1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
|
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir.h"
#include "nir_builder.h"
#include "util/bitscan.h"
/**
* Variable-based copy propagation
*
* Normally, NIR trusts in SSA form for most of its copy-propagation needs.
* However, there are cases, especially when dealing with indirects, where SSA
* won't help you. This pass is for those times. Specifically, it handles
* the following things that the rest of NIR can't:
*
* 1) Copy-propagation on variables that have indirect access. This includes
* propagating from indirect stores into indirect loads.
*
* 2) Dead code elimination of store_var and copy_var intrinsics based on
* killed destination values.
*
* 3) Removal of redundant load_var intrinsics. We can't trust regular CSE
* to do this because it isn't aware of variable writes that may alias the
* value and make the former load invalid.
*
* Unfortunately, properly handling all of those cases makes this path rather
* complex. In order to avoid additional complexity, this pass is entirely
* block-local. If we tried to make it global, the data-flow analysis would
* rapidly get out of hand. Fortunately, for anything that is only ever
* accessed directly, we get SSA based copy-propagation which is extremely
* powerful so this isn't that great a loss.
*/
struct value {
bool is_ssa;
union {
nir_ssa_def *ssa[4];
nir_deref_var *deref;
};
};
struct copy_entry {
struct list_head link;
nir_instr *store_instr[4];
unsigned comps_may_be_read;
struct value src;
nir_deref_var *dst;
};
struct copy_prop_var_state {
nir_shader *shader;
void *mem_ctx;
struct list_head copies;
/* We're going to be allocating and deleting a lot of copy entries so we'll
* keep a free list to avoid thrashing malloc too badly.
*/
struct list_head copy_free_list;
bool progress;
};
static struct copy_entry *
copy_entry_create(struct copy_prop_var_state *state,
nir_deref_var *dst_deref)
{
struct copy_entry *entry;
if (!list_empty(&state->copy_free_list)) {
struct list_head *item = state->copy_free_list.next;
list_del(item);
entry = LIST_ENTRY(struct copy_entry, item, link);
memset(entry, 0, sizeof(*entry));
} else {
entry = rzalloc(state->mem_ctx, struct copy_entry);
}
entry->dst = dst_deref;
list_add(&entry->link, &state->copies);
return entry;
}
static void
copy_entry_remove(struct copy_prop_var_state *state, struct copy_entry *entry)
{
list_del(&entry->link);
list_add(&entry->link, &state->copy_free_list);
}
enum deref_compare_result {
derefs_equal_bit = (1 << 0),
derefs_may_alias_bit = (1 << 1),
derefs_a_contains_b_bit = (1 << 2),
derefs_b_contains_a_bit = (1 << 3),
};
/** Returns true if the storage referrenced to by deref completely contains
* the storage referenced by sub.
*
* NOTE: This is fairly general and could be moved to core NIR if someone else
* ever needs it.
*/
static enum deref_compare_result
compare_derefs(nir_deref_var *a, nir_deref_var *b)
{
if (a->var != b->var)
return 0;
/* Start off assuming they fully compare. We ignore equality for now. In
* the end, we'll determine that by containment.
*/
enum deref_compare_result result = derefs_may_alias_bit |
derefs_a_contains_b_bit |
derefs_b_contains_a_bit;
nir_deref *a_tail = &a->deref;
nir_deref *b_tail = &b->deref;
while (a_tail->child && b_tail->child) {
a_tail = a_tail->child;
b_tail = b_tail->child;
assert(a_tail->deref_type == b_tail->deref_type);
switch (a_tail->deref_type) {
case nir_deref_type_array: {
nir_deref_array *a_arr = nir_deref_as_array(a_tail);
nir_deref_array *b_arr = nir_deref_as_array(b_tail);
if (a_arr->deref_array_type == nir_deref_array_type_direct &&
b_arr->deref_array_type == nir_deref_array_type_direct) {
/* If they're both direct and have different offsets, they
* don't even alias much less anything else.
