1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
|
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "vtn_private.h"
/*
* Normally, column vectors in SPIR-V correspond to a single NIR SSA
* definition. But for matrix multiplies, we want to do one routine for
* multiplying a matrix by a matrix and then pretend that vectors are matrices
* with one column. So we "wrap" these things, and unwrap the result before we
* send it off.
*/
static struct vtn_ssa_value *
wrap_matrix(struct vtn_builder *b, struct vtn_ssa_value *val)
{
if (val == NULL)
return NULL;
if (glsl_type_is_matrix(val->type))
return val;
struct vtn_ssa_value *dest = rzalloc(b, struct vtn_ssa_value);
dest->type = val->type;
dest->elems = ralloc_array(b, struct vtn_ssa_value *, 1);
dest->elems[0] = val;
return dest;
}
static struct vtn_ssa_value *
unwrap_matrix(struct vtn_ssa_value *val)
{
if (glsl_type_is_matrix(val->type))
return val;
return val->elems[0];
}
static struct vtn_ssa_value *
matrix_multiply(struct vtn_builder *b,
struct vtn_ssa_value *_src0, struct vtn_ssa_value *_src1)
{
struct vtn_ssa_value *src0 = wrap_matrix(b, _src0);
struct vtn_ssa_value *src1 = wrap_matrix(b, _src1);
struct vtn_ssa_value *src0_transpose = wrap_matrix(b, _src0->transposed);
struct vtn_ssa_value *src1_transpose = wrap_matrix(b, _src1->transposed);
unsigned src0_rows = glsl_get_vector_elements(src0->type);
unsigned src0_columns = glsl_get_matrix_columns(src0->type);
unsigned src1_columns = glsl_get_matrix_columns(src1->type);
const struct glsl_type *dest_type;
if (src1_columns > 1) {
dest_type = glsl_matrix_type(glsl_get_base_type(src0->type),
src0_rows, src1_columns);
} else {
dest_type = glsl_vector_type(glsl_get_base_type(src0->type), src0_rows);
}
struct vtn_ssa_value *dest = vtn_create_ssa_value(b, dest_type);
dest = wrap_matrix(b, dest);
bool transpose_result = false;
if (src0_transpose && src1_transpose) {
/* transpose(A) * transpose(B) = transpose(B * A) */
src1 = src0_transpose;
src0 = src1_transpose;
src0_transpose = NULL;
src1_transpose = NULL;
transpose_result = true;
}
if (src0_transpose && !src1_transpose &&
glsl_get_base_type(src0->type) == GLSL_TYPE_FLOAT) {
/* We already have the rows of src0 and the columns of src1 available,
* so we can just take the dot product of each row with each column to
* get the result.
*/
for (unsigned i = 0; i < src1_columns; i++) {
nir_ssa_def *vec_src[4];
for (unsigned j = 0; j < src0_rows; j++) {
vec_src[j] = nir_fdot(&b->nb, src0_transpose->elems[j]->def,
src1->elems[i]->def);
}
dest->elems[i]->def = nir_vec(&b->nb, vec_src, src0_rows);
}
} else {
/* We don't handle the case where src1 is transposed but not src0, since
* the general case only uses individual components of src1 so the
* optimizer should chew through the transpose we emitted for src1.
