aboutsummaryrefslogtreecommitdiffstats
path: root/src/compiler/nir/nir_split_vars.c
blob: 244ffd6dcf0ec467399c1b6878b8192a35422ff1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
/*
 * Copyright © 2018 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "nir.h"
#include "nir_builder.h"
#include "nir_deref.h"
#include "nir_vla.h"

#include "util/u_math.h"


struct split_var_state {
   void *mem_ctx;

   nir_shader *shader;
   nir_function_impl *impl;

   nir_variable *base_var;
};

struct field {
   struct field *parent;

   const struct glsl_type *type;

   unsigned num_fields;
   struct field *fields;

   nir_variable *var;
};

static const struct glsl_type *
wrap_type_in_array(const struct glsl_type *type,
                   const struct glsl_type *array_type)
{
   if (!glsl_type_is_array(array_type))
      return type;

   const struct glsl_type *elem_type =
      wrap_type_in_array(type, glsl_get_array_element(array_type));
   assert(glsl_get_explicit_stride(array_type) == 0);
   return glsl_array_type(elem_type, glsl_get_length(array_type), 0);
}

static int
num_array_levels_in_array_of_vector_type(const struct glsl_type *type)
{
   int num_levels = 0;
   while (true) {
      if (glsl_type_is_array_or_matrix(type)) {
         num_levels++;
         type = glsl_get_array_element(type);
      } else if (glsl_type_is_vector_or_scalar(type)) {
         return num_levels;
      } else {
         /* Not an array of vectors */
         return -1;
      }
   }
}

static void
init_field_for_type(struct field *field, struct field *parent,
                    const struct glsl_type *type,
                    const char *name,
                    struct split_var_state *state)
{
   *field = (struct field) {
      .parent = parent,
      .type = type,
   };

   const struct glsl_type *struct_type = glsl_without_array(type);
   if (glsl_type_is_struct(struct_type)) {
      field->num_fields = glsl_get_length(struct_type),
      field->fields = ralloc_array(state->mem_ctx, struct field,
                                   field->num_fields);
      for (unsigned i = 0; i < field->num_fields; i++) {
         char *field_name = NULL;
         if (name) {
            field_name = ralloc_asprintf(state->mem_ctx, "%s_%s", name,
                                         glsl_get_struct_elem_name(struct_type, i));
         } else {
            field_name = ralloc_asprintf(state->mem_ctx, "{unnamed %s}_%s",
                                         glsl_get_type_name(struct_type),
                                         glsl_get_struct_elem_name(struct_type, i));
         }
         init_field_for_type(&field->fields[i], field,
                             glsl_get_struct_field(struct_type, i),
                             field_name, state);
      }
   } else {
      const struct glsl_type *var_type = type;
      for (struct field *f = field->parent; f; f = f->parent)
         var_type = wrap_type_in_array(var_type, f->type);

      nir_variable_mode mode = state->base_var->data.mode;
      if (mode == nir_var_function_temp) {
         field->var = nir_local_variable_create(state->impl, var_type, name);
      } else {
         field->var = nir_variable_create(state->shader, mode, var_type, name);
      }
   }
}

static bool
split_var_list_structs(nir_shader *shader,
                       nir_function_impl *impl,
                       struct exec_list *vars,
                       struct hash_table *var_field_map,
                       void *mem_ctx)
{
   struct split_var_state state = {
      .mem_ctx = mem_ctx,
      .shader = shader,
      .impl = impl,
   };

   struct exec_list split_vars;
   exec_list_make_empty(&split_vars);

   /* To avoid list confusion (we'll be adding things as we split variables),
    * pull all of the variables we plan to split off of the list
    */
   nir_foreach_variable_safe(var, vars) {
      if (!glsl_type_is_struct(glsl_without_array(var->type)))
         continue;

      exec_node_remove(&var->node);
      exec_list_push_tail(&split_vars, &var->node);
   }

   nir_foreach_variable(var, &split_vars) {
      state.base_var = var;

      struct field *root_field = ralloc(mem_ctx, struct field);
      init_field_for_type(root_field, NULL, var->type, var->name, &state);
      _mesa_hash_table_insert(var_field_map, var, root_field);
   }

   return !exec_list_is_empty(&split_vars);
}

static void
split_struct_derefs_impl(nir_function_impl *impl,
                         struct hash_table *var_field_map,
                         nir_variable_mode modes,
                         void *mem_ctx)
{
   nir_builder b;
   nir_builder_init(&b, impl);

   nir_foreach_block(block, impl) {
      nir_foreach_instr_safe(instr, block) {
         if (instr->type != nir_instr_type_deref)
            continue;

         nir_deref_instr *deref = nir_instr_as_deref(instr);
         if (!(deref->mode & modes))
            continue;

         /* Clean up any dead derefs we find lying around.  They may refer to
          * variables we're planning to split.
          */
         if (nir_deref_instr_remove_if_unused(deref))
            continue;

         if (!glsl_type_is_vector_or_scalar(deref->type))
            continue;

         nir_variable *base_var = nir_deref_instr_get_variable(deref);
         struct hash_entry *entry =
            _mesa_hash_table_search(var_field_map, base_var);
         if (!entry)
            continue;

         struct field *root_field = entry->data;

         nir_deref_path path;
         nir_deref_path_init(&path, deref, mem_ctx);

         struct field *tail_field = root_field;
         for (unsigned i = 0; path.path[i]; i++) {
            if (path.path[i]->deref_type != nir_deref_type_struct)
               continue;

            assert(i > 0);
            assert(glsl_type_is_struct(path.path[i - 1]->type));
            assert(path.path[i - 1]->type ==
                   glsl_without_array(tail_field->type));

            tail_field = &tail_field->fields[path.path[i]->strct.index];
         }
         nir_variable *split_var = tail_field->var;

         nir_deref_instr *new_deref = NULL;
         for (unsigned i = 0; path.path[i]; i++) {
            nir_deref_instr *p = path.path[i];
            b.cursor = nir_after_instr(&p->instr);

            switch (p->deref_type) {
            case nir_deref_type_var:
               assert(new_deref == NULL);
               new_deref = nir_build_deref_var(&b, split_var);
               break;

            case nir_deref_type_array:
            case nir_deref_type_array_wildcard:
               new_deref = nir_build_deref_follower(&b, new_deref, p);
               break;

            case nir_deref_type_struct:
               /* Nothing to do; we're splitting structs */
               break;

            default:
               unreachable("Invalid deref type in path");
            }
         }

         assert(new_deref->type == deref->type);
         nir_ssa_def_rewrite_uses(&deref->dest.ssa,
                                  nir_src_for_ssa(&new_deref->dest.ssa));
         nir_deref_instr_remove_if_unused(deref);
      }
   }
}

