1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
|
/*
* Copyright (C) 2017-2018 Rob Clark <robclark@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
#define GPU 600
#include "ir3_context.h"
#include "ir3_image.h"
/*
* Handlers for instructions changed/added in a6xx:
*
* Starting with a6xx, isam and stbi is used for SSBOs as well; stbi and the
* atomic instructions (used for both SSBO and image) use a new instruction
* encoding compared to a4xx/a5xx.
*/
static struct ir3_instruction *
ssbo_offset(struct ir3_block *b, struct ir3_instruction *byte_offset)
{
/* TODO hardware wants offset in terms of elements, not bytes. Which
* is kinda nice but opposite of what nir does. It would be nice if
* we had a way to request the units of the offset to avoid the extra
* shift instructions..
*/
return ir3_SHR_B(b, byte_offset, 0, create_immed(b, 2), 0);
}
/* src[] = { buffer_index, offset }. No const_index */
static void
emit_intrinsic_load_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
struct ir3_instruction **dst)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *offset;
struct ir3_instruction *ldib;
nir_const_value *buffer_index;
/* can this be non-const buffer_index? how do we handle that? */
buffer_index = nir_src_as_const_value(intr->src[0]);
compile_assert(ctx, buffer_index);
int ibo_idx = ir3_ssbo_to_ibo(&ctx->so->image_mapping, buffer_index->u32[0]);
offset = ssbo_offset(b, ir3_get_src(ctx, &intr->src[1])[0]);
ldib = ir3_LDIB(b, create_immed(b, ibo_idx), 0, offset, 0);
ldib->regs[0]->wrmask = MASK(intr->num_components);
ldib->cat6.iim_val = intr->num_components;
ldib->cat6.d = 1;
ldib->cat6.type = TYPE_U32;
ldib->barrier_class = IR3_BARRIER_BUFFER_R;
ldib->barrier_conflict = IR3_BARRIER_BUFFER_W;
ir3_split_dest(b, dst, ldib, 0, intr->num_components);
}
/* src[] = { value, block_index, offset }. const_index[] = { write_mask } */
static void
emit_intrinsic_store_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *stib, *val, *offset;
nir_const_value *buffer_index;
/* TODO handle wrmask properly, see _store_shared().. but I think
* it is more a PITA than that, since blob ends up loading the
* masked components and writing them back out.
*/
unsigned wrmask = intr->const_index[0];
unsigned ncomp = ffs(~wrmask) - 1;
/* can this be non-const buffer_index? how do we handle that? */
buffer_index = nir_src_as_const_value(intr->src[1]);
compile_assert(ctx, buffer_index);
int ibo_idx = ir3_ssbo_to_ibo(&ctx->so->image_mapping, buffer_index->u32[0]);
/* src0 is offset, src1 is value:
*/
val = ir3_create_collect(ctx, ir3_get_src(ctx, &intr->src[0]), ncomp);
offset = ssbo_offset(b, ir3_get_src(ctx, &intr->src[2])[0]);
stib = ir3_STIB(b, create_immed(b, ibo_idx), 0, offset, 0, val, 0);
stib->cat6.iim_val = ncomp;
stib->cat6.d = 1;
stib->cat6.type = TYPE_U32;
stib->barrier_class = IR3_BARRIER_BUFFER_W;
stib->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
array_insert(b, b->keeps, stib);
}
/*
* SSBO atomic intrinsics
*
* All of the SSBO atomic memory operations read a value from memory,
* compute a new value using one of the operations below, write the new
* value to memory, and return the original value read.
*
* All operations take 3 sources except CompSwap that takes 4. These
* sources represent:
*
* 0: The SSBO buffer index.
* 1: The offset into the SSBO buffer of the variable that the atomic
* operation will operate on.
* 2: The data parameter to the atomic function (i.e. the value to add
* in ssbo_atomic_add, etc).
* 3: For CompSwap only: the second data parameter.