*/
for (unsigned i = 0; i < src1_columns; i++) {
/* dest[i] = sum(src0[j] * src1[i][j] for all j) */
dest->elems[i]->def =
nir_fmul(&b->nb, src0->elems[0]->def,
nir_channel(&b->nb, src1->elems[i]->def, 0));
for (unsigned j = 1; j < src0_columns; j++) {
dest->elems[i]->def =
nir_fadd(&b->nb, dest->elems[i]->def,
nir_fmul(&b->nb, src0->elems[j]->def,
nir_channel(&b->nb, src1->elems[i]->def, j)));
}
}
}
dest = unwrap_matrix(dest);
if (transpose_result)
dest = vtn_ssa_transpose(b, dest);
return dest;
}
static struct vtn_ssa_value *
mat_times_scalar(struct vtn_builder *b,
struct vtn_ssa_value *mat,
nir_ssa_def *scalar)
{
struct vtn_ssa_value *dest = vtn_create_ssa_value(b, mat->type);
for (unsigned i = 0; i < glsl_get_matrix_columns(mat->type); i++) {
if (glsl_get_base_type(mat->type) == GLSL_TYPE_FLOAT)
dest->elems[i]->def = nir_fmul(&b->nb, mat->elems[i]->def, scalar);
else
dest->elems[i]->def = nir_imul(&b->nb, mat->elems[i]->def, scalar);
}
return dest;
}
static void
vtn_handle_matrix_alu(struct vtn_builder *b, SpvOp opcode,
struct vtn_value *dest,
struct vtn_ssa_value *src0, struct vtn_ssa_value *src1)
{
switch (opcode) {
case SpvOpFNegate: {
dest->ssa = vtn_create_ssa_value(b, src0->type);
unsigned cols = glsl_get_matrix_columns(src0->type);
for (unsigned i = 0; i < cols; i++)
dest->ssa->elems[i]->def = nir_fneg(&b->nb, src0->elems[i]->def);
break;
}
case SpvOpFAdd: {
dest->ssa = vtn_create_ssa_value(b, src0->type);
unsigned cols = glsl_get_matrix_columns(src0->type);
for (unsigned i = 0; i < cols; i++)
dest->ssa->elems[i]->def =
nir_fadd(&b->nb, src0->elems[i]->def, src1->elems[i]->def);
break;
}
case SpvOpFSub: {
dest->ssa = vtn_create_ssa_value(b, src0->type);
unsigned cols = glsl_get_matrix_columns(src0->type);
for (unsigned i = 0; i < cols; i++)
dest->ssa->elems[i]->def =
nir_fsub(&b->nb, src0->elems[i]->def, src1->elems[i]->def);
break;
}
case SpvOpTranspose:
dest->ssa = vtn_ssa_transpose(b, src0);
break;
case SpvOpMatrixTimesScalar:
if (src0->transposed) {
dest->ssa = vtn_ssa_transpose(b, mat_times_scalar(b, src0->transposed,
src1->def));
} else {
dest->ssa = mat_times_scalar(b, src0, src1->def);
}
break;
case SpvOpVectorTimesMatrix:
case SpvOpMatrixTimesVector:
case SpvOpMatrixTimesMatrix:
if (opcode == SpvOpVectorTimesMatrix) {
dest->ssa = matrix_multiply(b, vtn_ssa_transpose(b, src1), src0);
} else {
dest->ssa = matrix_multiply(b, src0, src1);
}
break;
default: unreachable("unknown matrix opcode");
}
}
nir_op
vtn_nir_alu_op_for_spirv_opcode(SpvOp opcode, bool *swap)
{
/* Indicates that the first two arguments should be swapped. This is
* used for implementing greater-than and less-than-or-equal.
*/
*swap = false;
switch (opcode) {
case SpvOpSNegate: return nir_op_ineg;
case SpvOpFNegate: return nir_op_fneg;
case SpvOpNot: return nir_op_inot;
case SpvOpIAdd: return nir_op_iadd;
case SpvOpFAdd: return nir_op_fadd;
case SpvOpISub: return nir_op_isub;
case SpvOpFSub: return nir_op_fsub;
case SpvOpIMul: return nir_op_imul;
case SpvOpFMul: return nir_op_fmul;
case SpvOpUDiv: return nir_op_udiv;
case SpvOpSDiv: return nir_op_idiv;
case SpvOpFDiv: return nir_op_fdiv;
case SpvOpUMod: return nir_op_umod;
case SpvOpSMod: return nir_op_imod;
case SpvOpFMod: return nir_op_fmod;
case SpvOpSRem: return nir_op_irem;
case SpvOpFRem: return nir_op_frem;
case SpvOpShiftRightLogical: return nir_op_ushr;
