1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
|
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Jason Ekstrand (jason@jlekstrand.net)
*
*/
#include <inttypes.h>
#include "nir_search.h"
#include "nir_builder.h"
#include "nir_worklist.h"
#include "util/half_float.h"
/* This should be the same as nir_search_max_comm_ops in nir_algebraic.py. */
#define NIR_SEARCH_MAX_COMM_OPS 8
struct match_state {
bool inexact_match;
bool has_exact_alu;
uint8_t comm_op_direction;
unsigned variables_seen;
/* Used for running the automaton on newly-constructed instructions. */
struct util_dynarray *states;
const struct per_op_table *pass_op_table;
nir_alu_src variables[NIR_SEARCH_MAX_VARIABLES];
struct hash_table *range_ht;
};
static bool
match_expression(const nir_search_expression *expr, nir_alu_instr *instr,
unsigned num_components, const uint8_t *swizzle,
struct match_state *state);
static bool
nir_algebraic_automaton(nir_instr *instr, struct util_dynarray *states,
const struct per_op_table *pass_op_table);
static const uint8_t identity_swizzle[NIR_MAX_VEC_COMPONENTS] = { 0, 1, 2, 3 };
/**
* Check if a source produces a value of the given type.
*
* Used for satisfying 'a@type' constraints.
*/
static bool
src_is_type(nir_src src, nir_alu_type type)
{
assert(type != nir_type_invalid);
if (!src.is_ssa)
return false;
if (src.ssa->parent_instr->type == nir_instr_type_alu) {
nir_alu_instr *src_alu = nir_instr_as_alu(src.ssa->parent_instr);
nir_alu_type output_type = nir_op_infos[src_alu->op].output_type;
if (type == nir_type_bool) {
switch (src_alu->op) {
case nir_op_iand:
case nir_op_ior:
case nir_op_ixor:
return src_is_type(src_alu->src[0].src, nir_type_bool) &&
src_is_type(src_alu->src[1].src, nir_type_bool);
case nir_op_inot:
return src_is_type(src_alu->src[0].src, nir_type_bool);
default:
break;
}
}
return nir_alu_type_get_base_type(output_type) == type;
} else if (src.ssa->parent_instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(src.ssa->parent_instr);
if (type == nir_type_bool) {
return intr->intrinsic == nir_intrinsic_load_front_face ||
intr->intrinsic == nir_intrinsic_load_helper_invocation;
}
}
/* don't know */
return false;
}
static bool
nir_op_matches_search_op(nir_op nop, uint16_t sop)
{
if (sop <= nir_last_opcode)
return nop == sop;
#define MATCH_FCONV_CASE(op) \
case nir_search_op_##op: \
return nop == nir_op_##op##16 || \
nop == nir_op_##op##32 || \
nop == nir_op_##op##64;
#define MATCH_ICONV_CASE(op) \
case nir_search_op_##op: \
return nop == nir_op_##op##8 || \
nop == nir_op_##op##16 || \
nop == nir_op_##op##32 || \
nop == nir_op_##op##64;
#define MATCH_BCONV_CASE(op) \
case nir_search_op_##op: \
return nop == nir_op_##op##1 || \
nop == nir_op_##op##32;
switch (sop) {
MATCH_FCONV_CASE(i2f)
MATCH_FCONV_CASE(u2f)
MATCH_FCONV_CASE(f2f)
MATCH_ICONV_CASE(f2u)
MATCH_ICONV_CASE(f2i)
MATCH_ICONV_CASE(u2u)
MATCH_ICONV_CASE(i2i)
MATCH_FCONV_CASE(b2f)