*/
static struct ir3_instruction *
emit_intrinsic_atomic_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *atomic, *ibo, *src0, *src1, *offset, *data, *dummy;
nir_const_value *buffer_index;
type_t type = TYPE_U32;
/* can this be non-const buffer_index? how do we handle that? */
buffer_index = nir_src_as_const_value(intr->src[0]);
compile_assert(ctx, buffer_index);
int ibo_idx = ir3_ssbo_to_ibo(&ctx->so->image_mapping, buffer_index->u32[0]);
ibo = create_immed(b, ibo_idx);
offset = ir3_get_src(ctx, &intr->src[1])[0];
data = ir3_get_src(ctx, &intr->src[2])[0];
/* So this gets a bit creative:
*
* src0 - vecN offset/coords
* src1.x - is actually destination register
* src1.y - is 'data' except for cmpxchg where src2.y is 'compare'
* src1.z - is 'data' for cmpxchg
*
* The combining src and dest kinda doesn't work out so well with how
* scheduling and RA work. So for now we create a dummy src2.x, and
* then in a later fixup path, insert an extra MOV out of src1.x.
* See ir3_a6xx_fixup_atomic_dests().
*
* Note that nir already multiplies the offset by four
*/
dummy = create_immed(b, 0);
src0 = ssbo_offset(b, offset);
if (intr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap) {
struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[3])[0];
src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){
dummy, compare, data
}, 3);
} else {
src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){
dummy, data
}, 2);
}
switch (intr->intrinsic) {
case nir_intrinsic_ssbo_atomic_add:
atomic = ir3_ATOMIC_ADD_G(b, ibo, 0, src0, 0, src1, 0);
break;
case nir_intrinsic_ssbo_atomic_imin:
atomic = ir3_ATOMIC_MIN_G(b, ibo, 0, src0, 0, src1, 0);
type = TYPE_S32;
break;
case nir_intrinsic_ssbo_atomic_umin:
atomic = ir3_ATOMIC_MIN_G(b, ibo, 0, src0, 0, src1, 0);
break;
case nir_intrinsic_ssbo_atomic_imax:
atomic = ir3_ATOMIC_MAX_G(b, ibo, 0, src0, 0, src1, 0);
type = TYPE_S32;
break;
case nir_intrinsic_ssbo_atomic_umax:
atomic = ir3_ATOMIC_MAX_G(b, ibo, 0, src0, 0, src1, 0);
break;
case nir_intrinsic_ssbo_atomic_and:
atomic = ir3_ATOMIC_AND_G(b, ibo, 0, src0, 0, src1, 0);
break;
case nir_intrinsic_ssbo_atomic_or:
atomic = ir3_ATOMIC_OR_G(b, ibo, 0, src0, 0, src1, 0);
break;
case nir_intrinsic_ssbo_atomic_xor:
atomic = ir3_ATOMIC_XOR_G(b, ibo, 0, src0, 0, src1, 0);
break;
case nir_intrinsic_ssbo_atomic_exchange:
atomic = ir3_ATOMIC_XCHG_G(b, ibo, 0, src0, 0, src1, 0);
break;
case nir_intrinsic_ssbo_atomic_comp_swap:
atomic = ir3_ATOMIC_CMPXCHG_G(b, ibo, 0, src0, 0, src1, 0);
break;
default:
unreachable("boo");
}
atomic->cat6.iim_val = 1;
atomic->cat6.d = 1;
atomic->cat6.type = type;
atomic->barrier_class = IR3_BARRIER_BUFFER_W;
atomic->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
/* even if nothing consume the result, we can't DCE the instruction: */
array_insert(b, b->keeps, atomic);
return atomic;
}
/* src[] = { deref, coord, sample_index, value }. const_index[] = {} */
static void
emit_intrinsic_store_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
{
struct ir3_block *b = ctx->block;
const nir_variable *var = nir_intrinsic_get_var(intr, 0);
struct ir3_instruction *stib;
struct ir3_instruction * const *value = ir3_get_src(ctx, &intr->src[3]);
struct ir3_instruction * const *coords = ir3_get_src(ctx, &intr->src[1]);
unsigned ncoords = ir3_get_image_coords(var, NULL);
unsigned slot = ir3_get_image_slot(nir_src_as_deref(intr->src[0]));
unsigned ibo_idx = ir3_image_to_ibo(&ctx->so->image_mapping, slot);
unsigned ncomp = ir3_get_num_components_for_glformat(var->data.image.format);
/* src0 is offset, src1 is value:
*/
stib = ir3_STIB(b, create_immed(b, ibo_idx), 0,
ir3_create_collect(ctx, coords, ncoords), 0,