/** A pass for splitting structs into multiple variables
 *
 * This pass splits arrays of structs into multiple variables, one for each
 * (possibly nested) structure member.  After this pass completes, no
 * variables of the given mode will contain a struct type.
 */
bool
nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes)
{
   void *mem_ctx = ralloc_context(NULL);
   struct hash_table *var_field_map =
      _mesa_pointer_hash_table_create(mem_ctx);

   assert((modes & (nir_var_shader_temp | nir_var_function_temp)) == modes);

   bool has_global_splits = false;
   if (modes & nir_var_shader_temp) {
      has_global_splits = split_var_list_structs(shader, NULL,
                                                 &shader->globals,
                                                 var_field_map, mem_ctx);
   }

   bool progress = false;
   nir_foreach_function(function, shader) {
      if (!function->impl)
         continue;

      bool has_local_splits = false;
      if (modes & nir_var_function_temp) {
         has_local_splits = split_var_list_structs(shader, function->impl,
                                                   &function->impl->locals,
                                                   var_field_map, mem_ctx);
      }

      if (has_global_splits || has_local_splits) {
         split_struct_derefs_impl(function->impl, var_field_map,
                                  modes, mem_ctx);

         nir_metadata_preserve(function->impl, nir_metadata_block_index |
                                               nir_metadata_dominance);
         progress = true;
      }
   }

   ralloc_free(mem_ctx);

   return progress;
}

struct array_level_info {
   unsigned array_len;
   bool split;
};

struct array_split {
   /* Only set if this is the tail end of the splitting */
   nir_variable *var;

   unsigned num_splits;
   struct array_split *splits;
};

struct array_var_info {
   nir_variable *base_var;

   const struct glsl_type *split_var_type;

   bool split_var;
   struct array_split root_split;

   unsigned num_levels;
   struct array_level_info levels[0];
};

static bool
init_var_list_array_infos(struct exec_list *vars,
                          struct hash_table *var_info_map,
                          void *mem_ctx)
{
   bool has_array = false;

   nir_foreach_variable(var, vars) {
      int num_levels = num_array_levels_in_array_of_vector_type(var->type);
      if (num_levels <= 0)
         continue;

      struct array_var_info *info =
         rzalloc_size(mem_ctx, sizeof(*info) +
                               num_levels * sizeof(info->levels[0]));

      info->base_var = var;
      info->num_levels = num_levels;

      const struct glsl_type *type = var->type;
      for (int i = 0; i < num_levels; i++) {
         assert(glsl_get_explicit_stride(type) == 0);
         info->levels[i].array_len = glsl_get_length(type);
         type = glsl_get_array_element(type);

         /* All levels start out initially as split */
         info->levels[i].split = true;
      }

      _mesa_hash_table_insert(var_info_map, var, info);
      has_array = true;
   }

   return has_array;
}

static struct array_var_info *
get_array_var_info(nir_variable *var,
                   struct hash_table *var_info_map)
{
   struct hash_entry *entry =
      _mesa_hash_table_search(var_info_map, var);
   return entry ? entry->data : NULL;
}

static struct array_var_info *
get_array_deref_info(nir_deref_instr *deref,
                     struct hash_table *var_info_map,
                     nir_variable_mode modes)
{
   if (!(deref->mode & modes))
      return NULL;

   return get_array_var_info(nir_deref_instr_get_variable(deref),
                             var_info_map);
}

static void
mark_array_deref_used(nir_deref_instr *deref,
                      struct hash_table *var_info_map,
                      nir_variable_mode modes,
                      void *mem_ctx)
{
   struct array_var_info *info =
      get_array_deref_info(deref, var_info_map, modes);
   if (!info)
      return;

   nir_deref_path path;
   nir_deref_path_init(&path, deref, mem_ctx);

   /* Walk the path and look for indirects.  If we have an array deref with an
    * indirect, mark the given level as not being split.
    */
   for (unsigned i = 0; i < info->num_levels; i++) {
      nir_deref_instr *p = path.path[i + 1];
      if (p->deref_type == nir_deref_type_array &&
          !nir_src_is_const(p->arr.index))
         info->levels[i].split = false;
   }
}

static void
mark_array_usage_impl(nir_function_impl *impl,
                      struct hash_table *var_info_map,
                      nir_variable_mode modes,
                      void *mem_ctx)
{
   nir_foreach_block(block, impl) {
      nir_foreach_instr(instr, block) {
         if (instr->type != nir_instr_type_intrinsic)
            continue;

         nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
         switch (intrin->intrinsic) {
         case nir_intrinsic_copy_deref:
            mark_array_deref_used(nir_src_as_deref(intrin->src[1]),
                                  var_info_map, modes, mem_ctx);
            /* Fall Through */

         case nir_intrinsic_load_deref:
         case nir_intrinsic_store_deref:
            mark_array_deref_used(nir_src_as_deref(intrin->src[0]),
                                  var_info_map, modes, mem_ctx);
            break;

         default:
            break;
         }
      }
   }
}

static void
create_split_array_vars(struct array_var_info *var_info,
                        unsigned level,
                        struct array_split *split,
                        const char *name,
                        nir_shader *shader,
                        nir_function_impl *impl,
                        void *mem_ctx)
{
   while (level < var_info->num_levels && !var_info->levels[level].split) {
      name = ralloc_asprintf(mem_ctx, "%s[*]", name);
      level++;
   }

   if (level == var_info->num_levels) {
      /* We add parens to the variable name so it looks like "(foo[2][*])" so
       * that further derefs will look like "(foo[2][*])[ssa_6]"
       */
      name = ralloc_asprintf(mem_ctx, "(%s)", name);