MATCH_ICONV_CASE(b2i)
MATCH_BCONV_CASE(i2b)
MATCH_BCONV_CASE(f2b)
default:
unreachable("Invalid nir_search_op");
}
#undef MATCH_FCONV_CASE
#undef MATCH_ICONV_CASE
#undef MATCH_BCONV_CASE
}
uint16_t
nir_search_op_for_nir_op(nir_op nop)
{
#define MATCH_FCONV_CASE(op) \
case nir_op_##op##16: \
case nir_op_##op##32: \
case nir_op_##op##64: \
return nir_search_op_##op;
#define MATCH_ICONV_CASE(op) \
case nir_op_##op##8: \
case nir_op_##op##16: \
case nir_op_##op##32: \
case nir_op_##op##64: \
return nir_search_op_##op;
#define MATCH_BCONV_CASE(op) \
case nir_op_##op##1: \
case nir_op_##op##32: \
return nir_search_op_##op;
switch (nop) {
MATCH_FCONV_CASE(i2f)
MATCH_FCONV_CASE(u2f)
MATCH_FCONV_CASE(f2f)
MATCH_ICONV_CASE(f2u)
MATCH_ICONV_CASE(f2i)
MATCH_ICONV_CASE(u2u)
MATCH_ICONV_CASE(i2i)
MATCH_FCONV_CASE(b2f)
MATCH_ICONV_CASE(b2i)
MATCH_BCONV_CASE(i2b)
MATCH_BCONV_CASE(f2b)
default:
return nop;
}
#undef MATCH_FCONV_CASE
#undef MATCH_ICONV_CASE
#undef MATCH_BCONV_CASE
}
static nir_op
nir_op_for_search_op(uint16_t sop, unsigned bit_size)
{
if (sop <= nir_last_opcode)
return sop;
#define RET_FCONV_CASE(op) \
case nir_search_op_##op: \
switch (bit_size) { \
case 16: return nir_op_##op##16; \
case 32: return nir_op_##op##32; \
case 64: return nir_op_##op##64; \
default: unreachable("Invalid bit size"); \
}
#define RET_ICONV_CASE(op) \
case nir_search_op_##op: \
switch (bit_size) { \
case 8: return nir_op_##op##8; \
case 16: return nir_op_##op##16; \
case 32: return nir_op_##op##32; \
case 64: return nir_op_##op##64; \
default: unreachable("Invalid bit size"); \
}
#define RET_BCONV_CASE(op) \
case nir_search_op_##op: \
switch (bit_size) { \
case 1: return nir_op_##op##1; \
case 32: return nir_op_##op##32; \
default: unreachable("Invalid bit size"); \
}
switch (sop) {
RET_FCONV_CASE(i2f)
RET_FCONV_CASE(u2f)
RET_FCONV_CASE(f2f)
RET_ICONV_CASE(f2u)
RET_ICONV_CASE(f2i)
RET_ICONV_CASE(u2u)
RET_ICONV_CASE(i2i)
RET_FCONV_CASE(b2f)
RET_ICONV_CASE(b2i)
RET_BCONV_CASE(i2b)
RET_BCONV_CASE(f2b)
default:
unreachable("Invalid nir_search_op");
}
#undef RET_FCONV_CASE
#undef RET_ICONV_CASE
#undef RET_BCONV_CASE
}
static bool
match_value(const nir_search_value *value, nir_alu_instr *instr, unsigned src,
unsigned num_components, const uint8_t *swizzle,
struct match_state *state)
{
uint8_t new_swizzle[NIR_MAX_VEC_COMPONENTS];
/* Searching only works on SSA values because, if it's not SSA, we can't
* know if the value changed between one instance of that value in the
* expression and another. Also, the replace operation will place reads of
* that value right before the last instruction in the expression we're
* replacing so those reads will happen after the original reads and may
* not be valid if they're register reads.
*/
assert(instr->src[src].src.is_ssa);
/* If the source is an explicitly sized source, then we need to reset
* both the number of components and the swizzle.