ir3_create_collect(ctx, value, ncomp), 0);
stib->cat6.iim_val = ncomp;
stib->cat6.d = ncoords;
stib->cat6.type = ir3_get_image_type(var);
stib->cat6.typed = true;
stib->barrier_class = IR3_BARRIER_IMAGE_W;
stib->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
array_insert(b, b->keeps, stib);
}
/* src[] = { deref, coord, sample_index, value, compare }. const_index[] = {} */
static struct ir3_instruction *
emit_intrinsic_atomic_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
{
struct ir3_block *b = ctx->block;
const nir_variable *var = nir_intrinsic_get_var(intr, 0);
struct ir3_instruction *atomic, *ibo, *src0, *src1, *dummy;
struct ir3_instruction * const *coords = ir3_get_src(ctx, &intr->src[1]);
struct ir3_instruction *value = ir3_get_src(ctx, &intr->src[3])[0];
unsigned ncoords = ir3_get_image_coords(var, NULL);
unsigned slot = ir3_get_image_slot(nir_src_as_deref(intr->src[0]));
unsigned ibo_idx = ir3_image_to_ibo(&ctx->so->image_mapping, slot);
ibo = create_immed(b, ibo_idx);
/* So this gets a bit creative:
*
* src0 - vecN offset/coords
* src1.x - is actually destination register
* src1.y - is 'value' except for cmpxchg where src2.y is 'compare'
* src1.z - is 'value' for cmpxchg
*
* The combining src and dest kinda doesn't work out so well with how
* scheduling and RA work. So for now we create a dummy src2.x, and
* then in a later fixup path, insert an extra MOV out of src1.x.
* See ir3_a6xx_fixup_atomic_dests().
*/
dummy = create_immed(b, 0);
src0 = ir3_create_collect(ctx, coords, ncoords);
if (intr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap) {
struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[4])[0];
src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){
dummy, compare, value
}, 3);
} else {
src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){
dummy, value
}, 2);
}
switch (intr->intrinsic) {
case nir_intrinsic_image_deref_atomic_add:
atomic = ir3_ATOMIC_ADD_G(b, ibo, 0, src0, 0, src1, 0);
break;
case nir_intrinsic_image_deref_atomic_min:
atomic = ir3_ATOMIC_MIN_G(b, ibo, 0, src0, 0, src1, 0);
break;
case nir_intrinsic_image_deref_atomic_max:
atomic = ir3_ATOMIC_MAX_G(b, ibo, 0, src0, 0, src1, 0);
break;
case nir_intrinsic_image_deref_atomic_and:
atomic = ir3_ATOMIC_AND_G(b, ibo, 0, src0, 0, src1, 0);
break;
case nir_intrinsic_image_deref_atomic_or:
atomic = ir3_ATOMIC_OR_G(b, ibo, 0, src0, 0, src1, 0);
break;
case nir_intrinsic_image_deref_atomic_xor:
atomic = ir3_ATOMIC_XOR_G(b, ibo, 0, src0, 0, src1, 0);
break;
case nir_intrinsic_image_deref_atomic_exchange:
atomic = ir3_ATOMIC_XCHG_G(b, ibo, 0, src0, 0, src1, 0);
break;
case nir_intrinsic_image_deref_atomic_comp_swap:
atomic = ir3_ATOMIC_CMPXCHG_G(b, ibo, 0, src0, 0, src1, 0);
break;
default:
unreachable("boo");
}
atomic->cat6.iim_val = 1;
atomic->cat6.d = ncoords;
atomic->cat6.type = ir3_get_image_type(var);
atomic->cat6.typed = true;
atomic->barrier_class = IR3_BARRIER_IMAGE_W;
atomic->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
/* even if nothing consume the result, we can't DCE the instruction: */
array_insert(b, b->keeps, atomic);
return atomic;
}
const struct ir3_context_funcs ir3_a6xx_funcs = {
.emit_intrinsic_load_ssbo = emit_intrinsic_load_ssbo,
.emit_intrinsic_store_ssbo = emit_intrinsic_store_ssbo,
.emit_intrinsic_atomic_ssbo = emit_intrinsic_atomic_ssbo,
.emit_intrinsic_store_image = emit_intrinsic_store_image,
.emit_intrinsic_atomic_image = emit_intrinsic_atomic_image,
};
/*
* Special pass to run after instruction scheduling to insert an
* extra mov from src1.x to dst. This way the other compiler passes
* can ignore this quirk of the new instruction encoding.