      nir_variable_mode mode = var_info->base_var->data.mode;
      if (mode == nir_var_function_temp) {
         split->var = nir_local_variable_create(impl,
                                                var_info->split_var_type, name);
      } else {
         split->var = nir_variable_create(shader, mode,
                                          var_info->split_var_type, name);
      }
   } else {
      assert(var_info->levels[level].split);
      split->num_splits = var_info->levels[level].array_len;
      split->splits = rzalloc_array(mem_ctx, struct array_split,
                                    split->num_splits);
      for (unsigned i = 0; i < split->num_splits; i++) {
         create_split_array_vars(var_info, level + 1, &split->splits[i],
                                 ralloc_asprintf(mem_ctx, "%s[%d]", name, i),
                                 shader, impl, mem_ctx);
      }
   }
}

static bool
split_var_list_arrays(nir_shader *shader,
                      nir_function_impl *impl,
                      struct exec_list *vars,
                      struct hash_table *var_info_map,
                      void *mem_ctx)
{
   struct exec_list split_vars;
   exec_list_make_empty(&split_vars);

   nir_foreach_variable_safe(var, vars) {
      struct array_var_info *info = get_array_var_info(var, var_info_map);
      if (!info)
         continue;

      bool has_split = false;
      const struct glsl_type *split_type =
         glsl_without_array_or_matrix(var->type);
      for (int i = info->num_levels - 1; i >= 0; i--) {
         if (info->levels[i].split) {
            has_split = true;
            continue;
         }

         /* If the original type was a matrix type, we'd like to keep that so
          * we don't convert matrices into arrays.
          */
         if (i == info->num_levels - 1 &&
             glsl_type_is_matrix(glsl_without_array(var->type))) {
            split_type = glsl_matrix_type(glsl_get_base_type(split_type),
                                          glsl_get_components(split_type),
                                          info->levels[i].array_len);
         } else {
            split_type = glsl_array_type(split_type, info->levels[i].array_len, 0);
         }
      }

      if (has_split) {
         info->split_var_type = split_type;
         /* To avoid list confusion (we'll be adding things as we split
          * variables), pull all of the variables we plan to split off of the
          * main variable list.
          */
         exec_node_remove(&var->node);
         exec_list_push_tail(&split_vars, &var->node);
      } else {
         assert(split_type == var->type);
         /* If we're not modifying this variable, delete the info so we skip
          * it faster in later passes.
          */
         _mesa_hash_table_remove_key(var_info_map, var);
      }
   }

   nir_foreach_variable(var, &split_vars) {
      struct array_var_info *info = get_array_var_info(var, var_info_map);
      create_split_array_vars(info, 0, &info->root_split, var->name,
                              shader, impl, mem_ctx);
   }

   return !exec_list_is_empty(&split_vars);
}

static bool
deref_has_split_wildcard(nir_deref_path *path,
                         struct array_var_info *info)
{
   if (info == NULL)
      return false;

   assert(path->path[0]->var == info->base_var);
   for (unsigned i = 0; i < info->num_levels; i++) {
      if (path->path[i + 1]->deref_type == nir_deref_type_array_wildcard &&
          info->levels[i].split)
         return true;
   }

   return false;
}

static bool
array_path_is_out_of_bounds(nir_deref_path *path,
                            struct array_var_info *info)
{
   if (info == NULL)
      return false;

   assert(path->path[0]->var == info->base_var);
   for (unsigned i = 0; i < info->num_levels; i++) {
      nir_deref_instr *p = path->path[i + 1];
      if (p->deref_type == nir_deref_type_array_wildcard)
         continue;

      if (nir_src_is_const(p->arr.index) &&
          nir_src_as_uint(p->arr.index) >= info->levels[i].array_len)
         return true;
   }

   return false;
}

static void
emit_split_copies(nir_builder *b,
                  struct array_var_info *dst_info, nir_deref_path *dst_path,
                  unsigned dst_level, nir_deref_instr *dst,
                  struct array_var_info *src_info, nir_deref_path *src_path,
                  unsigned src_level, nir_deref_instr *src)
{
   nir_deref_instr *dst_p, *src_p;

   while ((dst_p = dst_path->path[dst_level + 1])) {
      if (dst_p->deref_type == nir_deref_type_array_wildcard)
         break;

      dst = nir_build_deref_follower(b, dst, dst_p);
      dst_level++;
   }

   while ((src_p = src_path->path[src_level + 1])) {
      if (src_p->deref_type == nir_deref_type_array_wildcard)
         break;

      src = nir_build_deref_follower(b, src, src_p);
      src_level++;
   }

   if (src_p == NULL || dst_p == NULL) {
      assert(src_p == NULL && dst_p == NULL);
      nir_copy_deref(b, dst, src);
   } else {
      assert(dst_p->deref_type == nir_deref_type_array_wildcard &&
             src_p->deref_type == nir_deref_type_array_wildcard);

      if ((dst_info && dst_info->levels[dst_level].split) ||
          (src_info && src_info->levels[src_level].split)) {
         /* There are no indirects at this level on one of the source or the
          * destination so we are lowering it.
          */
         assert(glsl_get_length(dst_path->path[dst_level]->type) ==
                glsl_get_length(src_path->path[src_level]->type));
         unsigned len = glsl_get_length(dst_path->path[dst_level]->type);
         for (unsigned i = 0; i < len; i++) {
            nir_ssa_def *idx = nir_imm_int(b, i);
            emit_split_copies(b, dst_info, dst_path, dst_level + 1,
                              nir_build_deref_array(b, dst, idx),
                              src_info, src_path, src_level + 1,
                              nir_build_deref_array(b, src, idx));
         }
      } else {
         /* Neither side is being split so we just keep going */
         emit_split_copies(b, dst_info, dst_path, dst_level + 1,
                           nir_build_deref_array_wildcard(b, dst),
                           src_info, src_path, src_level + 1,
                           nir_build_deref_array_wildcard(b, src));
      }
   }
}

static void
split_array_copies_impl(nir_function_impl *impl,
                        struct hash_table *var_info_map,
                        nir_variable_mode modes,
                        void *mem_ctx)
{
   nir_builder b;
   nir_builder_init(&b, impl);

   nir_foreach_block(block, impl) {
      nir_foreach_instr_safe(instr, block) {
         if (instr->type != nir_instr_type_intrinsic)
            continue;