*/
if (nir_op_infos[instr->op].input_sizes[src] != 0) {
num_components = nir_op_infos[instr->op].input_sizes[src];
swizzle = identity_swizzle;
}
for (unsigned i = 0; i < num_components; ++i)
new_swizzle[i] = instr->src[src].swizzle[swizzle[i]];
/* If the value has a specific bit size and it doesn't match, bail */
if (value->bit_size > 0 &&
nir_src_bit_size(instr->src[src].src) != value->bit_size)
return false;
switch (value->type) {
case nir_search_value_expression:
if (instr->src[src].src.ssa->parent_instr->type != nir_instr_type_alu)
return false;
return match_expression(nir_search_value_as_expression(value),
nir_instr_as_alu(instr->src[src].src.ssa->parent_instr),
num_components, new_swizzle, state);
case nir_search_value_variable: {
nir_search_variable *var = nir_search_value_as_variable(value);
assert(var->variable < NIR_SEARCH_MAX_VARIABLES);
if (state->variables_seen & (1 << var->variable)) {
if (state->variables[var->variable].src.ssa != instr->src[src].src.ssa)
return false;
assert(!instr->src[src].abs && !instr->src[src].negate);
for (unsigned i = 0; i < num_components; ++i) {
if (state->variables[var->variable].swizzle[i] != new_swizzle[i])
return false;
}
return true;
} else {
if (var->is_constant &&
instr->src[src].src.ssa->parent_instr->type != nir_instr_type_load_const)
return false;
if (var->cond && !var->cond(state->range_ht, instr,
src, num_components, new_swizzle))
return false;
if (var->type != nir_type_invalid &&
!src_is_type(instr->src[src].src, var->type))
return false;
state->variables_seen |= (1 << var->variable);
state->variables[var->variable].src = instr->src[src].src;
state->variables[var->variable].abs = false;
state->variables[var->variable].negate = false;
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; ++i) {
if (i < num_components)
state->variables[var->variable].swizzle[i] = new_swizzle[i];
else
state->variables[var->variable].swizzle[i] = 0;
}
return true;
}
}
case nir_search_value_constant: {
nir_search_constant *const_val = nir_search_value_as_constant(value);
if (!nir_src_is_const(instr->src[src].src))
return false;
switch (const_val->type) {
case nir_type_float: {
nir_load_const_instr *const load =
nir_instr_as_load_const(instr->src[src].src.ssa->parent_instr);
/* There are 8-bit and 1-bit integer types, but there are no 8-bit or
* 1-bit float types. This prevents potential assertion failures in
* nir_src_comp_as_float.
*/
if (load->def.bit_size < 16)
return false;
for (unsigned i = 0; i < num_components; ++i) {
double val = nir_src_comp_as_float(instr->src[src].src,
new_swizzle[i]);
if (val != const_val->data.d)
return false;
}
return true;
}
case nir_type_int:
case nir_type_uint:
case nir_type_bool: {
unsigned bit_size = nir_src_bit_size(instr->src[src].src);
uint64_t mask = bit_size == 64 ? UINT64_MAX : (1ull << bit_size) - 1;
for (unsigned i = 0; i < num_components; ++i) {
uint64_t val = nir_src_comp_as_uint(instr->src[src].src,
new_swizzle[i]);
if ((val & mask) != (const_val->data.u & mask))
return false;
}
return true;
}
default:
unreachable("Invalid alu source type");
}
}
default:
unreachable("Invalid search value type");
}
}
static bool
match_expression(const nir_search_expression *expr, nir_alu_instr *instr,
unsigned num_components, const uint8_t *swizzle,
struct match_state *state)
{
if (expr->cond && !expr->cond(instr))
return false;
if (!nir_op_matches_search_op(instr->op, expr->opcode))
return false;
assert(instr->dest.dest.is_ssa);
if (expr->value.bit_size > 0 &&
instr->dest.dest.ssa.bit_size != expr->value.bit_size)
return false;
state->inexact_match = expr->inexact || state->inexact_match;
state->has_exact_alu = instr->exact || state->has_exact_alu;
if (state->inexact_match && state->has_exact_alu)
return false;
assert(!instr->dest.saturate);
assert(nir_op_infos[instr->op].num_inputs > 0);
/* If we have an explicitly sized destination, we can only handle the
* identity swizzle. While dot(vec3(a, b, c).zxy) is a valid
* expression, we don't have the information right now to propagate that
* swizzle through. We can only properly propagate swizzles if the
* instruction is vectorized.
