aboutsummaryrefslogtreecommitdiffstats
path: root/src/compiler/nir/nir_instr_set.c
blob: bd62bc974ed219f422b682d47cee22bc0bdcb216 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
/*
 * Copyright © 2014 Connor Abbott
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "nir_instr_set.h"
#include "nir_vla.h"
#include "util/half_float.h"

#define HASH(hash, data) _mesa_fnv32_1a_accumulate((hash), (data))

static uint32_t
hash_src(uint32_t hash, const nir_src *src)
{
   assert(src->is_ssa);
   hash = HASH(hash, src->ssa);
   return hash;
}

static uint32_t
hash_alu_src(uint32_t hash, const nir_alu_src *src, unsigned num_components)
{
   hash = HASH(hash, src->abs);
   hash = HASH(hash, src->negate);

   for (unsigned i = 0; i < num_components; i++)
      hash = HASH(hash, src->swizzle[i]);

   hash = hash_src(hash, &src->src);
   return hash;
}

static uint32_t
hash_alu(uint32_t hash, const nir_alu_instr *instr)
{
   hash = HASH(hash, instr->op);
   hash = HASH(hash, instr->dest.dest.ssa.num_components);
   hash = HASH(hash, instr->dest.dest.ssa.bit_size);
   /* We explicitly don't hash instr->dest.dest.exact */

   if (nir_op_infos[instr->op].algebraic_properties & NIR_OP_IS_COMMUTATIVE) {
      assert(nir_op_infos[instr->op].num_inputs == 2);
      uint32_t hash0 = hash_alu_src(hash, &instr->src[0],
                                    nir_ssa_alu_instr_src_components(instr, 0));
      uint32_t hash1 = hash_alu_src(hash, &instr->src[1],
                                    nir_ssa_alu_instr_src_components(instr, 1));
      /* For commutative operations, we need some commutative way of
       * combining the hashes.  One option would be to XOR them but that
       * means that anything with two identical sources will hash to 0 and
       * that's common enough we probably don't want the guaranteed
       * collision.  Either addition or multiplication will also work.
       */
      hash = hash0 * hash1;
   } else {
      for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
         hash = hash_alu_src(hash, &instr->src[i],
                             nir_ssa_alu_instr_src_components(instr, i));
      }
   }

   return hash;
}

static uint32_t
hash_deref(uint32_t hash, const nir_deref_instr *instr)
{
   hash = HASH(hash, instr->deref_type);
   hash = HASH(hash, instr->mode);
   hash = HASH(hash, instr->type);

   if (instr->deref_type == nir_deref_type_var)
      return HASH(hash, instr->var);

   hash = hash_src(hash, &instr->parent);

   switch (instr->deref_type) {
   case nir_deref_type_struct:
      hash = HASH(hash, instr->strct.index);
      break;

   case nir_deref_type_array:
   case nir_deref_type_ptr_as_array:
      hash = hash_src(hash, &instr->arr.index);
      break;

   case nir_deref_type_cast:
      hash = HASH(hash, instr->cast.ptr_stride);
      break;

   case nir_deref_type_var:
   case nir_deref_type_array_wildcard:
      /* Nothing to do */
      break;

   default:
      unreachable("Invalid instruction deref type");
   }

   return hash;
}

static uint32_t
hash_load_const(uint32_t hash, const nir_load_const_instr *instr)
{
   hash = HASH(hash, instr->def.num_components);

   if (instr->def.bit_size == 1) {
      for (unsigned i = 0; i < instr->def.num_components; i++) {
         uint8_t b = instr->value[i].b;
         hash = HASH(hash, b);
      }
   } else {
      unsigned size = instr->def.num_components * sizeof(*instr->value);
      hash = _mesa_fnv32_1a_accumulate_block(hash, instr->value, size);
   }

   return hash;
}

static int
cmp_phi_src(const void *data1, const void *data2)
{
   nir_phi_src *src1 = *(nir_phi_src **)data1;
   nir_phi_src *src2 = *(nir_phi_src **)data2;
   return src1->pred - src2->pred;
}

static uint32_t
hash_phi(uint32_t hash, const nir_phi_instr *instr)
{
   hash = HASH(hash, instr->instr.block);