         nir_intrinsic_instr *copy = nir_instr_as_intrinsic(instr);
         if (copy->intrinsic != nir_intrinsic_copy_deref)
            continue;

         nir_deref_instr *dst_deref = nir_src_as_deref(copy->src[0]);
         nir_deref_instr *src_deref = nir_src_as_deref(copy->src[1]);

         struct array_var_info *dst_info =
            get_array_deref_info(dst_deref, var_info_map, modes);
         struct array_var_info *src_info =
            get_array_deref_info(src_deref, var_info_map, modes);

         if (!src_info && !dst_info)
            continue;

         nir_deref_path dst_path, src_path;
         nir_deref_path_init(&dst_path, dst_deref, mem_ctx);
         nir_deref_path_init(&src_path, src_deref, mem_ctx);

         if (!deref_has_split_wildcard(&dst_path, dst_info) &&
             !deref_has_split_wildcard(&src_path, src_info))
            continue;

         b.cursor = nir_instr_remove(&copy->instr);

         emit_split_copies(&b, dst_info, &dst_path, 0, dst_path.path[0],
                               src_info, &src_path, 0, src_path.path[0]);
      }
   }
}

static void
split_array_access_impl(nir_function_impl *impl,
                        struct hash_table *var_info_map,
                        nir_variable_mode modes,
                        void *mem_ctx)
{
   nir_builder b;
   nir_builder_init(&b, impl);

   nir_foreach_block(block, impl) {
      nir_foreach_instr_safe(instr, block) {
         if (instr->type == nir_instr_type_deref) {
            /* Clean up any dead derefs we find lying around.  They may refer
             * to variables we're planning to split.
             */
            nir_deref_instr *deref = nir_instr_as_deref(instr);
            if (deref->mode & modes)
               nir_deref_instr_remove_if_unused(deref);
            continue;
         }

         if (instr->type != nir_instr_type_intrinsic)
            continue;

         nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
         if (intrin->intrinsic != nir_intrinsic_load_deref &&
             intrin->intrinsic != nir_intrinsic_store_deref &&
             intrin->intrinsic != nir_intrinsic_copy_deref)
            continue;

         const unsigned num_derefs =
            intrin->intrinsic == nir_intrinsic_copy_deref ? 2 : 1;

         for (unsigned d = 0; d < num_derefs; d++) {
            nir_deref_instr *deref = nir_src_as_deref(intrin->src[d]);

            struct array_var_info *info =
               get_array_deref_info(deref, var_info_map, modes);
            if (!info)
               continue;

            nir_deref_path path;
            nir_deref_path_init(&path, deref, mem_ctx);

            b.cursor = nir_before_instr(&intrin->instr);

            if (array_path_is_out_of_bounds(&path, info)) {
               /* If one of the derefs is out-of-bounds, we just delete the
                * instruction.  If a destination is out of bounds, then it may
                * have been in-bounds prior to shrinking so we don't want to
                * accidentally stomp something.  However, we've already proven
                * that it will never be read so it's safe to delete.  If a
                * source is out of bounds then it is loading random garbage.
                * For loads, we replace their uses with an undef instruction
                * and for copies we just delete the copy since it was writing
                * undefined garbage anyway and we may as well leave the random
                * garbage in the destination alone.
                */
               if (intrin->intrinsic == nir_intrinsic_load_deref) {
                  nir_ssa_def *u =
                     nir_ssa_undef(&b, intrin->dest.ssa.num_components,
                                       intrin->dest.ssa.bit_size);
                  nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
                                           nir_src_for_ssa(u));
               }
               nir_instr_remove(&intrin->instr);
               for (unsigned i = 0; i < num_derefs; i++)
                  nir_deref_instr_remove_if_unused(nir_src_as_deref(intrin->src[i]));
               break;
            }

            struct array_split *split = &info->root_split;
            for (unsigned i = 0; i < info->num_levels; i++) {
               if (info->levels[i].split) {
                  nir_deref_instr *p = path.path[i + 1];
                  unsigned index = nir_src_as_uint(p->arr.index);
                  assert(index < info->levels[i].array_len);
                  split = &split->splits[index];
               }
            }
            assert(!split->splits && split->var);

            nir_deref_instr *new_deref = nir_build_deref_var(&b, split->var);
            for (unsigned i = 0; i < info->num_levels; i++) {
               if (!info->levels[i].split) {
                  new_deref = nir_build_deref_follower(&b, new_deref,
                                                       path.path[i + 1]);
               }
            }
            assert(new_deref->type == deref->type);

            /* Rewrite the deref source to point to the split one */
            nir_instr_rewrite_src(&intrin->instr, &intrin->src[d],
                                  nir_src_for_ssa(&new_deref->dest.ssa));
            nir_deref_instr_remove_if_unused(deref);
         }
      }
   }
}

/** A pass for splitting arrays of vectors into multiple variables
 *
 * This pass looks at arrays (possibly multiple levels) of vectors (not
 * structures or other types) and tries to split them into piles of variables,
 * one for each array element.  The heuristic used is simple: If a given array
 * level is never used with an indirect, that array level will get split.
 *
 * This pass probably could handles structures easily enough but making a pass
 * that could see through an array of structures of arrays would be difficult
 * so it's best to just run nir_split_struct_vars first.
 */
bool
nir_split_array_vars(nir_shader *shader, nir_variable_mode modes)
{
   void *mem_ctx = ralloc_context(NULL);
   struct hash_table *var_info_map = _mesa_pointer_hash_table_create(mem_ctx);

   assert((modes & (nir_var_shader_temp | nir_var_function_temp)) == modes);

   bool has_global_array = false;
   if (modes & nir_var_shader_temp) {
      has_global_array = init_var_list_array_infos(&shader->globals,
                                                   var_info_map, mem_ctx);
   }

   bool has_any_array = false;
   nir_foreach_function(function, shader) {
      if (!function->impl)
         continue;

      bool has_local_array = false;
      if (modes & nir_var_function_temp) {
         has_local_array = init_var_list_array_infos(&function->impl->locals,
                                                     var_info_map, mem_ctx);
      }

      if (has_global_array || has_local_array) {
         has_any_array = true;
         mark_array_usage_impl(function->impl, var_info_map, modes, mem_ctx);
      }
   }

