1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
|
/*
* Copyright © 2019 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir.h"
#include "nir_builder.h"
#include "nir_deref.h"
#include "util/bitscan.h"
#include "util/list.h"
#include "util/u_math.h"
/* Combine stores of vectors to the same deref into a single store.
*
* This per-block pass keeps track of stores of vectors to the same
* destination and combines them into the last store of the sequence. Dead
* stores (or parts of the store) found during the process are removed.
*
* A pending combination becomes an actual combination in various situations:
* at the end of the block, when another instruction uses the memory or due to
* barriers.
*
* Besides vectors, the pass also look at array derefs of vectors. For direct
* array derefs, it works like a write mask access to the given component.
* For indirect access there's no way to know before hand what component it
* will overlap with, so the combination is finished -- the indirect remains
* unmodified.
*/
/* Keep track of a group of stores that can be combined. All stores share the
* same destination.
*/
struct combined_store {
struct list_head link;
nir_component_mask_t write_mask;
nir_deref_instr *dst;
/* Latest store added. It is reused when combining. */
nir_intrinsic_instr *latest;
/* Original store for each component. The number of times a store appear
* in this array is kept in the store's pass_flags.
*/
nir_intrinsic_instr *stores[NIR_MAX_VEC_COMPONENTS];
};
struct combine_stores_state {
nir_variable_mode modes;
/* Pending store combinations. */
struct list_head pending;
/* Per function impl state. */
nir_builder b;
bool progress;
/* Allocator and freelist to reuse structs between functions. */
void *lin_ctx;
struct list_head freelist;
};
static struct combined_store *
alloc_combined_store(struct combine_stores_state *state)
{
struct combined_store *result;
if (list_empty(&state->freelist)) {
result = linear_zalloc_child(state->lin_ctx, sizeof(*result));
} else {
result = list_first_entry(&state->freelist,
struct combined_store,
link);
list_del(&result->link);
memset(result, 0, sizeof(*result));
}
return result;
}
static void
free_combined_store(struct combine_stores_state *state,
struct combined_store *combo)
{
list_del(&combo->link);
combo->write_mask = 0;
list_add(&combo->link, &state->freelist);
}
static void
combine_stores(struct combine_stores_state *state,
struct combined_store *combo)
{
assert(combo->latest);
assert(combo->latest->intrinsic == nir_intrinsic_store_deref);
/* If the combined writemask is the same as the latest store, we know there
* is only one store in the combination, so nothing to combine.
*/
if ((combo->write_mask & nir_intrinsic_write_mask(combo->latest)) ==
combo->write_mask)
return;
state->b.cursor = nir_before_instr(&combo->latest->instr);
/* Build a new vec, to be used as source for the combined store. As it
* gets build, remove previous stores that are not needed anymore.
*/
nir_ssa_def *comps[NIR_MAX_VEC_COMPONENTS] = {0};
unsigned num_components = glsl_get_vector_elements(combo->dst->type);
unsigned bit_size = combo->latest->src[1].ssa->bit_size;
for (unsigned i = 0; i < num_components; i++) {
nir_intrinsic_instr *store = combo->stores[i];
if (combo->write_mask & (1 << i)) {
assert(store);
assert(store->src[1].is_ssa);
/* If store->num_components == 1 then we are in the deref-of-vec case
* and store->src[1] is a scalar. Otherwise, we're a regular vector
* load and we have to pick off a component.
*/
comps[i] = store->num_components == 1 ?
store->src[1].ssa :
nir_channel(&state->b, store->src[1].ssa, i);
assert(store->instr.pass_flags > 0);
if (--store->instr.pass_flags == 0 && store != combo->latest)
nir_instr_remove(&store->instr);
} else {
comps[i] = nir_ssa_undef(&state->b, 1, bit_size);
}
}
assert(combo->latest->instr.pass_flags == 0);
nir_ssa_def *vec = nir_vec(&state->b, comps, num_components);
/* Fix the latest store with the combined information. */
nir_intrinsic_instr *store = combo->latest;
/* In this case, our store is as an array deref of a vector so we need to
* rewrite it to use a deref to the whole vector.