   /* sort sources by predecessor, since the order shouldn't matter */
   unsigned num_preds = instr->instr.block->predecessors->entries;
   NIR_VLA(nir_phi_src *, srcs, num_preds);
   unsigned i = 0;
   nir_foreach_phi_src(src, instr) {
      srcs[i++] = src;
   }

   qsort(srcs, num_preds, sizeof(nir_phi_src *), cmp_phi_src);

   for (i = 0; i < num_preds; i++) {
      hash = hash_src(hash, &srcs[i]->src);
      hash = HASH(hash, srcs[i]->pred);
   }

   return hash;
}

static uint32_t
hash_intrinsic(uint32_t hash, const nir_intrinsic_instr *instr)
{
   const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
   hash = HASH(hash, instr->intrinsic);

   if (info->has_dest) {
      hash = HASH(hash, instr->dest.ssa.num_components);
      hash = HASH(hash, instr->dest.ssa.bit_size);
   }

   hash = _mesa_fnv32_1a_accumulate_block(hash, instr->const_index,
                                          info->num_indices
                                             * sizeof(instr->const_index[0]));
   return hash;
}

static uint32_t
hash_tex(uint32_t hash, const nir_tex_instr *instr)
{
   hash = HASH(hash, instr->op);
   hash = HASH(hash, instr->num_srcs);

   for (unsigned i = 0; i < instr->num_srcs; i++) {
      hash = HASH(hash, instr->src[i].src_type);
      hash = hash_src(hash, &instr->src[i].src);
   }

   hash = HASH(hash, instr->coord_components);
   hash = HASH(hash, instr->sampler_dim);
   hash = HASH(hash, instr->is_array);
   hash = HASH(hash, instr->is_shadow);
   hash = HASH(hash, instr->is_new_style_shadow);
   unsigned component = instr->component;
   hash = HASH(hash, component);
   for (unsigned i = 0; i < 4; ++i)
      for (unsigned j = 0; j < 2; ++j)
         hash = HASH(hash, instr->tg4_offsets[i][j]);
   hash = HASH(hash, instr->texture_index);
   hash = HASH(hash, instr->texture_array_size);
   hash = HASH(hash, instr->sampler_index);

   return hash;
}

/* Computes a hash of an instruction for use in a hash table. Note that this
 * will only work for instructions where instr_can_rewrite() returns true, and
 * it should return identical hashes for two instructions that are the same
 * according nir_instrs_equal().
 */

static uint32_t
hash_instr(const void *data)
{
   const nir_instr *instr = data;
   uint32_t hash = _mesa_fnv32_1a_offset_bias;

   switch (instr->type) {
   case nir_instr_type_alu:
      hash = hash_alu(hash, nir_instr_as_alu(instr));
      break;
   case nir_instr_type_deref:
      hash = hash_deref(hash, nir_instr_as_deref(instr));
      break;
   case nir_instr_type_load_const:
      hash = hash_load_const(hash, nir_instr_as_load_const(instr));
      break;
   case nir_instr_type_phi:
      hash = hash_phi(hash, nir_instr_as_phi(instr));
      break;
   case nir_instr_type_intrinsic:
      hash = hash_intrinsic(hash, nir_instr_as_intrinsic(instr));
      break;
   case nir_instr_type_tex:
      hash = hash_tex(hash, nir_instr_as_tex(instr));
      break;
   default:
      unreachable("Invalid instruction type");
   }

   return hash;
}

bool
nir_srcs_equal(nir_src src1, nir_src src2)
{
   if (src1.is_ssa) {
      if (src2.is_ssa) {
         return src1.ssa == src2.ssa;
      } else {
         return false;
      }
   } else {
      if (src2.is_ssa) {
         return false;
      } else {
         if ((src1.reg.indirect == NULL) != (src2.reg.indirect == NULL))
            return false;

         if (src1.reg.indirect) {
            if (!nir_srcs_equal(*src1.reg.indirect, *src2.reg.indirect))
               return false;
         }

         return src1.reg.reg == src2.reg.reg &&
                src1.reg.base_offset == src2.reg.base_offset;
      }
   }
}

/**
 * If the \p s is an SSA value that was generated by a negation instruction,
 * that instruction is returned as a \c nir_alu_instr.  Otherwise \c NULL is
 * returned.
 */
static nir_alu_instr *
get_neg_instr(nir_src s)
{
   nir_alu_instr *alu = nir_src_as_alu_instr(s);

   return alu != NULL && (alu->op == nir_op_fneg || alu->op == nir_op_ineg)
          ? alu : NULL;
}

bool
nir_const_value_negative_equal(const nir_const_value *c1,
                               const nir_const_value *c2,
                               unsigned components,
                               nir_alu_type base_type,
                               unsigned bits)
{
   assert(base_type == nir_alu_type_get_base_type(base_type));
   assert(base_type != nir_type_invalid);