   /* If we failed to find any arrays of arrays, bail early. */
   if (!has_any_array) {
      ralloc_free(mem_ctx);
      return false;
   }

   bool has_global_splits = false;
   if (modes & nir_var_shader_temp) {
      has_global_splits = split_var_list_arrays(shader, NULL,
                                                &shader->globals,
                                                var_info_map, mem_ctx);
   }

   bool progress = false;
   nir_foreach_function(function, shader) {
      if (!function->impl)
         continue;

      bool has_local_splits = false;
      if (modes & nir_var_function_temp) {
         has_local_splits = split_var_list_arrays(shader, function->impl,
                                                  &function->impl->locals,
                                                  var_info_map, mem_ctx);
      }

      if (has_global_splits || has_local_splits) {
         split_array_copies_impl(function->impl, var_info_map, modes, mem_ctx);
         split_array_access_impl(function->impl, var_info_map, modes, mem_ctx);

         nir_metadata_preserve(function->impl, nir_metadata_block_index |
                                               nir_metadata_dominance);
         progress = true;
      }
   }

   ralloc_free(mem_ctx);

   return progress;
}

struct array_level_usage {
   unsigned array_len;

   /* The value UINT_MAX will be used to indicate an indirect */
   unsigned max_read;
   unsigned max_written;

   /* True if there is a copy that isn't to/from a shrinkable array */
   bool has_external_copy;
   struct set *levels_copied;
};

struct vec_var_usage {
   /* Convenience set of all components this variable has */
   nir_component_mask_t all_comps;

   nir_component_mask_t comps_read;
   nir_component_mask_t comps_written;

   nir_component_mask_t comps_kept;

   /* True if there is a copy that isn't to/from a shrinkable vector */
   bool has_external_copy;
   struct set *vars_copied;

   unsigned num_levels;
   struct array_level_usage levels[0];
};

static struct vec_var_usage *
get_vec_var_usage(nir_variable *var,
                  struct hash_table *var_usage_map,
                  bool add_usage_entry, void *mem_ctx)
{
   struct hash_entry *entry = _mesa_hash_table_search(var_usage_map, var);
   if (entry)
      return entry->data;

   if (!add_usage_entry)
      return NULL;

   /* Check to make sure that we are working with an array of vectors.  We
    * don't bother to shrink single vectors because we figure that we can
    * clean it up better with SSA than by inserting piles of vecN instructions
    * to compact results.
    */
   int num_levels = num_array_levels_in_array_of_vector_type(var->type);
   if (num_levels < 1)
      return NULL; /* Not an array of vectors */

   struct vec_var_usage *usage =
      rzalloc_size(mem_ctx, sizeof(*usage) +
                            num_levels * sizeof(usage->levels[0]));

   usage->num_levels = num_levels;
   const struct glsl_type *type = var->type;
   for (unsigned i = 0; i < num_levels; i++) {
      usage->levels[i].array_len = glsl_get_length(type);
      assert(glsl_get_explicit_stride(type) == 0);
      type = glsl_get_array_element(type);
   }
   assert(glsl_type_is_vector_or_scalar(type));

   usage->all_comps = (1 << glsl_get_components(type)) - 1;

   _mesa_hash_table_insert(var_usage_map, var, usage);

   return usage;
}

static struct vec_var_usage *
get_vec_deref_usage(nir_deref_instr *deref,
                    struct hash_table *var_usage_map,
                    nir_variable_mode modes,
                    bool add_usage_entry, void *mem_ctx)
{
   if (!(deref->mode & modes))
      return NULL;

   return get_vec_var_usage(nir_deref_instr_get_variable(deref),
                            var_usage_map, add_usage_entry, mem_ctx);
}

static void
mark_deref_used(nir_deref_instr *deref,
                nir_component_mask_t comps_read,
                nir_component_mask_t comps_written,
                nir_deref_instr *copy_deref,
                struct hash_table *var_usage_map,
                nir_variable_mode modes,
                void *mem_ctx)
{
   if (!(deref->mode & modes))
      return;

   nir_variable *var = nir_deref_instr_get_variable(deref);

   struct vec_var_usage *usage =
      get_vec_var_usage(var, var_usage_map, true, mem_ctx);
   if (!usage)
      return;

   usage->comps_read |= comps_read & usage->all_comps;
   usage->comps_written |= comps_written & usage->all_comps;

   struct vec_var_usage *copy_usage = NULL;
   if (copy_deref) {
      copy_usage = get_vec_deref_usage(copy_deref, var_usage_map, modes,
                                       true, mem_ctx);
      if (copy_usage) {
         if (usage->vars_copied == NULL) {
            usage->vars_copied = _mesa_pointer_set_create(mem_ctx);
         }
         _mesa_set_add(usage->vars_copied, copy_usage);
      } else {
         usage->has_external_copy = true;
      }
   }

   nir_deref_path path;
   nir_deref_path_init(&path, deref, mem_ctx);

   nir_deref_path copy_path;
   if (copy_usage)
      nir_deref_path_init(&copy_path, copy_deref, mem_ctx);

   unsigned copy_i = 0;
   for (unsigned i = 0; i < usage->num_levels; i++) {
      struct array_level_usage *level = &usage->levels[i];
      nir_deref_instr *deref = path.path[i + 1];
      assert(deref->deref_type == nir_deref_type_array ||
             deref->deref_type == nir_deref_type_array_wildcard);

      unsigned max_used;
      if (deref->deref_type == nir_deref_type_array) {
         max_used = nir_src_is_const(deref->arr.index) ?
                    nir_src_as_uint(deref->arr.index) : UINT_MAX;
      } else {
         /* For wildcards, we read or wrote the whole thing. */
         assert(deref->deref_type == nir_deref_type_array_wildcard);
         max_used = level->array_len - 1;

         if (copy_usage) {
            /* Match each wildcard level with the level on copy_usage */
            for (; copy_path.path[copy_i + 1]; copy_i++) {
               if (copy_path.path[copy_i + 1]->deref_type ==
                   nir_deref_type_array_wildcard)
                  break;
            }
            struct array_level_usage *copy_level =
               &copy_usage->levels[copy_i++];