*
* This might cause extra complication in the future when we support
* spilling, as I think we'd want to re-run the scheduling pass. One
* possible alternative might be to do this in the RA pass after
* ra_allocate() but before destroying the SSA links. (Ie. we do
* want to know if anything consumes the result of the atomic instr,
* if there is no consumer then inserting the extra mov is pointless.
*/
static struct ir3_instruction *
get_atomic_dest_mov(struct ir3_instruction *atomic)
{
/* if we've already created the mov-out, then re-use it: */
if (atomic->data)
return atomic->data;
/* extract back out the 'dummy' which serves as stand-in for dest: */
struct ir3_instruction *src = ssa(atomic->regs[3]);
debug_assert(src->opc == OPC_META_FI);
struct ir3_instruction *dummy = ssa(src->regs[1]);
struct ir3_instruction *mov = ir3_MOV(atomic->block, dummy, TYPE_U32);
mov->flags |= IR3_INSTR_SY;
if (atomic->regs[0]->flags & IR3_REG_ARRAY) {
mov->regs[0]->flags |= IR3_REG_ARRAY;
mov->regs[0]->array = atomic->regs[0]->array;
}
/* it will have already been appended to the end of the block, which
* isn't where we want it, so fix-up the location:
*/
list_delinit(&mov->node);
list_add(&mov->node, &atomic->node);
/* And because this is after instruction scheduling, we don't really
* have a good way to know if extra delay slots are needed. For
* example, if the result is consumed by an stib (storeImage()) there
* would be no extra delay slots in place already, but 5 are needed.
* Just plan for the worst and hope nobody looks at the resulting
* code that is generated :-(
*/
struct ir3_instruction *nop = ir3_NOP(atomic->block);
nop->repeat = 5;
list_delinit(&nop->node);
list_add(&nop->node, &mov->node);
return atomic->data = mov;
}
void
ir3_a6xx_fixup_atomic_dests(struct ir3 *ir, struct ir3_shader_variant *so)
{
if (so->image_mapping.num_ibo == 0)
return;
list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
instr->data = NULL;
}
}
list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
list_for_each_entry_safe (struct ir3_instruction, instr, &block->instr_list, node) {
struct ir3_register *reg;
foreach_src(reg, instr) {
struct ir3_instruction *src = ssa(reg);
if (!src)
continue;
if (is_atomic(src->opc) && (src->flags & IR3_INSTR_G))
reg->instr = get_atomic_dest_mov(src);
}
}
/* we also need to fixup shader outputs: */
for (unsigned i = 0; i < ir->noutputs; i++) {
if (!ir->outputs[i])
continue;
if (is_atomic(ir->outputs[i]->opc) && (ir->outputs[i]->flags & IR3_INSTR_G))
ir->outputs[i] = get_atomic_dest_mov(ir->outputs[i]);
}
}
}
|