   /* This can occur for 1-bit Boolean values. */
   if (bits == 1)
      return false;

   switch (base_type) {
   case nir_type_float:
      switch (bits) {
      case 16:
         for (unsigned i = 0; i < components; i++) {
            if (_mesa_half_to_float(c1[i].u16) !=
                -_mesa_half_to_float(c2[i].u16)) {
               return false;
            }
         }

         return true;

      case 32:
         for (unsigned i = 0; i < components; i++) {
            if (c1[i].f32 != -c2[i].f32)
               return false;
         }

         return true;

      case 64:
         for (unsigned i = 0; i < components; i++) {
            if (c1[i].f64 != -c2[i].f64)
               return false;
         }

         return true;

      default:
         unreachable("unknown bit size");
      }

      break;

   case nir_type_int:
   case nir_type_uint:
      switch (bits) {
      case 8:
         for (unsigned i = 0; i < components; i++) {
            if (c1[i].i8 != -c2[i].i8)
               return false;
         }

         return true;

      case 16:
         for (unsigned i = 0; i < components; i++) {
            if (c1[i].i16 != -c2[i].i16)
               return false;
         }

         return true;
         break;

      case 32:
         for (unsigned i = 0; i < components; i++) {
            if (c1[i].i32 != -c2[i].i32)
               return false;
         }

         return true;

      case 64:
         for (unsigned i = 0; i < components; i++) {
            if (c1[i].i64 != -c2[i].i64)
               return false;
         }

         return true;

      default:
         unreachable("unknown bit size");
      }

      break;

   case nir_type_bool:
      return false;

   default:
      break;
   }

   return false;
}

/**
 * Shallow compare of ALU srcs to determine if one is the negation of the other
 *
 * This function detects cases where \p alu1 is a constant and \p alu2 is a
 * constant that is its negation.  It will also detect cases where \p alu2 is
 * an SSA value that is a \c nir_op_fneg applied to \p alu1 (and vice versa).
 *
 * This function does not detect the general case when \p alu1 and \p alu2 are
 * SSA values that are the negations of each other (e.g., \p alu1 represents
 * (a * b) and \p alu2 represents (-a * b)).
 */
bool
nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
                            const nir_alu_instr *alu2,
                            unsigned src1, unsigned src2)
{
   if (alu1->src[src1].abs != alu2->src[src2].abs)
      return false;

   bool parity = alu1->src[src1].negate != alu2->src[src2].negate;

   /* Handling load_const instructions is tricky. */

   const nir_const_value *const const1 =
      nir_src_as_const_value(alu1->src[src1].src);

   if (const1 != NULL) {
      /* Assume that constant folding will eliminate source mods and unary
       * ops.
       */
      if (parity)
         return false;

      const nir_const_value *const const2 =
         nir_src_as_const_value(alu2->src[src2].src);

      if (const2 == NULL)
         return false;

      /* FINISHME: Apply the swizzle? */
      return nir_const_value_negative_equal(const1,
                                            const2,
                                            nir_ssa_alu_instr_src_components(alu1, src1),
                                            nir_op_infos[alu1->op].input_types[src1],
                                            alu1->dest.dest.ssa.bit_size);
   }

   uint8_t alu1_swizzle[4] = {0};
   nir_src alu1_actual_src;
   nir_alu_instr *neg1 = get_neg_instr(alu1->src[src1].src);

   if (neg1) {
      parity = !parity;
      alu1_actual_src = neg1->src[0].src;

      for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(neg1, 0); i++)
         alu1_swizzle[i] = neg1->src[0].swizzle[i];
   } else {
      alu1_actual_src = alu1->src[src1].src;

      for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu1, src1); i++)
         alu1_swizzle[i] = i;
   }

   uint8_t alu2_swizzle[4] = {0};
   nir_src alu2_actual_src;
   nir_alu_instr *neg2 = get_neg_instr(alu2->src[src2].src);

   if (neg2) {
      parity = !parity;
      alu2_actual_src = neg2->src[0].src;

      for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(neg2, 0); i++)
         alu2_swizzle[i] = neg2->src[0].swizzle[i];
   } else {
      alu2_actual_src = alu2->src[src2].src;