            if (level->levels_copied == NULL) {
               level->levels_copied = _mesa_pointer_set_create(mem_ctx);
            }
            _mesa_set_add(level->levels_copied, copy_level);
         } else {
            /* We have a wildcard and it comes from a variable we aren't
             * tracking; flag it and we'll know to not shorten this array.
             */
            level->has_external_copy = true;
         }
      }

      if (comps_written)
         level->max_written = MAX2(level->max_written, max_used);
      if (comps_read)
         level->max_read = MAX2(level->max_read, max_used);
   }
}

static bool
src_is_load_deref(nir_src src, nir_src deref_src)
{
   assert(src.is_ssa);
   assert(deref_src.is_ssa);

   if (src.ssa->parent_instr->type != nir_instr_type_intrinsic)
      return false;

   nir_intrinsic_instr *load = nir_instr_as_intrinsic(src.ssa->parent_instr);
   if (load->intrinsic != nir_intrinsic_load_deref)
      return false;

   assert(load->src[0].is_ssa);

   return load->src[0].ssa == deref_src.ssa;
}

/* Returns all non-self-referential components of a store instruction.  A
 * component is self-referential if it comes from the same component of a load
 * instruction on the same deref.  If the only data in a particular component
 * of a variable came directly from that component then it's undefined.  The
 * only way to get defined data into a component of a variable is for it to
 * get written there by something outside or from a different component.
 *
 * This is a fairly common pattern in shaders that come from either GLSL IR or
 * GLSLang because both glsl_to_nir and GLSLang implement write-masking with
 * load-vec-store.
 */
static nir_component_mask_t
get_non_self_referential_store_comps(nir_intrinsic_instr *store)
{
   nir_component_mask_t comps = nir_intrinsic_write_mask(store);

   assert(store->src[1].is_ssa);
   nir_instr *src_instr = store->src[1].ssa->parent_instr;
   if (src_instr->type != nir_instr_type_alu)
      return comps;

   nir_alu_instr *src_alu = nir_instr_as_alu(src_instr);

   if (src_alu->op == nir_op_imov ||
       src_alu->op == nir_op_fmov) {
      /* If it's just a swizzle of a load from the same deref, discount any
       * channels that don't move in the swizzle.
       */
      if (src_is_load_deref(src_alu->src[0].src, store->src[0])) {
         for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
            if (src_alu->src[0].swizzle[i] == i)
               comps &= ~(1u << i);
         }
      }
   } else if (src_alu->op == nir_op_vec2 ||
              src_alu->op == nir_op_vec3 ||
              src_alu->op == nir_op_vec4) {
      /* If it's a vec, discount any channels that are just loads from the
       * same deref put in the same spot.
       */
      for (unsigned i = 0; i < nir_op_infos[src_alu->op].num_inputs; i++) {
         if (src_is_load_deref(src_alu->src[i].src, store->src[0]) &&
             src_alu->src[i].swizzle[0] == i)
            comps &= ~(1u << i);
      }
   }

   return comps;
}

static void
find_used_components_impl(nir_function_impl *impl,
                          struct hash_table *var_usage_map,
                          nir_variable_mode modes,
                          void *mem_ctx)
{
   nir_foreach_block(block, impl) {
      nir_foreach_instr(instr, block) {
         if (instr->type != nir_instr_type_intrinsic)
            continue;

         nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
         switch (intrin->intrinsic) {
         case nir_intrinsic_load_deref:
            mark_deref_used(nir_src_as_deref(intrin->src[0]),
                            nir_ssa_def_components_read(&intrin->dest.ssa), 0,
                            NULL, var_usage_map, modes, mem_ctx);
            break;

         case nir_intrinsic_store_deref:
            mark_deref_used(nir_src_as_deref(intrin->src[0]),
                            0, get_non_self_referential_store_comps(intrin),
                            NULL, var_usage_map, modes, mem_ctx);
            break;

         case nir_intrinsic_copy_deref: {
            /* Just mark everything used for copies. */
            nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]);
            nir_deref_instr *src = nir_src_as_deref(intrin->src[1]);
            mark_deref_used(dst, 0, ~0, src, var_usage_map, modes, mem_ctx);
            mark_deref_used(src, ~0, 0, dst, var_usage_map, modes, mem_ctx);
            break;
         }

         default:
            break;
         }
      }
   }
}

static bool
shrink_vec_var_list(struct exec_list *vars,
                    struct hash_table *var_usage_map)
{
   /* Initialize the components kept field of each variable.  This is the
    * AND of the components written and components read.  If a component is
    * written but never read, it's dead.  If it is read but never written,
    * then all values read are undefined garbage and we may as well not read
    * them.
    *
    * The same logic applies to the array length.  We make the array length
    * the minimum needed required length between read and write and plan to
    * discard any OOB access.  The one exception here is indirect writes
    * because we don't know where they will land and we can't shrink an array
    * with indirect writes because previously in-bounds writes may become
    * out-of-bounds and have undefined behavior.
    *
    * Also, if we have a copy that to/from something we can't shrink, we need
    * to leave components and array_len of any wildcards alone.
    */
   nir_foreach_variable(var, vars) {
      struct vec_var_usage *usage =
         get_vec_var_usage(var, var_usage_map, false, NULL);
      if (!usage)
         continue;

      assert(usage->comps_kept == 0);
      if (usage->has_external_copy)
         usage->comps_kept = usage->all_comps;
      else
         usage->comps_kept = usage->comps_read & usage->comps_written;

      for (unsigned i = 0; i < usage->num_levels; i++) {
         struct array_level_usage *level = &usage->levels[i];
         assert(level->array_len > 0);

         if (level->max_written == UINT_MAX || level->has_external_copy)
            continue; /* Can't shrink */

         unsigned max_used = MIN2(level->max_read, level->max_written);
         level->array_len = MIN2(max_used, level->array_len - 1) + 1;
      }
   }