*/
if (a_arr->base_offset != b_arr->base_offset)
return 0;
} else if (a_arr->deref_array_type == nir_deref_array_type_wildcard) {
if (b_arr->deref_array_type != nir_deref_array_type_wildcard)
result &= ~derefs_b_contains_a_bit;
} else if (b_arr->deref_array_type == nir_deref_array_type_wildcard) {
if (a_arr->deref_array_type != nir_deref_array_type_wildcard)
result &= ~derefs_a_contains_b_bit;
} else if (a_arr->deref_array_type == nir_deref_array_type_indirect &&
b_arr->deref_array_type == nir_deref_array_type_indirect) {
assert(a_arr->indirect.is_ssa && b_arr->indirect.is_ssa);
if (a_arr->indirect.ssa == b_arr->indirect.ssa) {
/* If they're different constant offsets from the same indirect
* then they don't alias at all.
*/
if (a_arr->base_offset != b_arr->base_offset)
return 0;
/* Otherwise the indirect and base both match */
} else {
/* If they're have different indirect offsets then we can't
* prove anything about containment.
*/
result &= ~(derefs_a_contains_b_bit | derefs_b_contains_a_bit);
}
} else {
/* In this case, one is indirect and the other direct so we can't
* prove anything about containment.
*/
result &= ~(derefs_a_contains_b_bit | derefs_b_contains_a_bit);
}
break;
}
case nir_deref_type_struct: {
nir_deref_struct *a_struct = nir_deref_as_struct(a_tail);
nir_deref_struct *b_struct = nir_deref_as_struct(b_tail);
/* If they're different struct members, they don't even alias */
if (a_struct->index != b_struct->index)
return 0;
break;
}
default:
unreachable("Invalid deref type");
}
}
/* If a is longer than b, then it can't contain b */
if (a_tail->child)
result &= ~derefs_a_contains_b_bit;
if (b_tail->child)
result &= ~derefs_b_contains_a_bit;
/* If a contains b and b contains a they must be equal. */
if ((result & derefs_a_contains_b_bit) && (result & derefs_b_contains_a_bit))
result |= derefs_equal_bit;
return result;
}
static void
remove_dead_writes(struct copy_prop_var_state *state,
struct copy_entry *entry, unsigned write_mask)
{
/* We're overwriting another entry. Some of it's components may not
* have been read yet and, if that's the case, we may be able to delete
* some instructions but we have to be careful.
*/
unsigned dead_comps = write_mask & ~entry->comps_may_be_read;
for (unsigned mask = dead_comps; mask;) {
unsigned i = u_bit_scan(&mask);
nir_instr *instr = entry->store_instr[i];
/* We may have already deleted it on a previous iteration */
if (!instr)
continue;
/* See if this instr is used anywhere that it's not dead */
bool keep = false;
for (unsigned j = 0; j < 4; j++) {
if (entry->store_instr[j] == instr) {
if (dead_comps & (1 << j)) {
entry->store_instr[j] = NULL;
} else {
keep = true;
}
}
}
if (!keep) {
nir_instr_remove(instr);
state->progress = true;
}
}
}
static struct copy_entry *
lookup_entry_for_deref(struct copy_prop_var_state *state,
nir_deref_var *deref,
enum deref_compare_result allowed_comparisons)
{
list_for_each_entry(struct copy_entry, iter, &state->copies, link) {
if (compare_derefs(iter->dst, deref) & allowed_comparisons)
return iter;
}
return NULL;
}
static void
mark_aliased_entries_as_read(struct copy_prop_var_state *state,
nir_deref_var *deref, unsigned components)
{
list_for_each_entry(struct copy_entry, iter, &state->copies, link) {
if (compare_derefs(iter->dst, deref) & derefs_may_alias_bit)
iter->comps_may_be_read |= components;
}
}
static struct copy_entry *
get_entry_and_kill_aliases(struct copy_prop_var_state *state,
nir_deref_var *deref,
unsigned write_mask)
{
struct copy_entry *entry = NULL;
list_for_each_entry_safe(struct copy_entry, iter, &state->copies, link) {
if (!iter->src.is_ssa) {
/* If this write aliases the source of some entry, get rid of it */
if (compare_derefs(iter->src.deref, deref) & derefs_may_alias_bit) {
copy_entry_remove(state, iter);
continue;
}
}
enum deref_compare_result comp = compare_derefs(iter->dst, deref);
/* This is a store operation. If we completely overwrite some value, we
* want to delete any dead writes that may be present.
