1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
|
/*
* Copyright (C) 2019 Google, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
#include "ir3.h"
/*
* Helpers to figure out the necessary delay slots between instructions. Used
* both in scheduling pass(es) and the final pass to insert any required nop's
* so that the shader program is valid.
*
* Note that this needs to work both pre and post RA, so we can't assume ssa
* src iterators work.
*/
/* generally don't count false dependencies, since this can just be
* something like a barrier, or SSBO store. The exception is array
* dependencies if the assigner is an array write and the consumer
* reads the same array.
*/
static bool
ignore_dep(struct ir3_instruction *assigner,
struct ir3_instruction *consumer, unsigned n)
{
if (!__is_false_dep(consumer, n))
return false;
if (assigner->barrier_class & IR3_BARRIER_ARRAY_W) {
struct ir3_register *dst = assigner->regs[0];
debug_assert(dst->flags & IR3_REG_ARRAY);
foreach_src (src, consumer) {
if ((src->flags & IR3_REG_ARRAY) &&
(dst->array.id == src->array.id)) {
return false;
}
}
}
return true;
}
/* calculate required # of delay slots between the instruction that
* assigns a value and the one that consumes
*/
int
ir3_delayslots(struct ir3_instruction *assigner,
struct ir3_instruction *consumer, unsigned n, bool soft)
{
if (ignore_dep(assigner, consumer, n))
return 0;
/* worst case is cat1-3 (alu) -> cat4/5 needing 6 cycles, normal
* alu -> alu needs 3 cycles, cat4 -> alu and texture fetch
* handled with sync bits
*/
if (is_meta(assigner) || is_meta(consumer))
return 0;
if (writes_addr0(assigner) || writes_addr1(assigner))
return 6;
/* On a6xx, it takes the number of delay slots to get a SFU result
* back (ie. using nop's instead of (ss) is:
*
* 8 - single warp
* 9 - two warps
* 10 - four warps
*
* and so on. Not quite sure where it tapers out (ie. how many
* warps share an SFU unit). But 10 seems like a reasonable #
* to choose:
*/
if (soft && is_sfu(assigner))
return 10;
/* handled via sync flags: */
if (is_sfu(assigner) || is_tex(assigner) || is_mem(assigner))
return 0;
/* assigner must be alu: */
if (is_flow(consumer) || is_sfu(consumer) || is_tex(consumer) ||
is_mem(consumer)) {
return 6;
} else if ((is_mad(consumer->opc) || is_madsh(consumer->opc)) &&
(n == 3)) {
/* special case, 3rd src to cat3 not required on first cycle */
return 1;
} else {
return 3;
}
}
static bool
count_instruction(struct ir3_instruction *n)
{
/* NOTE: don't count branch/jump since we don't know yet if they will
* be eliminated later in resolve_jumps().. really should do that
* earlier so we don't have this constraint.
*/
return is_alu(n) || (is_flow(n) && (n->opc != OPC_JUMP) && (n->opc != OPC_B));
}
/**
* @block: the block to search in, starting from end; in first pass,
* this will be the block the instruction would be inserted into
* (but has not yet, ie. it only contains already scheduled
* instructions). For intra-block scheduling (second pass), this
* would be one of the predecessor blocks.
* @instr: the instruction to search for
* @maxd: max distance, bail after searching this # of instruction
* slots, since it means the instruction we are looking for is
* far enough away
* @pred: if true, recursively search into predecessor blocks to
* find the worst case (shortest) distance (only possible after
* individual blocks are all scheduled)
*/
static unsigned
distance(struct ir3_block *block, struct ir3_instruction *instr,
unsigned maxd, bool pred)
{
unsigned d = 0;
/* Note that this relies on incrementally building up the block's
* instruction list.. but this is how scheduling and nopsched
* work.
*/
foreach_instr_rev (n, &block->instr_list) {
if ((n == instr) || (d >= maxd))
return MIN2(maxd, d + n->nop);
if (count_instruction(n))
d = MIN2(maxd, d + 1 + n->repeat + n->nop);
}
/* if coming from a predecessor block, assume it is assigned far
* enough away.. we'll fix up later.