   /* In order for variable copies to work, we have to have the same data type
    * on the source and the destination.  In order to satisfy this, we run a
    * little fixed-point algorithm to transitively ensure that we get enough
    * components and array elements for this to hold for all copies.
    */
   bool fp_progress;
   do {
      fp_progress = false;
      nir_foreach_variable(var, vars) {
         struct vec_var_usage *var_usage =
            get_vec_var_usage(var, var_usage_map, false, NULL);
         if (!var_usage || !var_usage->vars_copied)
            continue;

         set_foreach(var_usage->vars_copied, copy_entry) {
            struct vec_var_usage *copy_usage = (void *)copy_entry->key;
            if (copy_usage->comps_kept != var_usage->comps_kept) {
               nir_component_mask_t comps_kept =
                  (var_usage->comps_kept | copy_usage->comps_kept);
               var_usage->comps_kept = comps_kept;
               copy_usage->comps_kept = comps_kept;
               fp_progress = true;
            }
         }

         for (unsigned i = 0; i < var_usage->num_levels; i++) {
            struct array_level_usage *var_level = &var_usage->levels[i];
            if (!var_level->levels_copied)
               continue;

            set_foreach(var_level->levels_copied, copy_entry) {
               struct array_level_usage *copy_level = (void *)copy_entry->key;
               if (var_level->array_len != copy_level->array_len) {
                  unsigned array_len =
                     MAX2(var_level->array_len, copy_level->array_len);
                  var_level->array_len = array_len;
                  copy_level->array_len = array_len;
                  fp_progress = true;
               }
            }
         }
      }
   } while (fp_progress);

   bool vars_shrunk = false;
   nir_foreach_variable_safe(var, vars) {
      struct vec_var_usage *usage =
         get_vec_var_usage(var, var_usage_map, false, NULL);
      if (!usage)
         continue;

      bool shrunk = false;
      const struct glsl_type *vec_type = var->type;
      for (unsigned i = 0; i < usage->num_levels; i++) {
         /* If we've reduced the array to zero elements at some level, just
          * set comps_kept to 0 and delete the variable.
          */
         if (usage->levels[i].array_len == 0) {
            usage->comps_kept = 0;
            break;
         }

         assert(usage->levels[i].array_len <= glsl_get_length(vec_type));
         if (usage->levels[i].array_len < glsl_get_length(vec_type))
            shrunk = true;
         vec_type = glsl_get_array_element(vec_type);
      }
      assert(glsl_type_is_vector_or_scalar(vec_type));

      assert(usage->comps_kept == (usage->comps_kept & usage->all_comps));
      if (usage->comps_kept != usage->all_comps)
         shrunk = true;

      if (usage->comps_kept == 0) {
         /* This variable is dead, remove it */
         vars_shrunk = true;
         exec_node_remove(&var->node);
         continue;
      }

      if (!shrunk) {
         /* This variable doesn't need to be shrunk.  Remove it from the
          * hash table so later steps will ignore it.
          */
         _mesa_hash_table_remove_key(var_usage_map, var);
         continue;
      }

      /* Build the new var type */
      unsigned new_num_comps = util_bitcount(usage->comps_kept);
      const struct glsl_type *new_type =
         glsl_vector_type(glsl_get_base_type(vec_type), new_num_comps);
      for (int i = usage->num_levels - 1; i >= 0; i--) {
         assert(usage->levels[i].array_len > 0);
         /* If the original type was a matrix type, we'd like to keep that so
          * we don't convert matrices into arrays.
          */
         if (i == usage->num_levels - 1 &&
             glsl_type_is_matrix(glsl_without_array(var->type)) &&
             new_num_comps > 1 && usage->levels[i].array_len > 1) {
            new_type = glsl_matrix_type(glsl_get_base_type(new_type),
                                        new_num_comps,
                                        usage->levels[i].array_len);
         } else {
            new_type = glsl_array_type(new_type, usage->levels[i].array_len, 0);
         }
      }
      var->type = new_type;

      vars_shrunk = true;
   }

   return vars_shrunk;
}

static bool
vec_deref_is_oob(nir_deref_instr *deref,
                 struct vec_var_usage *usage)
{
   nir_deref_path path;
   nir_deref_path_init(&path, deref, NULL);

   bool oob = false;
   for (unsigned i = 0; i < usage->num_levels; i++) {
      nir_deref_instr *p = path.path[i + 1];
      if (p->deref_type == nir_deref_type_array_wildcard)
         continue;

      if (nir_src_is_const(p->arr.index) &&
          nir_src_as_uint(p->arr.index) >= usage->levels[i].array_len) {
         oob = true;
         break;
      }
   }

   nir_deref_path_finish(&path);

   return oob;
}

static bool
vec_deref_is_dead_or_oob(nir_deref_instr *deref,
                         struct hash_table *var_usage_map,
                         nir_variable_mode modes)
{
   struct vec_var_usage *usage =
      get_vec_deref_usage(deref, var_usage_map, modes, false, NULL);
   if (!usage)
      return false;

   return usage->comps_kept == 0 || vec_deref_is_oob(deref, usage);
}

static void
shrink_vec_var_access_impl(nir_function_impl *impl,
                           struct hash_table *var_usage_map,
                           nir_variable_mode modes)
{
   nir_builder b;
   nir_builder_init(&b, impl);

   nir_foreach_block(block, impl) {
      nir_foreach_instr_safe(instr, block) {
         switch (instr->type) {
         case nir_instr_type_deref: {
            nir_deref_instr *deref = nir_instr_as_deref(instr);
            if (!(deref->mode & modes))
               break;

            /* Clean up any dead derefs we find lying around.  They may refer
             * to variables we've deleted.
             */
            if (nir_deref_instr_remove_if_unused(deref))
               break;

            /* Update the type in the deref to keep the types consistent as
             * you walk down the chain.  We don't need to check if this is one
             * of the derefs we're shrinking because this is a no-op if it
             * isn't.  The worst that could happen is that we accidentally fix
             * an invalid deref.
             */
            if (deref->deref_type == nir_deref_type_var) {
               deref->type = deref->var->type;
            } else if (deref->deref_type == nir_deref_type_array ||
                       deref->deref_type == nir_deref_type_array_wildcard) {
               nir_deref_instr *parent = nir_deref_instr_parent(deref);
               assert(glsl_type_is_array(parent->type) ||
                      glsl_type_is_matrix(parent->type));
               deref->type = glsl_get_array_element(parent->type);
            }
            break;
         }

         case nir_instr_type_intrinsic: {
            nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);