*/
if (nir_op_infos[instr->op].output_size != 0) {
for (unsigned i = 0; i < num_components; i++) {
if (swizzle[i] != i)
return false;
}
}
/* If this is a commutative expression and it's one of the first few, look
* up its direction for the current search operation. We'll use that value
* to possibly flip the sources for the match.
*/
unsigned comm_op_flip =
(expr->comm_expr_idx >= 0 &&
expr->comm_expr_idx < NIR_SEARCH_MAX_COMM_OPS) ?
((state->comm_op_direction >> expr->comm_expr_idx) & 1) : 0;
bool matched = true;
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
/* 2src_commutative instructions that have 3 sources are only commutative
* in the first two sources. Source 2 is always source 2.
*/
if (!match_value(expr->srcs[i], instr,
i < 2 ? i ^ comm_op_flip : i,
num_components, swizzle, state)) {
matched = false;
break;
}
}
return matched;
}
static unsigned
replace_bitsize(const nir_search_value *value, unsigned search_bitsize,
struct match_state *state)
{
if (value->bit_size > 0)
return value->bit_size;
if (value->bit_size < 0)
return nir_src_bit_size(state->variables[-value->bit_size - 1].src);
return search_bitsize;
}
static nir_alu_src
construct_value(nir_builder *build,
const nir_search_value *value,
unsigned num_components, unsigned search_bitsize,
struct match_state *state,
nir_instr *instr)
{
switch (value->type) {
case nir_search_value_expression: {
const nir_search_expression *expr = nir_search_value_as_expression(value);
unsigned dst_bit_size = replace_bitsize(value, search_bitsize, state);
nir_op op = nir_op_for_search_op(expr->opcode, dst_bit_size);
if (nir_op_infos[op].output_size != 0)
num_components = nir_op_infos[op].output_size;
nir_alu_instr *alu = nir_alu_instr_create(build->shader, op);
nir_ssa_dest_init(&alu->instr, &alu->dest.dest, num_components,
dst_bit_size, NULL);
alu->dest.write_mask = (1 << num_components) - 1;
alu->dest.saturate = false;
/* We have no way of knowing what values in a given search expression
* map to a particular replacement value. Therefore, if the
* expression we are replacing has any exact values, the entire
* replacement should be exact.
*/
alu->exact = state->has_exact_alu || expr->exact;
for (unsigned i = 0; i < nir_op_infos[op].num_inputs; i++) {
/* If the source is an explicitly sized source, then we need to reset
* the number of components to match.
*/
if (nir_op_infos[alu->op].input_sizes[i] != 0)
num_components = nir_op_infos[alu->op].input_sizes[i];
alu->src[i] = construct_value(build, expr->srcs[i],
num_components, search_bitsize,
state, instr);
}
nir_builder_instr_insert(build, &alu->instr);
assert(alu->dest.dest.ssa.index ==
util_dynarray_num_elements(state->states, uint16_t));
util_dynarray_append(state->states, uint16_t, 0);
nir_algebraic_automaton(&alu->instr, state->states, state->pass_op_table);
nir_alu_src val;
val.src = nir_src_for_ssa(&alu->dest.dest.ssa);
val.negate = false;
val.abs = false,
memcpy(val.swizzle, identity_swizzle, sizeof val.swizzle);
return val;
}
case nir_search_value_variable: {
const nir_search_variable *var = nir_search_value_as_variable(value);
assert(state->variables_seen & (1 << var->variable));
nir_alu_src val = { NIR_SRC_INIT };
nir_alu_src_copy(&val, &state->variables[var->variable],