      for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu2, src2); i++)
         alu2_swizzle[i] = i;
   }

   for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu1, src1); i++) {
      if (alu1_swizzle[alu1->src[src1].swizzle[i]] !=
          alu2_swizzle[alu2->src[src2].swizzle[i]])
         return false;
   }

   return parity && nir_srcs_equal(alu1_actual_src, alu2_actual_src);
}

bool
nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
                   unsigned src1, unsigned src2)
{
   if (alu1->src[src1].abs != alu2->src[src2].abs ||
       alu1->src[src1].negate != alu2->src[src2].negate)
      return false;

   for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu1, src1); i++) {
      if (alu1->src[src1].swizzle[i] != alu2->src[src2].swizzle[i])
         return false;
   }

   return nir_srcs_equal(alu1->src[src1].src, alu2->src[src2].src);
}

/* Returns "true" if two instructions are equal. Note that this will only
 * work for the subset of instructions defined by instr_can_rewrite(). Also,
 * it should only return "true" for instructions that hash_instr() will return
 * the same hash for (ignoring collisions, of course).
 */

static bool
nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2)
{
   if (instr1->type != instr2->type)
      return false;

   switch (instr1->type) {
   case nir_instr_type_alu: {
      nir_alu_instr *alu1 = nir_instr_as_alu(instr1);
      nir_alu_instr *alu2 = nir_instr_as_alu(instr2);

      if (alu1->op != alu2->op)
         return false;

      /* TODO: We can probably acutally do something more inteligent such
       * as allowing different numbers and taking a maximum or something
       * here */
      if (alu1->dest.dest.ssa.num_components != alu2->dest.dest.ssa.num_components)
         return false;

      if (alu1->dest.dest.ssa.bit_size != alu2->dest.dest.ssa.bit_size)
         return false;

      /* We explicitly don't hash instr->dest.dest.exact */

      if (nir_op_infos[alu1->op].algebraic_properties & NIR_OP_IS_COMMUTATIVE) {
         assert(nir_op_infos[alu1->op].num_inputs == 2);
         return (nir_alu_srcs_equal(alu1, alu2, 0, 0) &&
                 nir_alu_srcs_equal(alu1, alu2, 1, 1)) ||
                (nir_alu_srcs_equal(alu1, alu2, 0, 1) &&
                 nir_alu_srcs_equal(alu1, alu2, 1, 0));
      } else {
         for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) {
            if (!nir_alu_srcs_equal(alu1, alu2, i, i))
               return false;
         }
      }
      return true;
   }
   case nir_instr_type_deref: {
      nir_deref_instr *deref1 = nir_instr_as_deref(instr1);
      nir_deref_instr *deref2 = nir_instr_as_deref(instr2);

      if (deref1->deref_type != deref2->deref_type ||
          deref1->mode != deref2->mode ||
          deref1->type != deref2->type)
         return false;

      if (deref1->deref_type == nir_deref_type_var)
         return deref1->var == deref2->var;

      if (!nir_srcs_equal(deref1->parent, deref2->parent))
         return false;

      switch (deref1->deref_type) {
      case nir_deref_type_struct:
         if (deref1->strct.index != deref2->strct.index)
            return false;
         break;

      case nir_deref_type_array:
      case nir_deref_type_ptr_as_array:
         if (!nir_srcs_equal(deref1->arr.index, deref2->arr.index))
            return false;
         break;

      case nir_deref_type_cast:
         if (deref1->cast.ptr_stride != deref2->cast.ptr_stride)
            return false;
         break;

      case nir_deref_type_var:
      case nir_deref_type_array_wildcard:
         /* Nothing to do */
         break;

      default:
         unreachable("Invalid instruction deref type");
      }
      return true;
   }
   case nir_instr_type_tex: {
      nir_tex_instr *tex1 = nir_instr_as_tex(instr1);
      nir_tex_instr *tex2 = nir_instr_as_tex(instr2);

      if (tex1->op != tex2->op)
         return false;

      if (tex1->num_srcs != tex2->num_srcs)
         return false;
      for (unsigned i = 0; i < tex1->num_srcs; i++) {
         if (tex1->src[i].src_type != tex2->src[i].src_type ||
             !nir_srcs_equal(tex1->src[i].src, tex2->src[i].src)) {
            return false;
         }
      }