case SpvOpShiftRightArithmetic: return nir_op_ishr;
case SpvOpShiftLeftLogical: return nir_op_ishl;
case SpvOpLogicalOr: return nir_op_ior;
case SpvOpLogicalEqual: return nir_op_ieq;
case SpvOpLogicalNotEqual: return nir_op_ine;
case SpvOpLogicalAnd: return nir_op_iand;
case SpvOpLogicalNot: return nir_op_inot;
case SpvOpBitwiseOr: return nir_op_ior;
case SpvOpBitwiseXor: return nir_op_ixor;
case SpvOpBitwiseAnd: return nir_op_iand;
case SpvOpSelect: return nir_op_bcsel;
case SpvOpIEqual: return nir_op_ieq;
case SpvOpBitFieldInsert: return nir_op_bitfield_insert;
case SpvOpBitFieldSExtract: return nir_op_ibitfield_extract;
case SpvOpBitFieldUExtract: return nir_op_ubitfield_extract;
case SpvOpBitReverse: return nir_op_bitfield_reverse;
case SpvOpBitCount: return nir_op_bit_count;
/* Comparisons: (TODO: How do we want to handled ordered/unordered?) */
case SpvOpFOrdEqual: return nir_op_feq;
case SpvOpFUnordEqual: return nir_op_feq;
case SpvOpINotEqual: return nir_op_ine;
case SpvOpFOrdNotEqual: return nir_op_fne;
case SpvOpFUnordNotEqual: return nir_op_fne;
case SpvOpULessThan: return nir_op_ult;
case SpvOpSLessThan: return nir_op_ilt;
case SpvOpFOrdLessThan: return nir_op_flt;
case SpvOpFUnordLessThan: return nir_op_flt;
case SpvOpUGreaterThan: *swap = true; return nir_op_ult;
case SpvOpSGreaterThan: *swap = true; return nir_op_ilt;
case SpvOpFOrdGreaterThan: *swap = true; return nir_op_flt;
case SpvOpFUnordGreaterThan: *swap = true; return nir_op_flt;
case SpvOpULessThanEqual: *swap = true; return nir_op_uge;
case SpvOpSLessThanEqual: *swap = true; return nir_op_ige;
case SpvOpFOrdLessThanEqual: *swap = true; return nir_op_fge;
case SpvOpFUnordLessThanEqual: *swap = true; return nir_op_fge;
case SpvOpUGreaterThanEqual: return nir_op_uge;
case SpvOpSGreaterThanEqual: return nir_op_ige;
case SpvOpFOrdGreaterThanEqual: return nir_op_fge;
case SpvOpFUnordGreaterThanEqual: return nir_op_fge;
/* Conversions: */
case SpvOpConvertFToU: return nir_op_f2u;
case SpvOpConvertFToS: return nir_op_f2i;
case SpvOpConvertSToF: return nir_op_i2f;
case SpvOpConvertUToF: return nir_op_u2f;
case SpvOpBitcast: return nir_op_imov;
case SpvOpUConvert:
case SpvOpQuantizeToF16: return nir_op_fquantize2f16;
/* TODO: NIR is 32-bit only; these are no-ops. */
case SpvOpSConvert: return nir_op_imov;
case SpvOpFConvert: return nir_op_fmov;
/* Derivatives: */
case SpvOpDPdx: return nir_op_fddx;
case SpvOpDPdy: return nir_op_fddy;
case SpvOpDPdxFine: return nir_op_fddx_fine;
case SpvOpDPdyFine: return nir_op_fddy_fine;
case SpvOpDPdxCoarse: return nir_op_fddx_coarse;
case SpvOpDPdyCoarse: return nir_op_fddy_coarse;
default:
unreachable("No NIR equivalent");
}
}
static void
handle_no_contraction(struct vtn_builder *b, struct vtn_value *val, int member,
const struct vtn_decoration *dec, void *_void)
{
assert(dec->scope == VTN_DEC_DECORATION);
if (dec->decoration != SpvDecorationNoContraction)
return;
b->nb.exact = true;
}
void
vtn_handle_alu(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
const struct glsl_type *type =
vtn_value(b, w[1], vtn_value_type_type)->type->type;
vtn_foreach_decoration(b, val, handle_no_contraction, NULL);
/* Collect the various SSA sources */
const unsigned num_inputs = count - 3;
struct vtn_ssa_value *vtn_src[4] = { NULL, };
for (unsigned i = 0; i < num_inputs; i++)
vtn_src[i] = vtn_ssa_value(b, w[i + 3]);
if (glsl_type_is_matrix(vtn_src[0]->type) ||