(void *)build->shader);
assert(!var->is_constant);
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
val.swizzle[i] = state->variables[var->variable].swizzle[var->swizzle[i]];
return val;
}
case nir_search_value_constant: {
const nir_search_constant *c = nir_search_value_as_constant(value);
unsigned bit_size = replace_bitsize(value, search_bitsize, state);
nir_ssa_def *cval;
switch (c->type) {
case nir_type_float:
cval = nir_imm_floatN_t(build, c->data.d, bit_size);
break;
case nir_type_int:
case nir_type_uint:
cval = nir_imm_intN_t(build, c->data.i, bit_size);
break;
case nir_type_bool:
cval = nir_imm_boolN_t(build, c->data.u, bit_size);
break;
default:
unreachable("Invalid alu source type");
}
assert(cval->index ==
util_dynarray_num_elements(state->states, uint16_t));
util_dynarray_append(state->states, uint16_t, 0);
nir_algebraic_automaton(cval->parent_instr, state->states,
state->pass_op_table);
nir_alu_src val;
val.src = nir_src_for_ssa(cval);
val.negate = false;
val.abs = false,
memset(val.swizzle, 0, sizeof val.swizzle);
return val;
}
default:
unreachable("Invalid search value type");
}
}
UNUSED static void dump_value(const nir_search_value *val)
{
switch (val->type) {
case nir_search_value_constant: {
const nir_search_constant *sconst = nir_search_value_as_constant(val);
switch (sconst->type) {
case nir_type_float:
fprintf(stderr, "%f", sconst->data.d);
break;
case nir_type_int:
fprintf(stderr, "%"PRId64, sconst->data.i);
break;
case nir_type_uint:
fprintf(stderr, "0x%"PRIx64, sconst->data.u);
break;
case nir_type_bool:
fprintf(stderr, "%s", sconst->data.u != 0 ? "True" : "False");
break;
default:
unreachable("bad const type");
}
break;
}
case nir_search_value_variable: {
const nir_search_variable *var = nir_search_value_as_variable(val);
if (var->is_constant)
fprintf(stderr, "#");
fprintf(stderr, "%c", var->variable + 'a');
break;
}
case nir_search_value_expression: {
const nir_search_expression *expr = nir_search_value_as_expression(val);
fprintf(stderr, "(");
if (expr->inexact)
fprintf(stderr, "~");
switch (expr->opcode) {
#define CASE(n) \
case nir_search_op_##n: fprintf(stderr, #n); break;
CASE(f2b)
CASE(b2f)
CASE(b2i)
CASE(i2b)
CASE(i2i)
CASE(f2i)
CASE(i2f)
#undef CASE
default:
fprintf(stderr, "%s", nir_op_infos[expr->opcode].name);
}
unsigned num_srcs = 1;
if (expr->opcode <= nir_last_opcode)
num_srcs = nir_op_infos[expr->opcode].num_inputs;
for (unsigned i = 0; i < num_srcs; i++) {
fprintf(stderr, " ");
dump_value(expr->srcs[i]);
}
fprintf(stderr, ")");
break;
}
}
if (val->bit_size > 0)
fprintf(stderr, "@%d", val->bit_size);
}
static void
add_uses_to_worklist(nir_instr *instr, nir_instr_worklist *worklist)
{
nir_ssa_def *def = nir_instr_ssa_def(instr);
nir_foreach_use_safe(use_src, def) {
nir_instr_worklist_push_tail(worklist, use_src->parent_instr);
}
}
static void
nir_algebraic_update_automaton(nir_instr *new_instr,
nir_instr_worklist *algebraic_worklist,
struct util_dynarray *states,
const struct per_op_table *pass_op_table)
{
nir_instr_worklist *automaton_worklist = nir_instr_worklist_create();
/* Walk through the tree of uses of our new instruction's SSA value,
* recursively updating the automaton state until it stabilizes.
