aboutsummaryrefslogtreecommitdiffstats
path: root/src/compiler/nir/nir_lower_flrp.c
blob: 38be18ecc6ba04fb42424f4253776ae3584cbb92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
/*
 * Copyright © 2018 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */
#include <math.h>
#include "nir.h"
#include "nir_builder.h"
#include "util/u_vector.h"

/**
 * Lower flrp instructions.
 *
 * Unlike the lowerings that are possible in nir_opt_algrbraic, this pass can
 * examine more global information to determine a possibly more efficient
 * lowering for each flrp.
 */

static void
append_flrp_to_dead_list(struct u_vector *dead_flrp, struct nir_alu_instr *alu)
{
   struct nir_alu_instr **tail = u_vector_add(dead_flrp);
   *tail = alu;
}

/**
 * Replace flrp(a, b, c) with ffma(b, c, ffma(-a, c, a)).
 */
static void
replace_with_strict_ffma(struct nir_builder *bld, struct u_vector *dead_flrp,
                         struct nir_alu_instr *alu)
{
   nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
   nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
   nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);

   nir_ssa_def *const neg_a = nir_fneg(bld, a);
   nir_instr_as_alu(neg_a->parent_instr)->exact = alu->exact;

   nir_ssa_def *const inner_ffma = nir_ffma(bld, neg_a, c, a);
   nir_instr_as_alu(inner_ffma->parent_instr)->exact = alu->exact;

   nir_ssa_def *const outer_ffma = nir_ffma(bld, b, c, inner_ffma);
   nir_instr_as_alu(outer_ffma->parent_instr)->exact = alu->exact;

   nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(outer_ffma));

   /* DO NOT REMOVE the original flrp yet.  Many of the lowering choices are
    * based on other uses of the sources.  Removing the flrp may cause the
    * last flrp in a sequence to make a different, incorrect choice.
    */
   append_flrp_to_dead_list(dead_flrp, alu);
}

/**
 * Replace flrp(a, b, c) with ffma(a, (1 - c), bc)
 */
static void
replace_with_single_ffma(struct nir_builder *bld, struct u_vector *dead_flrp,
                         struct nir_alu_instr *alu)
{
   nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
   nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
   nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);

   nir_ssa_def *const neg_c = nir_fneg(bld, c);
   nir_instr_as_alu(neg_c->parent_instr)->exact = alu->exact;

   nir_ssa_def *const one_minus_c =
      nir_fadd(bld, nir_imm_floatN_t(bld, 1.0f, c->bit_size), neg_c);
   nir_instr_as_alu(one_minus_c->parent_instr)->exact = alu->exact;

   nir_ssa_def *const b_times_c = nir_fmul(bld, b, c);
   nir_instr_as_alu(b_times_c->parent_instr)->exact = alu->exact;

   nir_ssa_def *const final_ffma = nir_ffma(bld, a, one_minus_c, b_times_c);
   nir_instr_as_alu(final_ffma->parent_instr)->exact = alu->exact;

   nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(final_ffma));

   /* DO NOT REMOVE the original flrp yet.  Many of the lowering choices are
    * based on other uses of the sources.  Removing the flrp may cause the
    * last flrp in a sequence to make a different, incorrect choice.
    */
   append_flrp_to_dead_list(dead_flrp, alu);
}

/**
 * Replace flrp(a, b, c) with a(1-c) + bc.
 */
static void
replace_with_strict(struct nir_builder *bld, struct u_vector *dead_flrp,
                    struct nir_alu_instr *alu)
{
   nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
   nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
   nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);

   nir_ssa_def *const neg_c = nir_fneg(bld, c);
   nir_instr_as_alu(neg_c->parent_instr)->exact = alu->exact;

   nir_ssa_def *const one_minus_c =
      nir_fadd(bld, nir_imm_floatN_t(bld, 1.0f, c->bit_size), neg_c);
   nir_instr_as_alu(one_minus_c->parent_instr)->exact = alu->exact;

   nir_ssa_def *const first_product = nir_fmul(bld, a, one_minus_c);
   nir_instr_as_alu(first_product->parent_instr)->exact = alu->exact;

   nir_ssa_def *const second_product = nir_fmul(bld, b, c);
   nir_instr_as_alu(second_product->parent_instr)->exact = alu->exact;

   nir_ssa_def *const sum = nir_fadd(bld, first_product, second_product);
   nir_instr_as_alu(sum->parent_instr)->exact = alu->exact;

   nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));