*/
if (comp & derefs_b_contains_a_bit)
remove_dead_writes(state, iter, write_mask);
if (comp & derefs_equal_bit) {
assert(entry == NULL);
entry = iter;
} else if (comp & derefs_may_alias_bit) {
copy_entry_remove(state, iter);
}
}
if (entry == NULL)
entry = copy_entry_create(state, deref);
return entry;
}
static void
apply_barrier_for_modes(struct copy_prop_var_state *state,
nir_variable_mode modes)
{
list_for_each_entry_safe(struct copy_entry, iter, &state->copies, link) {
if ((iter->dst->var->data.mode & modes) ||
(!iter->src.is_ssa && (iter->src.deref->var->data.mode & modes)))
copy_entry_remove(state, iter);
}
}
static void
store_to_entry(struct copy_prop_var_state *state, struct copy_entry *entry,
const struct value *value, unsigned write_mask,
nir_instr *store_instr)
{
entry->comps_may_be_read &= ~write_mask;
if (value->is_ssa) {
entry->src.is_ssa = true;
/* Only overwrite the written components */
for (unsigned i = 0; i < 4; i++) {
if (write_mask & (1 << i)) {
entry->store_instr[i] = store_instr;
entry->src.ssa[i] = value->ssa[i];
}
}
} else {
/* Non-ssa stores always write everything */
entry->src.is_ssa = false;
entry->src.deref = value->deref;
for (unsigned i = 0; i < 4; i++)
entry->store_instr[i] = store_instr;
}
}
/* Remove an instruction and return a cursor pointing to where it was */
static nir_cursor
instr_remove_cursor(nir_instr *instr)
{
nir_cursor cursor;
nir_instr *prev = nir_instr_prev(instr);
if (prev) {
cursor = nir_after_instr(prev);
} else {
cursor = nir_before_block(instr->block);
}
nir_instr_remove(instr);
return cursor;
}
/* Do a "load" from an SSA-based entry return it in "value" as a value with a
* single SSA def. Because an entry could reference up to 4 different SSA
* defs, a vecN operation may be inserted to combine them into a single SSA
* def before handing it back to the caller. If the load instruction is no
* longer needed, it is removed and nir_instr::block is set to NULL. (It is
* possible, in some cases, for the load to be used in the vecN operation in
* which case it isn't deleted.)
*/
static bool
load_from_ssa_entry_value(struct copy_prop_var_state *state,
struct copy_entry *entry,
nir_builder *b, nir_intrinsic_instr *intrin,
struct value *value)
{
*value = entry->src;
assert(value->is_ssa);
const struct glsl_type *type = nir_deref_tail(&entry->dst->deref)->type;
unsigned num_components = glsl_get_vector_elements(type);
uint8_t available = 0;
bool all_same = true;
for (unsigned i = 0; i < num_components; i++) {
if (value->ssa[i])
available |= (1 << i);
if (value->ssa[i] != value->ssa[0])
all_same = false;
}
if (all_same) {
/* Our work here is done */
b->cursor = instr_remove_cursor(&intrin->instr);
intrin->instr.block = NULL;
return true;
}
if (available != (1 << num_components) - 1 &&
intrin->intrinsic == nir_intrinsic_load_var &&
(available & nir_ssa_def_components_read(&intrin->dest.ssa)) == 0) {
/* If none of the components read are available as SSA values, then we
* should just bail. Otherwise, we would end up replacing the uses of
* the load_var a vecN() that just gathers up its components.
*/
return false;
}
b->cursor = nir_after_instr(&intrin->instr);
nir_ssa_def *load_def =
intrin->intrinsic == nir_intrinsic_load_var ? &intrin->dest.ssa : NULL;
bool keep_intrin = false;
nir_ssa_def *comps[4];
for (unsigned i = 0; i < num_components; i++) {
if (value->ssa[i]) {
comps[i] = nir_channel(b, value->ssa[i], i);
} else {
/* We don't have anything for this component in our
* list. Just re-use a channel from the load.