*/
add_uses_to_worklist(new_instr, automaton_worklist);
nir_instr *instr;
while ((instr = nir_instr_worklist_pop_head(automaton_worklist))) {
if (nir_algebraic_automaton(instr, states, pass_op_table)) {
nir_instr_worklist_push_tail(algebraic_worklist, instr);
add_uses_to_worklist(instr, automaton_worklist);
}
}
nir_instr_worklist_destroy(automaton_worklist);
}
nir_ssa_def *
nir_replace_instr(nir_builder *build, nir_alu_instr *instr,
struct hash_table *range_ht,
struct util_dynarray *states,
const struct per_op_table *pass_op_table,
const nir_search_expression *search,
const nir_search_value *replace,
nir_instr_worklist *algebraic_worklist)
{
uint8_t swizzle[NIR_MAX_VEC_COMPONENTS] = { 0 };
for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i)
swizzle[i] = i;
assert(instr->dest.dest.is_ssa);
struct match_state state;
state.inexact_match = false;
state.has_exact_alu = false;
state.range_ht = range_ht;
state.pass_op_table = pass_op_table;
STATIC_ASSERT(sizeof(state.comm_op_direction) * 8 >= NIR_SEARCH_MAX_COMM_OPS);
unsigned comm_expr_combinations =
1 << MIN2(search->comm_exprs, NIR_SEARCH_MAX_COMM_OPS);
bool found = false;
for (unsigned comb = 0; comb < comm_expr_combinations; comb++) {
/* The bitfield of directions is just the current iteration. Hooray for
* binary.
*/
state.comm_op_direction = comb;
state.variables_seen = 0;
if (match_expression(search, instr,
instr->dest.dest.ssa.num_components,
swizzle, &state)) {
found = true;
break;
}
}
if (!found)
return NULL;
#if 0
fprintf(stderr, "matched: ");
dump_value(&search->value);
fprintf(stderr, " -> ");
dump_value(replace);
fprintf(stderr, " ssa_%d\n", instr->dest.dest.ssa.index);
#endif
build->cursor = nir_before_instr(&instr->instr);
state.states = states;
nir_alu_src val = construct_value(build, replace,
instr->dest.dest.ssa.num_components,
instr->dest.dest.ssa.bit_size,
&state, &instr->instr);
/* Note that NIR builder will elide the MOV if it's a no-op, which may
* allow more work to be done in a single pass through algebraic.
*/
nir_ssa_def *ssa_val =
nir_mov_alu(build, val, instr->dest.dest.ssa.num_components);
if (ssa_val->index == util_dynarray_num_elements(states, uint16_t)) {
util_dynarray_append(states, uint16_t, 0);
nir_algebraic_automaton(ssa_val->parent_instr, states, pass_op_table);
}
/* Rewrite the uses of the old SSA value to the new one, and recurse
* through the uses updating the automaton's state.
*/
nir_ssa_def_rewrite_uses(&instr->dest.dest.ssa, nir_src_for_ssa(ssa_val));
nir_algebraic_update_automaton(ssa_val->parent_instr, algebraic_worklist,
states, pass_op_table);
/* Nothing uses the instr any more, so drop it out of the program. Note
* that the instr may be in the worklist still, so we can't free it
* directly.
*/
nir_instr_remove(&instr->instr);
return ssa_val;
}
static bool
nir_algebraic_automaton(nir_instr *instr, struct util_dynarray *states,
const struct per_op_table *pass_op_table)
{
switch (instr->type) {
case nir_instr_type_alu: {
nir_alu_instr *alu = nir_instr_as_alu(instr);
nir_op op = alu->op;
uint16_t search_op = nir_search_op_for_nir_op(op);
const struct per_op_table *tbl = &pass_op_table[search_op];
if (tbl->num_filtered_states == 0)
return false;
/* Calculate the index into the transition table. Note the index
* calculated must match the iteration order of Python's
* itertools.product(), which was used to emit the transition
* table.