(num_inputs >= 2 && glsl_type_is_matrix(vtn_src[1]->type))) {
vtn_handle_matrix_alu(b, opcode, val, vtn_src[0], vtn_src[1]);
b->nb.exact = false;
return;
}
val->ssa = vtn_create_ssa_value(b, type);
nir_ssa_def *src[4] = { NULL, };
for (unsigned i = 0; i < num_inputs; i++) {
assert(glsl_type_is_vector_or_scalar(vtn_src[i]->type));
src[i] = vtn_src[i]->def;
}
switch (opcode) {
case SpvOpAny:
if (src[0]->num_components == 1) {
val->ssa->def = nir_imov(&b->nb, src[0]);
} else {
nir_op op;
switch (src[0]->num_components) {
case 2: op = nir_op_bany_inequal2; break;
case 3: op = nir_op_bany_inequal3; break;
case 4: op = nir_op_bany_inequal4; break;
default: unreachable("invalid number of components");
}
val->ssa->def = nir_build_alu(&b->nb, op, src[0],
nir_imm_int(&b->nb, NIR_FALSE),
NULL, NULL);
}
break;
case SpvOpAll:
if (src[0]->num_components == 1) {
val->ssa->def = nir_imov(&b->nb, src[0]);
} else {
nir_op op;
switch (src[0]->num_components) {
case 2: op = nir_op_ball_iequal2; break;
case 3: op = nir_op_ball_iequal3; break;
case 4: op = nir_op_ball_iequal4; break;
default: unreachable("invalid number of components");
}
val->ssa->def = nir_build_alu(&b->nb, op, src[0],
nir_imm_int(&b->nb, NIR_TRUE),
NULL, NULL);
}
break;
case SpvOpOuterProduct: {
for (unsigned i = 0; i < src[1]->num_components; i++) {
val->ssa->elems[i]->def =
nir_fmul(&b->nb, src[0], nir_channel(&b->nb, src[1], i));
}
break;
}
case SpvOpDot:
val->ssa->def = nir_fdot(&b->nb, src[0], src[1]);
break;
case SpvOpIAddCarry:
assert(glsl_type_is_struct(val->ssa->type));
val->ssa->elems[0]->def = nir_iadd(&b->nb, src[0], src[1]);
val->ssa->elems[1]->def = nir_uadd_carry(&b->nb, src[0], src[1]);
break;
case SpvOpISubBorrow:
assert(glsl_type_is_struct(val->ssa->type));
val->ssa->elems[0]->def = nir_isub(&b->nb, src[0], src[1]);
val->ssa->elems[1]->def = nir_usub_borrow(&b->nb, src[0], src[1]);
break;
case SpvOpUMulExtended:
assert(glsl_type_is_struct(val->ssa->type));
val->ssa->elems[0]->def = nir_imul(&b->nb, src[0], src[1]);
val->ssa->elems[1]->def = nir_umul_high(&b->nb, src[0], src[1]);
break;
case SpvOpSMulExtended:
assert(glsl_type_is_struct(val->ssa->type));
val->ssa->elems[0]->def = nir_imul(&b->nb, src[0], src[1]);
val->ssa->elems[1]->def = nir_imul_high(&b->nb, src[0], src[1]);
break;
case SpvOpFwidth:
val->ssa->def = nir_fadd(&b->nb,
nir_fabs(&b->nb, nir_fddx(&b->nb, src[0])),
nir_fabs(&b->nb, nir_fddy(&b->nb, src[0])));
break;
case SpvOpFwidthFine:
val->ssa->def = nir_fadd(&b->nb,
nir_fabs(&b->nb, nir_fddx_fine(&b->nb, src[0])),
nir_fabs(&b->nb, nir_fddy_fine(&b->nb, src[0])));
break;
case SpvOpFwidthCoarse:
val->ssa->def = nir_fadd(&b->nb,
nir_fabs(&b->nb, nir_fddx_coarse(&b->nb, src[0])),
nir_fabs(&b->nb, nir_fddy_coarse(&b->nb, src[0])));
break;
case SpvOpVectorTimesScalar:
/* The builder will take care of splatting for us. */
val->ssa->def = nir_fmul(&b->nb, src[0], src[1]);
break;
case SpvOpIsNan:
val->ssa->def = nir_fne(&b->nb, src[0], src[0]);
break;
case SpvOpIsInf:
val->ssa->def = nir_feq(&b->nb, nir_fabs(&b->nb, src[0]),
nir_imm_float(&b->nb, INFINITY));
break;
default: {
bool swap;
nir_op op = vtn_nir_alu_op_for_spirv_opcode(opcode, &swap);
if (swap) {
nir_ssa_def *tmp = src[0];
src[0] = src[1];
src[1] = tmp;
}
val->ssa->def = nir_build_alu(&b->nb, op, src[0], src[1], src[2], src[3]);
break;
} /* default */
}
b->nb.exact = false;
}
|