*/
if (load_def == NULL)
load_def = nir_load_deref_var(b, entry->dst);
if (load_def->parent_instr == &intrin->instr)
keep_intrin = true;
comps[i] = nir_channel(b, load_def, i);
}
}
nir_ssa_def *vec = nir_vec(b, comps, num_components);
for (unsigned i = 0; i < num_components; i++)
value->ssa[i] = vec;
if (!keep_intrin) {
/* Removing this instruction should not touch the cursor because we
* created the cursor after the intrinsic and have added at least one
* instruction (the vec) since then.
*/
assert(b->cursor.instr != &intrin->instr);
nir_instr_remove(&intrin->instr);
intrin->instr.block = NULL;
}
return true;
}
/**
* Specialize the wildcards in a deref chain
*
* This function returns a deref chain identical to \param deref except that
* some of its wildcards are replaced with indices from \param specific. The
* process is guided by \param guide which references the same type as \param
* specific but has the same wildcard array lengths as \param deref.
*/
static nir_deref_var *
specialize_wildcards(nir_deref_var *deref,
nir_deref_var *guide,
nir_deref_var *specific,
void *mem_ctx)
{
nir_deref_var *ret = nir_deref_var_create(mem_ctx, deref->var);
nir_deref *deref_tail = deref->deref.child;
nir_deref *guide_tail = guide->deref.child;
nir_deref *spec_tail = specific->deref.child;
nir_deref *ret_tail = &ret->deref;
while (deref_tail) {
switch (deref_tail->deref_type) {
case nir_deref_type_array: {
nir_deref_array *deref_arr = nir_deref_as_array(deref_tail);
nir_deref_array *ret_arr = nir_deref_array_create(ret_tail);
ret_arr->deref.type = deref_arr->deref.type;
ret_arr->deref_array_type = deref_arr->deref_array_type;
switch (deref_arr->deref_array_type) {
case nir_deref_array_type_direct:
ret_arr->base_offset = deref_arr->base_offset;
break;
case nir_deref_array_type_indirect:
ret_arr->base_offset = deref_arr->base_offset;
assert(deref_arr->indirect.is_ssa);
ret_arr->indirect = deref_arr->indirect;
break;
case nir_deref_array_type_wildcard:
/* This is where things get tricky. We have to search through
* the entry deref to find its corresponding wildcard and fill
* this slot in with the value from the src.
*/
while (guide_tail) {
if (guide_tail->deref_type == nir_deref_type_array &&
nir_deref_as_array(guide_tail)->deref_array_type ==
nir_deref_array_type_wildcard)
break;
guide_tail = guide_tail->child;
spec_tail = spec_tail->child;
}
nir_deref_array *spec_arr = nir_deref_as_array(spec_tail);
ret_arr->deref_array_type = spec_arr->deref_array_type;
ret_arr->base_offset = spec_arr->base_offset;
ret_arr->indirect = spec_arr->indirect;
}
ret_tail->child = &ret_arr->deref;
break;
}
case nir_deref_type_struct: {
nir_deref_struct *deref_struct = nir_deref_as_struct(deref_tail);
nir_deref_struct *ret_struct =
nir_deref_struct_create(ret_tail, deref_struct->index);
ret_struct->deref.type = deref_struct->deref.type;
ret_tail->child = &ret_struct->deref;
break;
}
case nir_deref_type_var:
unreachable("Invalid deref type");
}
deref_tail = deref_tail->child;
ret_tail = ret_tail->child;
}
return ret;
}
/* Do a "load" from an deref-based entry return it in "value" as a value. The
* deref returned in "value" will always be a fresh copy so the caller can
* steal it and assign it to the instruction directly without copying it
* again.