   /* DO NOT REMOVE the original flrp yet.  Many of the lowering choices are
    * based on other uses of the sources.  Removing the flrp may cause the
    * last flrp in a sequence to make a different, incorrect choice.
    */
   append_flrp_to_dead_list(dead_flrp, alu);
}

/**
 * Replace flrp(a, b, c) with a + c(b-a).
 */
static void
replace_with_fast(struct nir_builder *bld, struct u_vector *dead_flrp,
                  struct nir_alu_instr *alu)
{
   nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
   nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
   nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);

   nir_ssa_def *const neg_a = nir_fneg(bld, a);
   nir_instr_as_alu(neg_a->parent_instr)->exact = alu->exact;

   nir_ssa_def *const b_minus_a = nir_fadd(bld, b, neg_a);
   nir_instr_as_alu(b_minus_a->parent_instr)->exact = alu->exact;

   nir_ssa_def *const product = nir_fmul(bld, c, b_minus_a);
   nir_instr_as_alu(product->parent_instr)->exact = alu->exact;

   nir_ssa_def *const sum = nir_fadd(bld, a, product);
   nir_instr_as_alu(sum->parent_instr)->exact = alu->exact;

   nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));

   /* DO NOT REMOVE the original flrp yet.  Many of the lowering choices are
    * based on other uses of the sources.  Removing the flrp may cause the
    * last flrp in a sequence to make a different, incorrect choice.
    */
   append_flrp_to_dead_list(dead_flrp, alu);
}

/**
 * Replace flrp(a, b, c) with (b*c ± c) + a => b*c + (a ± c)
 *
 * \note: This only works if a = ±1.
 */
static void
replace_with_expanded_ffma_and_add(struct nir_builder *bld,
                                   struct u_vector *dead_flrp,
                                   struct nir_alu_instr *alu, bool subtract_c)
{
   nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
   nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
   nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);

   nir_ssa_def *const b_times_c = nir_fmul(bld, b, c);
   nir_instr_as_alu(b_times_c->parent_instr)->exact = alu->exact;

   nir_ssa_def *inner_sum;

   if (subtract_c) {
      nir_ssa_def *const neg_c = nir_fneg(bld, c);
      nir_instr_as_alu(neg_c->parent_instr)->exact = alu->exact;

      inner_sum = nir_fadd(bld, a, neg_c);
   } else {
      inner_sum = nir_fadd(bld, a, c);
   }

   nir_instr_as_alu(inner_sum->parent_instr)->exact = alu->exact;

   nir_ssa_def *const outer_sum = nir_fadd(bld, inner_sum, b_times_c);
   nir_instr_as_alu(outer_sum->parent_instr)->exact = alu->exact;

   nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(outer_sum));

   /* DO NOT REMOVE the original flrp yet.  Many of the lowering choices are
    * based on other uses of the sources.  Removing the flrp may cause the
    * last flrp in a sequence to make a different, incorrect choice.
    */
   append_flrp_to_dead_list(dead_flrp, alu);
}

/**
 * Determines whether a swizzled source is constant w/ all components the same.
 *
 * The value of the constant is stored in \c result.
 *
 * \return
 * True if all components of the swizzled source are the same constant.
 * Otherwise false is returned.
 */
static bool
all_same_constant(const nir_alu_instr *instr, unsigned src, double *result)
{
   nir_const_value *val = nir_src_as_const_value(instr->src[src].src);

   if (!val)
      return false;

   const uint8_t *const swizzle = instr->src[src].swizzle;
   const unsigned num_components = nir_dest_num_components(instr->dest.dest);

   if (instr->dest.dest.ssa.bit_size == 32) {
      const float first = val[swizzle[0]].f32;

      for (unsigned i = 1; i < num_components; i++) {
         if (val[swizzle[i]].f32 != first)
            return false;
      }

      *result = first;
   } else {
      const double first = val[swizzle[0]].f64;

      for (unsigned i = 1; i < num_components; i++) {
         if (val[swizzle[i]].f64 != first)
            return false;
      }