*/
if (store->num_components == 1) {
store->num_components = num_components;
nir_instr_rewrite_src(&store->instr, &store->src[0],
nir_src_for_ssa(&combo->dst->dest.ssa));
}
assert(store->num_components == num_components);
nir_intrinsic_set_write_mask(store, combo->write_mask);
nir_instr_rewrite_src(&store->instr, &store->src[1],
nir_src_for_ssa(vec));
state->progress = true;
}
static void
combine_stores_with_deref(struct combine_stores_state *state,
nir_deref_instr *deref)
{
if ((state->modes & deref->mode) == 0)
return;
list_for_each_entry_safe(struct combined_store, combo, &state->pending, link) {
if (nir_compare_derefs(combo->dst, deref) & nir_derefs_may_alias_bit) {
combine_stores(state, combo);
free_combined_store(state, combo);
}
}
}
static void
combine_stores_with_modes(struct combine_stores_state *state,
nir_variable_mode modes)
{
if ((state->modes & modes) == 0)
return;
list_for_each_entry_safe(struct combined_store, combo, &state->pending, link) {
if (combo->dst->mode & modes) {
combine_stores(state, combo);
free_combined_store(state, combo);
}
}
}
static struct combined_store *
find_matching_combined_store(struct combine_stores_state *state,
nir_deref_instr *deref)
{
list_for_each_entry(struct combined_store, combo, &state->pending, link) {
if (nir_compare_derefs(combo->dst, deref) & nir_derefs_equal_bit)
return combo;
}
return NULL;
}
static void
update_combined_store(struct combine_stores_state *state,
nir_intrinsic_instr *intrin)
{
nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]);
if ((dst->mode & state->modes) == 0)
return;
unsigned vec_mask;
nir_deref_instr *vec_dst;
if (glsl_type_is_vector(dst->type)) {
vec_mask = nir_intrinsic_write_mask(intrin);
vec_dst = dst;
} else {
/* Besides vectors, only direct array derefs of vectors are handled. */
if (dst->deref_type != nir_deref_type_array ||
!nir_src_is_const(dst->arr.index) ||
!glsl_type_is_vector(nir_deref_instr_parent(dst)->type)) {
combine_stores_with_deref(state, dst);
return;
}
uint64_t index = nir_src_as_uint(dst->arr.index);
vec_dst = nir_deref_instr_parent(dst);
if (index >= glsl_get_vector_elements(vec_dst->type)) {
/* Storing to an invalid index is a no-op. */
nir_instr_remove(&intrin->instr);
state->progress = true;
return;
}
vec_mask = 1 << index;
}
struct combined_store *combo = find_matching_combined_store(state, vec_dst);
if (!combo) {
combo = alloc_combined_store(state);
combo->dst = vec_dst;
list_add(&combo->link, &state->pending);
}
/* Use pass_flags to reference count the store based on how many
* components are still used by the combination.
*/
intrin->instr.pass_flags = util_bitcount(vec_mask);
combo->latest = intrin;
/* Update the combined_store, clearing up older overlapping references. */
combo->write_mask |= vec_mask;
while (vec_mask) {
unsigned i = u_bit_scan(&vec_mask);
nir_intrinsic_instr *prev_store = combo->stores[i];
if (prev_store) {
if (--prev_store->instr.pass_flags == 0) {
nir_instr_remove(&prev_store->instr);
} else {
assert(glsl_type_is_vector(
nir_src_as_deref(prev_store->src[0])->type));
nir_component_mask_t prev_mask = nir_intrinsic_write_mask(prev_store);
nir_intrinsic_set_write_mask(prev_store, prev_mask & ~(1 << i));
}
state->progress = true;
}
combo->stores[i] = combo->latest;
}
}
static void
combine_stores_block(struct combine_stores_state *state, nir_block *block)
{
nir_foreach_instr_safe(instr, block) {
if (instr->type == nir_instr_type_call) {
combine_stores_with_modes(state, nir_var_shader_out |
nir_var_shader_temp |
nir_var_function_temp |
nir_var_mem_ssbo |
nir_var_mem_shared);
continue;
}
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_store_deref:
update_combined_store(state, intrin);
break;
case nir_intrinsic_barrier:
case nir_intrinsic_group_memory_barrier:
case nir_intrinsic_memory_barrier:
case nir_intrinsic_memory_barrier_atomic_counter:
case nir_intrinsic_memory_barrier_buffer:
case nir_intrinsic_memory_barrier_image:
case nir_intrinsic_memory_barrier_shared:
/* TODO: Be more granular depending on the barrier. */
combine_stores_with_modes(state, nir_var_shader_out |
nir_var_mem_ssbo |
nir_var_mem_shared);
break;
case nir_intrinsic_emit_vertex:
case nir_intrinsic_emit_vertex_with_counter:
combine_stores_with_modes(state, nir_var_shader_out);
break;
case nir_intrinsic_load_deref: {
nir_deref_instr *src = nir_src_as_deref(intrin->src[0]);
combine_stores_with_deref(state, src);
break;
}
case nir_intrinsic_copy_deref: {
nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]);
nir_deref_instr *src = nir_src_as_deref(intrin->src[1]);
combine_stores_with_deref(state, dst);
combine_stores_with_deref(state, src);
break;
}
case nir_intrinsic_deref_atomic_add:
case nir_intrinsic_deref_atomic_imin:
case nir_intrinsic_deref_atomic_umin:
case nir_intrinsic_deref_atomic_imax:
case nir_intrinsic_deref_atomic_umax:
case nir_intrinsic_deref_atomic_and:
case nir_intrinsic_deref_atomic_or:
case nir_intrinsic_deref_atomic_xor:
case nir_intrinsic_deref_atomic_exchange:
case nir_intrinsic_deref_atomic_comp_swap: {
nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]);
combine_stores_with_deref(state, dst);
break;
}
default:
break;
}
}
/* At the end of the block, try all the remaining combinations. */
combine_stores_with_modes(state, state->modes);
}
static bool
combine_stores_impl(struct combine_stores_state *state, nir_function_impl *impl)
{
state->progress = false;
nir_builder_init(&state->b, impl);
nir_foreach_block(block, impl)
combine_stores_block(state, block);
if (state->progress) {
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
}
return state->progress;
}
bool
nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes)
{
void *mem_ctx = ralloc_context(NULL);
struct combine_stores_state state = {
.modes = modes,
.lin_ctx = linear_zalloc_parent(mem_ctx, 0),
};
list_inithead(&state.pending);
list_inithead(&state.freelist);
bool progress = false;
nir_foreach_function(function, shader) {
if (!function->impl)
continue;
progress |= combine_stores_impl(&state, function->impl);
}
ralloc_free(mem_ctx);
return progress;
}
|