            /* If we have a copy whose source or destination has been deleted
             * because we determined the variable was dead, then we just
             * delete the copy instruction.  If the source variable was dead
             * then it was writing undefined garbage anyway and if it's the
             * destination variable that's dead then the write isn't needed.
             */
            if (intrin->intrinsic == nir_intrinsic_copy_deref) {
               nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]);
               nir_deref_instr *src = nir_src_as_deref(intrin->src[1]);
               if (vec_deref_is_dead_or_oob(dst, var_usage_map, modes) ||
                   vec_deref_is_dead_or_oob(src, var_usage_map, modes)) {
                  nir_instr_remove(&intrin->instr);
                  nir_deref_instr_remove_if_unused(dst);
                  nir_deref_instr_remove_if_unused(src);
               }
               continue;
            }

            if (intrin->intrinsic != nir_intrinsic_load_deref &&
                intrin->intrinsic != nir_intrinsic_store_deref)
               continue;

            nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
            if (!(deref->mode & modes))
               continue;

            struct vec_var_usage *usage =
               get_vec_deref_usage(deref, var_usage_map, modes, false, NULL);
            if (!usage)
               continue;

            if (usage->comps_kept == 0 || vec_deref_is_oob(deref, usage)) {
               if (intrin->intrinsic == nir_intrinsic_load_deref) {
                  nir_ssa_def *u =
                     nir_ssa_undef(&b, intrin->dest.ssa.num_components,
                                       intrin->dest.ssa.bit_size);
                  nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
                                           nir_src_for_ssa(u));
               }
               nir_instr_remove(&intrin->instr);
               nir_deref_instr_remove_if_unused(deref);
               continue;
            }

            if (intrin->intrinsic == nir_intrinsic_load_deref) {
               b.cursor = nir_after_instr(&intrin->instr);

               nir_ssa_def *undef =
                  nir_ssa_undef(&b, 1, intrin->dest.ssa.bit_size);
               nir_ssa_def *vec_srcs[NIR_MAX_VEC_COMPONENTS];
               unsigned c = 0;
               for (unsigned i = 0; i < intrin->num_components; i++) {
                  if (usage->comps_kept & (1u << i))
                     vec_srcs[i] = nir_channel(&b, &intrin->dest.ssa, c++);
                  else
                     vec_srcs[i] = undef;
               }
               nir_ssa_def *vec = nir_vec(&b, vec_srcs, intrin->num_components);

               nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa,
                                              nir_src_for_ssa(vec),
                                              vec->parent_instr);

               /* The SSA def is now only used by the swizzle.  It's safe to
                * shrink the number of components.
                */
               assert(list_length(&intrin->dest.ssa.uses) == c);
               intrin->num_components = c;
               intrin->dest.ssa.num_components = c;
            } else {
               nir_component_mask_t write_mask =
                  nir_intrinsic_write_mask(intrin);

               unsigned swizzle[NIR_MAX_VEC_COMPONENTS];
               nir_component_mask_t new_write_mask = 0;
               unsigned c = 0;
               for (unsigned i = 0; i < intrin->num_components; i++) {
                  if (usage->comps_kept & (1u << i)) {
                     swizzle[c] = i;
                     if (write_mask & (1u << i))
                        new_write_mask |= 1u << c;
                     c++;
                  }
               }

               b.cursor = nir_before_instr(&intrin->instr);

               nir_ssa_def *swizzled =
                  nir_swizzle(&b, intrin->src[1].ssa, swizzle, c, false);

               /* Rewrite to use the compacted source */
               nir_instr_rewrite_src(&intrin->instr, &intrin->src[1],
                                     nir_src_for_ssa(swizzled));
               nir_intrinsic_set_write_mask(intrin, new_write_mask);
               intrin->num_components = c;
            }
            break;
         }

         default:
            break;
         }
      }
   }
}

static bool
function_impl_has_vars_with_modes(nir_function_impl *impl,
                                  nir_variable_mode modes)
{
   nir_shader *shader = impl->function->shader;

   if ((modes & nir_var_shader_temp) && !exec_list_is_empty(&shader->globals))
      return true;

   if ((modes & nir_var_function_temp) && !exec_list_is_empty(&impl->locals))
      return true;

   return false;
}

/** Attempt to shrink arrays of vectors
 *
 * This pass looks at variables which contain a vector or an array (possibly
 * multiple dimensions) of vectors and attempts to lower to a smaller vector
 * or array.  If the pass can prove that a component of a vector (or array of
 * vectors) is never really used, then that component will be removed.
 * Similarly, the pass attempts to shorten arrays based on what elements it
 * can prove are never read or never contain valid data.
 */
bool
nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes)
{
   assert((modes & (nir_var_shader_temp | nir_var_function_temp)) == modes);

   void *mem_ctx = ralloc_context(NULL);

   struct hash_table *var_usage_map =
      _mesa_pointer_hash_table_create(mem_ctx);

   bool has_vars_to_shrink = false;
   nir_foreach_function(function, shader) {
      if (!function->impl)
         continue;

      /* Don't even bother crawling the IR if we don't have any variables.
       * Given that this pass deletes any unused variables, it's likely that
       * we will be in this scenario eventually.
       */
      if (function_impl_has_vars_with_modes(function->impl, modes)) {
         has_vars_to_shrink = true;
         find_used_components_impl(function->impl, var_usage_map,
                                   modes, mem_ctx);
      }
   }
   if (!has_vars_to_shrink) {
      ralloc_free(mem_ctx);
      return false;
   }

   bool globals_shrunk = false;
   if (modes & nir_var_shader_temp)
      globals_shrunk = shrink_vec_var_list(&shader->globals, var_usage_map);

   bool progress = false;
   nir_foreach_function(function, shader) {
      if (!function->impl)
         continue;

      bool locals_shrunk = false;
      if (modes & nir_var_function_temp) {
         locals_shrunk = shrink_vec_var_list(&function->impl->locals,
                                             var_usage_map);
      }

      if (globals_shrunk || locals_shrunk) {
         shrink_vec_var_access_impl(function->impl, var_usage_map, modes);

         nir_metadata_preserve(function->impl, nir_metadata_block_index |
                                               nir_metadata_dominance);
         progress = true;
      }
   }

   ralloc_free(mem_ctx);

   return progress;
}