*/
static bool
load_from_deref_entry_value(struct copy_prop_var_state *state,
struct copy_entry *entry,
nir_builder *b, nir_intrinsic_instr *intrin,
nir_deref_var *src, struct value *value)
{
*value = entry->src;
/* Walk the deref to get the two tails and also figure out if we need to
* specialize any wildcards.
*/
bool need_to_specialize_wildcards = false;
nir_deref *entry_tail = &entry->dst->deref;
nir_deref *src_tail = &src->deref;
while (entry_tail->child && src_tail->child) {
assert(src_tail->child->deref_type == entry_tail->child->deref_type);
if (src_tail->child->deref_type == nir_deref_type_array) {
nir_deref_array *entry_arr = nir_deref_as_array(entry_tail->child);
nir_deref_array *src_arr = nir_deref_as_array(src_tail->child);
if (src_arr->deref_array_type != nir_deref_array_type_wildcard &&
entry_arr->deref_array_type == nir_deref_array_type_wildcard)
need_to_specialize_wildcards = true;
}
entry_tail = entry_tail->child;
src_tail = src_tail->child;
}
/* If the entry deref is longer than the source deref then it refers to a
* smaller type and we can't source from it.
*/
assert(entry_tail->child == NULL);
if (need_to_specialize_wildcards) {
/* The entry has some wildcards that are not in src. This means we need
* to construct a new deref based on the entry but using the wildcards
* from the source and guided by the entry dst. Oof.
*/
value->deref = specialize_wildcards(entry->src.deref, entry->dst, src,
state->mem_ctx);
} else {
/* We're going to need to make a copy in case we modify it below */
value->deref = nir_deref_var_clone(value->deref, state->mem_ctx);
}
if (src_tail->child) {
/* If our source deref is longer than the entry deref, that's ok because
* it just means the entry deref needs to be extended a bit.
*/
nir_deref *value_tail = nir_deref_tail(&value->deref->deref);
value_tail->child = nir_deref_clone(src_tail->child, value_tail);
}
b->cursor = instr_remove_cursor(&intrin->instr);
return true;
}
static bool
try_load_from_entry(struct copy_prop_var_state *state, struct copy_entry *entry,
nir_builder *b, nir_intrinsic_instr *intrin,
nir_deref_var *src, struct value *value)
{
if (entry == NULL)
return false;
if (entry->src.is_ssa) {
return load_from_ssa_entry_value(state, entry, b, intrin, value);
} else {
return load_from_deref_entry_value(state, entry, b, intrin, src, value);
}
}
static void
copy_prop_vars_block(struct copy_prop_var_state *state,
nir_builder *b, nir_block *block)
{
/* Start each block with a blank slate */
list_for_each_entry_safe(struct copy_entry, iter, &state->copies, link)
copy_entry_remove(state, iter);
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_barrier:
case nir_intrinsic_memory_barrier:
/* If we hit a barrier, we need to trash everything that may possibly
* be accessible to another thread. Locals, globals, and things of
* the like are safe, however.
*/
apply_barrier_for_modes(state, ~(nir_var_local | nir_var_global |
nir_var_shader_in | nir_var_uniform));
break;
case nir_intrinsic_emit_vertex:
case nir_intrinsic_emit_vertex_with_counter:
apply_barrier_for_modes(state, nir_var_shader_out);
break;
case nir_intrinsic_load_var: {
nir_deref_var *src = intrin->variables[0];
uint8_t comps_read = nir_ssa_def_components_read(&intrin->dest.ssa);
mark_aliased_entries_as_read(state, src, comps_read);
struct copy_entry *src_entry =
lookup_entry_for_deref(state, src, derefs_a_contains_b_bit);
struct value value;
if (try_load_from_entry(state, src_entry, b, intrin, src, &value)) {
if (value.is_ssa) {
/* lookup_load has already ensured that we get a single SSA
* value that has all of the channels. We just have to do the
* rewrite operation.
*/
if (intrin->instr.block) {
/* The lookup left our instruction in-place. This means it
* must have used it to vec up a bunch of different sources.
* We need to be careful when rewriting uses so we don't
* rewrite the vecN itself.