*/
if (!pred)
return maxd;
if (pred && (block->data != block)) {
/* Search into predecessor blocks, finding the one with the
* shortest distance, since that will be the worst case
*/
unsigned min = maxd - d;
/* (ab)use block->data to prevent recursion: */
block->data = block;
set_foreach (block->predecessors, entry) {
struct ir3_block *pred = (struct ir3_block *)entry->key;
unsigned n;
n = distance(pred, instr, min, pred);
min = MIN2(min, n);
}
block->data = NULL;
d += min;
}
return d;
}
/* calculate delay for specified src: */
static unsigned
delay_calc_srcn(struct ir3_block *block,
struct ir3_instruction *assigner,
struct ir3_instruction *consumer,
unsigned srcn, bool soft, bool pred)
{
unsigned delay = 0;
if (is_meta(assigner)) {
foreach_src (src, assigner) {
unsigned d;
if (!src->instr)
continue;
d = delay_calc_srcn(block, src->instr, consumer, srcn, soft, pred);
delay = MAX2(delay, d);
}
} else {
delay = ir3_delayslots(assigner, consumer, srcn, soft);
delay -= distance(block, assigner, delay, pred);
}
return delay;
}
static struct ir3_instruction *
find_array_write(struct ir3_block *block, unsigned array_id, unsigned maxd)
{
unsigned d = 0;
/* Note that this relies on incrementally building up the block's
* instruction list.. but this is how scheduling and nopsched
* work.
*/
foreach_instr_rev (n, &block->instr_list) {
if (d >= maxd)
return NULL;
if (count_instruction(n))
d++;
if (dest_regs(n) == 0)
continue;
/* note that a dest reg will never be an immediate */
if (n->regs[0]->array.id == array_id)
return n;
}
return NULL;
}
/* like list_length() but only counts instructions which count in the
* delay determination:
*/
static unsigned
count_block_delay(struct ir3_block *block)
{
unsigned delay = 0;
foreach_instr (n, &block->instr_list) {
if (!count_instruction(n))
continue;
delay++;
}
return delay;
}
static unsigned
delay_calc_array(struct ir3_block *block, unsigned array_id,
struct ir3_instruction *consumer, unsigned srcn,
bool soft, bool pred, unsigned maxd)
{
struct ir3_instruction *assigner;
assigner = find_array_write(block, array_id, maxd);
if (assigner)
return delay_calc_srcn(block, assigner, consumer, srcn, soft, pred);
if (!pred)
return 0;
unsigned len = count_block_delay(block);
if (maxd <= len)
return 0;
maxd -= len;
if (block->data == block) {
/* we have a loop, return worst case: */
return maxd;
}
/* If we need to search into predecessors, find the one with the
* max delay.. the resulting delay is that minus the number of
* counted instructions in this block:
*/
unsigned max = 0;
/* (ab)use block->data to prevent recursion: */
block->data = block;
set_foreach (block->predecessors, entry) {
struct ir3_block *pred = (struct ir3_block *)entry->key;
unsigned delay =
delay_calc_array(pred, array_id, consumer, srcn, soft, pred, maxd);
max = MAX2(max, delay);
}
block->data = NULL;
if (max < len)
return 0;
return max - len;
}
/**
* Calculate delay for instruction (maximum of delay for all srcs):
*
* @soft: If true, add additional delay for situations where they
* would not be strictly required because a sync flag would be
* used (but scheduler would prefer to schedule some other
* instructions first to avoid stalling on sync flag)
* @pred: If true, recurse into predecessor blocks
*/
unsigned
ir3_delay_calc(struct ir3_block *block, struct ir3_instruction *instr,
bool soft, bool pred)
{
unsigned delay = 0;
foreach_src_n (src, i, instr) {
unsigned d = 0;
if ((src->flags & IR3_REG_RELATIV) && !(src->flags & IR3_REG_CONST)) {
d = delay_calc_array(block, src->array.id, instr, i+1, soft, pred, 6);
} else if (src->instr) {
d = delay_calc_srcn(block, src->instr, instr, i+1, soft, pred);
}
delay = MAX2(delay, d);
}
if (instr->address) {
unsigned d = delay_calc_srcn(block, instr->address, instr, 0, soft, pred);
delay = MAX2(delay, d);
}
return delay;
}
/**
* Remove nop instructions. The scheduler can insert placeholder nop's
* so that ir3_delay_calc() can account for nop's that won't be needed
* due to nop's triggered by a previous instruction. However, before
* legalize, we want to remove these. The legalize pass can insert
* some nop's if needed to hold (for example) sync flags. This final
* remaining nops are inserted by legalize after this.
*/
void
ir3_remove_nops(struct ir3 *ir)
{
foreach_block (block, &ir->block_list) {
foreach_instr_safe (instr, &block->instr_list) {
if (instr->opc == OPC_NOP) {
list_del(&instr->node);
}
}
}
}
|