1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Jason Ekstrand (jason@jlekstrand.net)
*/
#include "nir.h"
#include "nir_worklist.h"
#include "nir_vla.h"
/*
* Basic liveness analysis. This works only in SSA form.
*
* This liveness pass treats phi nodes as being melded to the space between
* blocks so that the destinations of a phi are in the livein of the block
* in which it resides and the sources are in the liveout of the
* corresponding block. By formulating the liveness information in this
* way, we ensure that the definition of any variable dominates its entire
* live range. This is true because the only way that the definition of an
* SSA value may not dominate a use is if the use is in a phi node and the
* uses in phi no are in the live-out of the corresponding predecessor
* block but not in the live-in of the block containing the phi node.
*/
struct live_ssa_defs_state {
unsigned num_ssa_defs;
unsigned bitset_words;
/* Used in propagate_across_edge() */
BITSET_WORD *tmp_live;
nir_block_worklist worklist;
};
static bool
index_ssa_def(nir_ssa_def *def, void *void_state)
{
struct live_ssa_defs_state *state = void_state;
if (def->parent_instr->type == nir_instr_type_ssa_undef)
def->live_index = 0;
else
def->live_index = state->num_ssa_defs++;
return true;
}
/* Initialize the liveness data to zero and add the given block to the
* worklist.
*/
static bool
init_liveness_block(nir_block *block,
struct live_ssa_defs_state *state)
{
block->live_in = reralloc(block, block->live_in, BITSET_WORD,
state->bitset_words);
memset(block->live_in, 0, state->bitset_words * sizeof(BITSET_WORD));
block->live_out = reralloc(block, block->live_out, BITSET_WORD,
state->bitset_words);
memset(block->live_out, 0, state->bitset_words * sizeof(BITSET_WORD));
nir_block_worklist_push_head(&state->worklist, block);
return true;
}
static bool
set_src_live(nir_src *src, void *void_live)
{
BITSET_WORD *live = void_live;
if (!src->is_ssa)
return true;
if (src->ssa->live_index == 0)
return true; /* undefined variables are never live */
BITSET_SET(live, src->ssa->live_index);
return true;
}
static bool
set_ssa_def_dead(nir_ssa_def *def, void *void_live)
{
BITSET_WORD *live = void_live;
BITSET_CLEAR(live, def->live_index);
return true;
}
/** Propagates the live in of succ across the edge to the live out of pred
*
* Phi nodes exist "between" blocks and all the phi nodes at the start of a
* block act "in parallel". When we propagate from the live_in of one
* block to the live out of the other, we have to kill any writes from phis
* and make live any sources.
*
* Returns true if updating live out of pred added anything
*/
static bool
propagate_across_edge(nir_block *pred, nir_block *succ,
struct live_ssa_defs_state *state)
{
BITSET_WORD *live = state->tmp_live;
memcpy(live, succ->live_in, state->bitset_words * sizeof *live);
nir_foreach_instr(instr, succ) {
if (instr->type != nir_instr_type_phi)
break;
nir_phi_instr *phi = nir_instr_as_phi(instr);
assert(phi->dest.is_ssa);
set_ssa_def_dead(&phi->dest.ssa, live);
}
nir_foreach_instr(instr, succ) {
if (instr->type != nir_instr_type_phi)
break;
nir_phi_instr *phi = nir_instr_as_phi(instr);
nir_foreach_phi_src(src, phi) {
if (src->pred == pred) {
set_src_live(&src->src, live);
break;
}
}
}
BITSET_WORD progress = 0;
for (unsigned i = 0; i < state->bitset_words; ++i) {
progress |= live[i] & ~pred->live_out[i];
pred->live_out[i] |= live[i];
}
return progress != 0;
}
void
nir_live_ssa_defs_impl(nir_function_impl *impl)
{
struct live_ssa_defs_state state;
/* We start at 1 because we reserve the index value of 0 for ssa_undef
* instructions. Those are never live, so their liveness information
* can be compacted into a single bit.