      *result = first;
   }

   return true;
}

static bool
sources_are_constants_with_similar_magnitudes(const nir_alu_instr *instr)
{
   nir_const_value *val0 = nir_src_as_const_value(instr->src[0].src);
   nir_const_value *val1 = nir_src_as_const_value(instr->src[1].src);

   if (val0 == NULL || val1 == NULL)
      return false;

   const uint8_t *const swizzle0 = instr->src[0].swizzle;
   const uint8_t *const swizzle1 = instr->src[1].swizzle;
   const unsigned num_components = nir_dest_num_components(instr->dest.dest);

   if (instr->dest.dest.ssa.bit_size == 32) {
      for (unsigned i = 0; i < num_components; i++) {
         int exp0;
         int exp1;

         frexpf(val0[swizzle0[i]].f32, &exp0);
         frexpf(val1[swizzle1[i]].f32, &exp1);

         /* If the difference between exponents is >= 24, then A+B will always
          * have the value whichever between A and B has the largest absolute
          * value.  So, [0, 23] is the valid range.  The smaller the limit
          * value, the more precision will be maintained at a potential
          * performance cost.  Somewhat arbitrarilly split the range in half.
          */
         if (abs(exp0 - exp1) > (23 / 2))
            return false;
      }
   } else {
      for (unsigned i = 0; i < num_components; i++) {
         int exp0;
         int exp1;

         frexp(val0[swizzle0[i]].f64, &exp0);
         frexp(val1[swizzle1[i]].f64, &exp1);

         /* If the difference between exponents is >= 53, then A+B will always
          * have the value whichever between A and B has the largest absolute
          * value.  So, [0, 52] is the valid range.  The smaller the limit
          * value, the more precision will be maintained at a potential
          * performance cost.  Somewhat arbitrarilly split the range in half.
          */
         if (abs(exp0 - exp1) > (52 / 2))
            return false;
      }
   }

   return true;
}

/**
 * Counts of similar types of nir_op_flrp instructions
 *
 * If a similar instruction fits into more than one category, it will only be
 * counted once.  The assumption is that no other instruction will have all
 * sources the same, or CSE would have removed one of the instructions.
 */
struct similar_flrp_stats {
   unsigned src2;
   unsigned src0_and_src2;
   unsigned src1_and_src2;
};

/**
 * Collection counts of similar FLRP instructions.
 *
 * This function only cares about similar instructions that have src2 in
 * common.
 */
static void
get_similar_flrp_stats(nir_alu_instr *alu, struct similar_flrp_stats *st)
{
   memset(st, 0, sizeof(*st));

   nir_foreach_use(other_use, alu->src[2].src.ssa) {
      /* Is the use also a flrp? */
      nir_instr *const other_instr = other_use->parent_instr;
      if (other_instr->type != nir_instr_type_alu)
         continue;

      /* Eh-hem... don't match the instruction with itself. */
      if (other_instr == &alu->instr)
         continue;

      nir_alu_instr *const other_alu = nir_instr_as_alu(other_instr);
      if (other_alu->op != nir_op_flrp)
         continue;

      /* Does the other flrp use source 2 from the first flrp as its source 2
       * as well?
       */
      if (!nir_alu_srcs_equal(alu, other_alu, 2, 2))
         continue;

      if (nir_alu_srcs_equal(alu, other_alu, 0, 0))
         st->src0_and_src2++;
      else if (nir_alu_srcs_equal(alu, other_alu, 1, 1))
         st->src1_and_src2++;
      else
         st->src2++;
   }
}

static void
convert_flrp_instruction(nir_builder *bld,
                         struct u_vector *dead_flrp,
                         nir_alu_instr *alu,
                         bool always_precise,
                         bool have_ffma)
{
   bld->cursor = nir_before_instr(&alu->instr);