*/
uint16_t index = 0;
for (unsigned i = 0; i < nir_op_infos[op].num_inputs; i++) {
index *= tbl->num_filtered_states;
index += tbl->filter[*util_dynarray_element(states, uint16_t,
alu->src[i].src.ssa->index)];
}
uint16_t *state = util_dynarray_element(states, uint16_t,
alu->dest.dest.ssa.index);
if (*state != tbl->table[index]) {
*state = tbl->table[index];
return true;
}
return false;
}
case nir_instr_type_load_const: {
nir_load_const_instr *load_const = nir_instr_as_load_const(instr);
uint16_t *state = util_dynarray_element(states, uint16_t,
load_const->def.index);
if (*state != CONST_STATE) {
*state = CONST_STATE;
return true;
}
return false;
}
default:
return false;
}
}
static bool
nir_algebraic_instr(nir_builder *build, nir_instr *instr,
struct hash_table *range_ht,
const bool *condition_flags,
const struct transform **transforms,
const uint16_t *transform_counts,
struct util_dynarray *states,
const struct per_op_table *pass_op_table,
nir_instr_worklist *worklist)
{
if (instr->type != nir_instr_type_alu)
return false;
nir_alu_instr *alu = nir_instr_as_alu(instr);
if (!alu->dest.dest.is_ssa)
return false;
unsigned bit_size = alu->dest.dest.ssa.bit_size;
const unsigned execution_mode =
build->shader->info.float_controls_execution_mode;
const bool ignore_inexact =
nir_is_float_control_signed_zero_inf_nan_preserve(execution_mode, bit_size) ||
nir_is_denorm_flush_to_zero(execution_mode, bit_size);
int xform_idx = *util_dynarray_element(states, uint16_t,
alu->dest.dest.ssa.index);
for (uint16_t i = 0; i < transform_counts[xform_idx]; i++) {
const struct transform *xform = &transforms[xform_idx][i];
if (condition_flags[xform->condition_offset] &&
!(xform->search->inexact && ignore_inexact) &&
nir_replace_instr(build, alu, range_ht, states, pass_op_table,
xform->search, xform->replace, worklist)) {
_mesa_hash_table_clear(range_ht, NULL);
return true;
}
}
return false;
}
bool
nir_algebraic_impl(nir_function_impl *impl,
const bool *condition_flags,
const struct transform **transforms,
const uint16_t *transform_counts,
const struct per_op_table *pass_op_table)
{
bool progress = false;
nir_builder build;
nir_builder_init(&build, impl);
/* Note: it's important here that we're allocating a zeroed array, since
* state 0 is the default state, which means we don't have to visit
* anything other than constants and ALU instructions.
*/
struct util_dynarray states = {0};
if (!util_dynarray_resize(&states, uint16_t, impl->ssa_alloc))
return false;
memset(states.data, 0, states.size);
struct hash_table *range_ht = _mesa_pointer_hash_table_create(NULL);
nir_instr_worklist *worklist = nir_instr_worklist_create();
/* Walk top-to-bottom setting up the automaton state. */
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
nir_algebraic_automaton(instr, &states, pass_op_table);
}
}
/* Put our instrs in the worklist such that we're popping the last instr
* first. This will encourage us to match the biggest source patterns when
* possible.
*/
nir_foreach_block_reverse(block, impl) {
nir_foreach_instr_reverse(instr, block) {
nir_instr_worklist_push_tail(worklist, instr);
}
}
nir_instr *instr;
while ((instr = nir_instr_worklist_pop_head(worklist))) {
/* The worklist can have an instr pushed to it multiple times if it was
* the src of multiple instrs that also got optimized, so make sure that
* we don't try to re-optimize an instr we already handled.
*/
if (exec_node_is_tail_sentinel(&instr->node))
continue;
progress |= nir_algebraic_instr(&build, instr,
range_ht, condition_flags,
transforms, transform_counts, &states,
pass_op_table, worklist);
}
nir_instr_worklist_destroy(worklist);
ralloc_free(range_ht);
util_dynarray_fini(&states);
if (progress) {
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
} else {
#ifndef NDEBUG
impl->valid_metadata &= ~nir_metadata_not_properly_reset;
#endif
}
return progress;
}
|