fence), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!fence)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
tu_fence_init(fence, pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT);
*pFence = tu_fence_to_handle(fence);
return VK_SUCCESS;
}
void
tu_DestroyFence(VkDevice _device,
VkFence _fence,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_fence, fence, _fence);
if (!fence)
return;
tu_fence_finish(fence);
vk_free2(&device->alloc, pAllocator, fence);
}
/**
* Initialize a pollfd array from fences.
*/
static nfds_t
tu_fence_init_poll_fds(uint32_t fence_count,
const VkFence *fences,
bool wait_all,
struct pollfd *fds)
{
nfds_t nfds = 0;
for (uint32_t i = 0; i < fence_count; i++) {
TU_FROM_HANDLE(tu_fence, fence, fences[i]);
if (fence->signaled) {
if (wait_all) {
/* skip signaled fences */
continue;
} else {
/* no need to poll any fd */
nfds = 0;
break;
}
}
/* negative fds are never ready, which is the desired behavior */
fds[nfds].fd = fence->fd;
fds[nfds].events = POLLIN;
fds[nfds].revents = 0;
nfds++;
}
return nfds;
}
/**
* Translate timeout from nanoseconds to milliseconds for poll().
*/
static int
tu_fence_get_poll_timeout(uint64_t timeout_ns)
{
const uint64_t ns_per_ms = 1000 * 1000;
uint64_t timeout_ms = timeout_ns / ns_per_ms;
/* round up if needed */
if (timeout_ns - timeout_ms * ns_per_ms >= ns_per_ms / 2)
timeout_ms++;
return timeout_ms < INT_MAX ? timeout_ms : INT_MAX;
}
/**
* Poll a pollfd array.
*/
static VkResult
tu_fence_poll_fds(struct pollfd *fds, nfds_t nfds, uint64_t *timeout_ns)
{
while (true) {
/* poll */
uint64_t duration = os_time_get_nano();
int ret = poll(fds, nfds, tu_fence_get_poll_timeout(*timeout_ns));
duration = os_time_get_nano() - duration;
/* update timeout_ns */
if (*timeout_ns > duration)
*timeout_ns -= duration;
else
*timeout_ns = 0;
if (ret > 0) {
return VK_SUCCESS;
} else if (ret == 0) {
if (!*timeout_ns)
return VK_TIMEOUT;
} else if (errno != EINTR && errno != EAGAIN) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
}
/**
* Update a pollfd array and the fence states. This should be called after a
* successful call to tu_fence_poll_fds.
*/
static nfds_t
tu_fence_update_fences_and_poll_fds(uint32_t fence_count,
const VkFence *fences,
bool wait_all,
struct pollfd *fds)
{
uint32_t nfds = 0;
uint32_t fds_idx = 0;
for (uint32_t i = 0; i < fence_count; i++) {
TU_FROM_HANDLE(tu_fence, fence, fences[i]);
/* no signaled fence in fds */
if (fence->signaled)
continue;
/* fds[fds_idx] corresponds to fences[i] */
assert(fence->fd == fds[fds_idx].fd);
assert(nfds <= fds_idx && fds_idx <= i);
/* fd is ready (errors are treated as ready) */
if (fds[fds_idx].revents) {
tu_fence_set_state(fence, TU_FENCE_STATE_SIGNALED, -1);
} else if (wait_all) {
/* add to fds again for another poll */
fds[nfds].fd = fence->fd;
fds[nfds].events = POLLIN;
fds[nfds].revents = 0;
nfds++;
}
fds_idx++;
}
return nfds;
}
VkResult
tu_WaitForFences(VkDevice _device,
uint32_t fenceCount,
const VkFence *pFences,
VkBool32 waitAll,
uint64_t timeout)
{
TU_FROM_HANDLE(tu_device, device, _device);
/* add a simpler path for when fenceCount == 1? */
struct pollfd stack_fds[8];
struct pollfd *fds = stack_fds;
if (fenceCount > ARRAY_SIZE(stack_fds)) {
fds = vk_alloc(&device->alloc, sizeof(*fds) * fenceCount, 8,
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (!fds)
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
/* set up pollfd array and start polling */
nfds_t nfds = tu_fence_init_poll_fds(fenceCount, pFences, waitAll, fds);
VkResult result = VK_SUCCESS;
while (nfds) {
result = tu_fence_poll_fds(fds, nfds, &timeout);
if (result != VK_SUCCESS)
break;
nfds = tu_fence_update_fences_and_poll_fds(fenceCount, pFences, waitAll,
fds);
}
if (fds != stack_fds)
vk_free(&device->alloc, fds);
return result;
}
VkResult
tu_ResetFences(VkDevice _device, uint32_t fenceCount, const VkFence *pFences)
{
for (unsigned i = 0; i < fenceCount; ++i) {
TU_FROM_HANDLE(tu_fence, fence, pFences[i]);
assert(tu_fence_get_state(fence) != TU_FENCE_STATE_PENDING);
tu_fence_set_state(fence, TU_FENCE_STATE_RESET, -1);
}
return VK_SUCCESS;
}
VkResult
tu_GetFenceStatus(VkDevice _device, VkFence _fence)
{
TU_FROM_HANDLE(tu_fence, fence, _fence);
if (fence->fd >= 0) {
int err = sync_wait(fence->fd, 0);
if (!err)
tu_fence_set_state(fence, TU_FENCE_STATE_SIGNALED, -1);
else if (err && errno != ETIME)
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
return fence->signaled ? VK_SUCCESS : VK_NOT_READY;
}
|