   /* There are two methods to implement flrp(x, y, t).  The strictly correct
    * implementation according to the GLSL spec is:
    *
    *    x(1 - t) + yt
    *
    * This can also be implemented using two chained FMAs
    *
    *    fma(y, t, fma(-x, t, x))
    *
    * This method, using either formulation, has better precision when the
    * difference between x and y is very large.  It guarantess that flrp(x, y,
    * 1) = y.  For example, flrp(1e38, 1.0, 1.0) is 1.0.  This is correct.
    *
    * The other possible implementation is:
    *
    *    x + t(y - x)
    *
    * This can also be formuated as an FMA:
    *
    *    fma(y - x, t, x)
    *
    * For this implementation, flrp(1e38, 1.0, 1.0) is 0.0.  Since 1.0 was
    * expected, that's a pretty significant error.
    *
    * The choice made for lowering depends on a number of factors.
    *
    * - If the flrp is marked precise and FMA is supported:
    *
    *        fma(y, t, fma(-x, t, x))
    *
    *   This is strictly correct (maybe?), and the cost is two FMA
    *   instructions.  It at least maintains the flrp(x, y, 1.0) == y
    *   condition.
    *
    * - If the flrp is marked precise and FMA is not supported:
    *
    *        x(1 - t) + yt
    *
    *   This is strictly correct, and the cost is 4 instructions.  If FMA is
    *   supported, this may or may not be reduced to 3 instructions (a
    *   subtract, a multiply, and an FMA)... but in that case the other
    *   formulation should have been used.
    */
   if (alu->exact) {
      if (have_ffma)
         replace_with_strict_ffma(bld, dead_flrp, alu);
      else
         replace_with_strict(bld, dead_flrp, alu);

      return;
   }

   /*
    * - If x and y are both immediates and the relative magnitude of the
    *   values is similar (such that x-y does not lose too much precision):
    *
    *        x + t(x - y)
    *
    *   We rely on constant folding to eliminate x-y, and we rely on
    *   nir_opt_algebraic to possibly generate an FMA.  The cost is either one
    *   FMA or two instructions.
    */
   if (sources_are_constants_with_similar_magnitudes(alu)) {
      replace_with_fast(bld, dead_flrp, alu);
      return;
   }

   /*
    * - If x = 1:
    *
    *        (yt + -t) + 1
    *
    * - If x = -1:
    *
    *        (yt + t) - 1
    *
    *   In both cases, x is used in place of ±1 for simplicity.  Both forms
    *   lend to ffma generation on platforms that support ffma.
    */
   double src0_as_constant;
   if (all_same_constant(alu, 0, &src0_as_constant)) {
      if (src0_as_constant == 1.0) {
         replace_with_expanded_ffma_and_add(bld, dead_flrp, alu,
                                            true /* subtract t */);
         return;
      } else if (src0_as_constant == -1.0) {
         replace_with_expanded_ffma_and_add(bld, dead_flrp, alu,
                                            false /* add t */);
         return;
      }
   }

   /*
    * - If y = ±1:
    *
    *        x(1 - t) + yt
    *
    *   In this case either the multiply in yt will be eliminated by
    *   nir_opt_algebraic.  If FMA is supported, this results in fma(x, (1 -
    *   t), ±t) for two instructions.  If FMA is not supported, then the cost
    *   is 3 instructions.  We rely on nir_opt_algebraic to generate the FMA
    *   instructions as well.
    *
    *   Another possible replacement is
    *
    *        -xt + x ± t
    *
    *   Some groupings of this may be better on some platforms in some
    *   circumstances, bit it is probably dependent on scheduling.  Futher
    *   investigation may be required.
    */
   double src1_as_constant;
   if ((all_same_constant(alu, 1, &src1_as_constant) &&
        (src1_as_constant == -1.0 || src1_as_constant == 1.0))) {
      replace_with_strict(bld, dead_flrp, alu);
      return;
   }

   if (have_ffma) {
      if (always_precise) {
         replace_with_strict_ffma(bld, dead_flrp, alu);
         return;
      }

      /*
       * - If FMA is supported and other flrp(x, _, t) exists:
       *
       *        fma(y, t, fma(-x, t, x))
       *
       *   The hope is that the inner FMA calculation will be shared with the
       *   other lowered flrp.  This results in two FMA instructions for the
       *   first flrp and one FMA instruction for each additional flrp.  It
       *   also means that the live range for x might be complete after the
       *   inner ffma instead of after the last flrp.
       */
      struct similar_flrp_stats st;

      get_similar_flrp_stats(alu, &st);
      if (st.src0_and_src2 > 0) {
         replace_with_strict_ffma(bld, dead_flrp, alu);
         return;
      }