*/
state.num_ssa_defs = 1;
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block)
nir_foreach_ssa_def(instr, index_ssa_def, &state);
}
nir_block_worklist_init(&state.worklist, impl->num_blocks, NULL);
/* We now know how many unique ssa definitions we have and we can go
* ahead and allocate live_in and live_out sets and add all of the
* blocks to the worklist.
*/
state.bitset_words = BITSET_WORDS(state.num_ssa_defs);
state.tmp_live = rzalloc_array(impl, BITSET_WORD, state.bitset_words);
nir_foreach_block(block, impl) {
init_liveness_block(block, &state);
}
/* We're now ready to work through the worklist and update the liveness
* sets of each of the blocks. By the time we get to this point, every
* block in the function implementation has been pushed onto the
* worklist in reverse order. As long as we keep the worklist
* up-to-date as we go, everything will get covered.
*/
while (!nir_block_worklist_is_empty(&state.worklist)) {
/* We pop them off in the reverse order we pushed them on. This way
* the first walk of the instructions is backwards so we only walk
* once in the case of no control flow.
*/
nir_block *block = nir_block_worklist_pop_head(&state.worklist);
memcpy(block->live_in, block->live_out,
state.bitset_words * sizeof(BITSET_WORD));
nir_if *following_if = nir_block_get_following_if(block);
if (following_if)
set_src_live(&following_if->condition, block->live_in);
nir_foreach_instr_reverse(instr, block) {
/* Phi nodes are handled seperately so we want to skip them. Since
* we are going backwards and they are at the beginning, we can just
* break as soon as we see one.
*/
if (instr->type == nir_instr_type_phi)
break;
nir_foreach_ssa_def(instr, set_ssa_def_dead, block->live_in);
nir_foreach_src(instr, set_src_live, block->live_in);
}
/* Walk over all of the predecessors of the current block updating
* their live in with the live out of this one. If anything has
* changed, add the predecessor to the work list so that we ensure
* that the new information is used.
*/
set_foreach(block->predecessors, entry) {
nir_block *pred = (nir_block *)entry->key;
if (propagate_across_edge(pred, block, &state))
nir_block_worklist_push_tail(&state.worklist, pred);
}
}
ralloc_free(state.tmp_live);
nir_block_worklist_fini(&state.worklist);
}
static bool
src_does_not_use_def(nir_src *src, void *def)
{
return !src->is_ssa || src->ssa != (nir_ssa_def *)def;
}
static bool
search_for_use_after_instr(nir_instr *start, nir_ssa_def *def)
{
/* Only look for a use strictly after the given instruction */
struct exec_node *node = start->node.next;
while (!exec_node_is_tail_sentinel(node)) {
nir_instr *instr = exec_node_data(nir_instr, node, node);
if (!nir_foreach_src(instr, src_does_not_use_def, def))
return true;
node = node->next;
}
return false;
}
/* Returns true if def is live at instr assuming that def comes before
* instr in a pre DFS search of the dominance tree.
*/
static bool
nir_ssa_def_is_live_at(nir_ssa_def *def, nir_instr *instr)
{
if (BITSET_TEST(instr->block->live_out, def->live_index)) {
/* Since def dominates instr, if def is in the liveout of the block,
* it's live at instr
*/
return true;
} else {
if (BITSET_TEST(instr->block->live_in, def->live_index) ||
def->parent_instr->block == instr->block) {
/* In this case it is either live coming into instr's block or it
* is defined in the same block. In this case, we simply need to
* see if it is used after instr.
*/
return search_for_use_after_instr(instr, def);
} else {
return false;
}
}
}
bool
nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b)
{
if (a->parent_instr == b->parent_instr) {
/* Two variables defined at the same time interfere assuming at
* least one isn't dead.
*/
return true;
} else if (a->live_index == 0 || b->live_index == 0) {
/* If either variable is an ssa_undef, then there's no interference */
return false;
} else if (a->live_index < b->live_index) {
return nir_ssa_def_is_live_at(a, b->parent_instr);
} else {
return nir_ssa_def_is_live_at(b, a->parent_instr);
}
}
|