*/
nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa,
nir_src_for_ssa(value.ssa[0]),
value.ssa[0]->parent_instr);
} else {
nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
nir_src_for_ssa(value.ssa[0]));
}
} else {
/* We're turning it into a load of a different variable */
ralloc_steal(intrin, value.deref);
intrin->variables[0] = value.deref;
/* Put it back in again. */
nir_builder_instr_insert(b, instr);
value.is_ssa = true;
for (unsigned i = 0; i < intrin->num_components; i++)
value.ssa[i] = &intrin->dest.ssa;
}
state->progress = true;
} else {
value.is_ssa = true;
for (unsigned i = 0; i < intrin->num_components; i++)
value.ssa[i] = &intrin->dest.ssa;
}
/* Now that we have a value, we're going to store it back so that we
* have the right value next time we come looking for it. In order
* to do this, we need an exact match, not just something that
* contains what we're looking for.
*/
struct copy_entry *store_entry =
lookup_entry_for_deref(state, src, derefs_equal_bit);
if (!store_entry)
store_entry = copy_entry_create(state, src);
/* Set up a store to this entry with the value of the load. This way
* we can potentially remove subsequent loads. However, we use a
* NULL instruction so we don't try and delete the load on a
* subsequent store.
*/
store_to_entry(state, store_entry, &value,
((1 << intrin->num_components) - 1), NULL);
break;
}
case nir_intrinsic_store_var: {
struct value value = {
.is_ssa = true
};
for (unsigned i = 0; i < intrin->num_components; i++)
value.ssa[i] = intrin->src[0].ssa;
nir_deref_var *dst = intrin->variables[0];
unsigned wrmask = nir_intrinsic_write_mask(intrin);
struct copy_entry *entry =
get_entry_and_kill_aliases(state, dst, wrmask);
store_to_entry(state, entry, &value, wrmask, &intrin->instr);
break;
}
case nir_intrinsic_copy_var: {
nir_deref_var *dst = intrin->variables[0];
nir_deref_var *src = intrin->variables[1];
if (compare_derefs(src, dst) & derefs_equal_bit) {
/* This is a no-op self-copy. Get rid of it */
nir_instr_remove(instr);
continue;
}
mark_aliased_entries_as_read(state, src, 0xf);
struct copy_entry *src_entry =
lookup_entry_for_deref(state, src, derefs_a_contains_b_bit);
struct value value;
if (try_load_from_entry(state, src_entry, b, intrin, src, &value)) {
if (value.is_ssa) {
nir_store_deref_var(b, dst, value.ssa[0], 0xf);
intrin = nir_instr_as_intrinsic(nir_builder_last_instr(b));
} else {
/* If this would be a no-op self-copy, don't bother. */
if (compare_derefs(value.deref, dst) & derefs_equal_bit)
continue;
/* Just turn it into a copy of a different deref */
ralloc_steal(intrin, value.deref);
intrin->variables[1] = value.deref;
/* Put it back in again. */
nir_builder_instr_insert(b, instr);
}
state->progress = true;
} else {
value = (struct value) {
.is_ssa = false,
{ .deref = src },
};
}
struct copy_entry *dst_entry =
get_entry_and_kill_aliases(state, dst, 0xf);
store_to_entry(state, dst_entry, &value, 0xf, &intrin->instr);
break;
}
default:
break;
}
}
}
bool
nir_opt_copy_prop_vars(nir_shader *shader)
{
struct copy_prop_var_state state;
state.shader = shader;
state.mem_ctx = ralloc_context(NULL);
list_inithead(&state.copies);
list_inithead(&state.copy_free_list);
bool global_progress = false;
nir_foreach_function(function, shader) {
if (!function->impl)
continue;
nir_builder b;
nir_builder_init(&b, function->impl);
state.progress = false;
nir_foreach_block(block, function->impl)
copy_prop_vars_block(&state, &b, block);
if (state.progress) {
nir_metadata_preserve(function->impl, nir_metadata_block_index |
nir_metadata_dominance);
global_progress = true;
}
}
ralloc_free(state.mem_ctx);
return global_progress;
}
|