      /*
       * - If FMA is supported and another flrp(_, y, t) exists:
       *
       *        fma(x, (1 - t), yt)
       *
       *   The hope is that the (1 - t) and the yt will be shared with the
       *   other lowered flrp.  This results in 3 insructions for the first
       *   flrp and 1 for each additional flrp.
       */
      if (st.src1_and_src2 > 0) {
         replace_with_single_ffma(bld, dead_flrp, alu);
         return;
      }
   } else {
      if (always_precise) {
         replace_with_strict(bld, dead_flrp, alu);
         return;
      }

      /*
       * - If FMA is not supported and another flrp(x, _, t) exists:
       *
       *        x(1 - t) + yt
       *
       *   The hope is that the x(1 - t) will be shared with the other lowered
       *   flrp.  This results in 4 insructions for the first flrp and 2 for
       *   each additional flrp.
       *
       * - If FMA is not supported and another flrp(_, y, t) exists:
       *
       *        x(1 - t) + yt
       *
       *   The hope is that the (1 - t) and the yt will be shared with the
       *   other lowered flrp.  This results in 4 insructions for the first
       *   flrp and 2 for each additional flrp.
       */
      struct similar_flrp_stats st;

      get_similar_flrp_stats(alu, &st);
      if (st.src0_and_src2 > 0 || st.src1_and_src2 > 0) {
         replace_with_strict(bld, dead_flrp, alu);
         return;
      }
   }

   /*
    * - If t is constant:
    *
    *        x(1 - t) + yt
    *
    *   The cost is three instructions without FMA or two instructions with
    *   FMA.  This is the same cost as the imprecise lowering, but it gives
    *   the instruction scheduler a little more freedom.
    *
    *   There is no need to handle t = 0.5 specially.  nir_opt_algebraic
    *   already has optimizations to convert 0.5x + 0.5y to 0.5(x + y).
    */
   if (alu->src[2].src.ssa->parent_instr->type == nir_instr_type_load_const) {
      replace_with_strict(bld, dead_flrp, alu);
      return;
   }

   /*
    * - Otherwise
    *
    *        x + t(x - y)
    */
   replace_with_fast(bld, dead_flrp, alu);
}

static void
lower_flrp_impl(nir_function_impl *impl,
                struct u_vector *dead_flrp,
                unsigned lowering_mask,
                bool always_precise,
                bool have_ffma)
{
   nir_builder b;
   nir_builder_init(&b, impl);

   nir_foreach_block(block, impl) {
      nir_foreach_instr_safe(instr, block) {
         if (instr->type == nir_instr_type_alu) {
            nir_alu_instr *const alu = nir_instr_as_alu(instr);

            if (alu->op == nir_op_flrp &&
                (alu->dest.dest.ssa.bit_size & lowering_mask)) {
               convert_flrp_instruction(&b, dead_flrp, alu, always_precise,
                                        have_ffma);
            }
         }
      }
   }

   nir_metadata_preserve(impl, nir_metadata_block_index |
                               nir_metadata_dominance);
}

/**
 * \param lowering_mask - Bitwise-or of the bit sizes that need to be lowered
 *                        (e.g., 16 | 64 if only 16-bit and 64-bit flrp need
 *                        lowering).
 * \param always_precise - Always require precise lowering for flrp.  This
 *                        will always lower flrp to (a * (1 - c)) + (b * c).
 * \param have_ffma - Set to true if the GPU has an FFMA instruction that
 *                    should be used.
 */
bool
nir_lower_flrp(nir_shader *shader,
               unsigned lowering_mask,
               bool always_precise,
               bool have_ffma)
{
   struct u_vector dead_flrp;

   if (!u_vector_init(&dead_flrp, sizeof(struct nir_alu_instr *), 64))
      return false;

   nir_foreach_function(function, shader) {
      if (function->impl) {
         lower_flrp_impl(function->impl, &dead_flrp, lowering_mask,
                         always_precise, have_ffma);
      }
   }

   /* Progress was made if the dead list is not empty.  Remove all the
    * instructions from the dead list.
    */
   const bool progress = u_vector_length(&dead_flrp) != 0;

   struct nir_alu_instr **instr;
   u_vector_foreach(instr, &dead_flrp)
      nir_instr_remove(&(*instr)->instr);

   u_vector_finish(&dead_flrp);

   return progress;
}