      if (tex1->coord_components != tex2->coord_components ||
          tex1->sampler_dim != tex2->sampler_dim ||
          tex1->is_array != tex2->is_array ||
          tex1->is_shadow != tex2->is_shadow ||
          tex1->is_new_style_shadow != tex2->is_new_style_shadow ||
          tex1->component != tex2->component ||
         tex1->texture_index != tex2->texture_index ||
         tex1->texture_array_size != tex2->texture_array_size ||
         tex1->sampler_index != tex2->sampler_index) {
         return false;
      }

      if (memcmp(tex1->tg4_offsets, tex2->tg4_offsets,
                 sizeof(tex1->tg4_offsets)))
         return false;

      return true;
   }
   case nir_instr_type_load_const: {
      nir_load_const_instr *load1 = nir_instr_as_load_const(instr1);
      nir_load_const_instr *load2 = nir_instr_as_load_const(instr2);

      if (load1->def.num_components != load2->def.num_components)
         return false;

      if (load1->def.bit_size != load2->def.bit_size)
         return false;

      if (load1->def.bit_size == 1) {
         for (unsigned i = 0; i < load1->def.num_components; ++i) {
            if (load1->value[i].b != load2->value[i].b)
               return false;
         }
      } else {
         unsigned size = load1->def.num_components * sizeof(*load1->value);
         if (memcmp(load1->value, load2->value, size) != 0)
            return false;
      }
      return true;
   }
   case nir_instr_type_phi: {
      nir_phi_instr *phi1 = nir_instr_as_phi(instr1);
      nir_phi_instr *phi2 = nir_instr_as_phi(instr2);

      if (phi1->instr.block != phi2->instr.block)
         return false;

      nir_foreach_phi_src(src1, phi1) {
         nir_foreach_phi_src(src2, phi2) {
            if (src1->pred == src2->pred) {
               if (!nir_srcs_equal(src1->src, src2->src))
                  return false;

               break;
            }
         }
      }

      return true;
   }
   case nir_instr_type_intrinsic: {
      nir_intrinsic_instr *intrinsic1 = nir_instr_as_intrinsic(instr1);
      nir_intrinsic_instr *intrinsic2 = nir_instr_as_intrinsic(instr2);
      const nir_intrinsic_info *info =
         &nir_intrinsic_infos[intrinsic1->intrinsic];

      if (intrinsic1->intrinsic != intrinsic2->intrinsic ||
          intrinsic1->num_components != intrinsic2->num_components)
         return false;

      if (info->has_dest && intrinsic1->dest.ssa.num_components !=
                            intrinsic2->dest.ssa.num_components)
         return false;

      if (info->has_dest && intrinsic1->dest.ssa.bit_size !=
                            intrinsic2->dest.ssa.bit_size)
         return false;

      for (unsigned i = 0; i < info->num_srcs; i++) {
         if (!nir_srcs_equal(intrinsic1->src[i], intrinsic2->src[i]))
            return false;
      }

      for (unsigned i = 0; i < info->num_indices; i++) {
         if (intrinsic1->const_index[i] != intrinsic2->const_index[i])
            return false;
      }

      return true;
   }
   case nir_instr_type_call:
   case nir_instr_type_jump:
   case nir_instr_type_ssa_undef:
   case nir_instr_type_parallel_copy:
   default:
      unreachable("Invalid instruction type");
   }

   unreachable("All cases in the above switch should return");
}

static bool
src_is_ssa(nir_src *src, void *data)
{
   (void) data;
   return src->is_ssa;
}

static bool
dest_is_ssa(nir_dest *dest, void *data)
{
   (void) data;
   return dest->is_ssa;
}

static inline bool
instr_each_src_and_dest_is_ssa(nir_instr *instr)
{
   if (!nir_foreach_dest(instr, dest_is_ssa, NULL) ||
       !nir_foreach_src(instr, src_is_ssa, NULL))
      return false;

   return true;
}

/* This function determines if uses of an instruction can safely be rewritten
 * to use another identical instruction instead. Note that this function must
 * be kept in sync with hash_instr() and nir_instrs_equal() -- only
 * instructions that pass this test will be handed on to those functions, and
 * conversely they must handle everything that this function returns true for.
 */

static bool
instr_can_rewrite(nir_instr *instr)
{
   /* We only handle SSA. */
   assert(instr_each_src_and_dest_is_ssa(instr));

   switch (instr->type) {
   case nir_instr_type_alu:
   case nir_instr_type_deref:
   case nir_instr_type_tex:
   case nir_instr_type_load_const:
   case nir_instr_type_phi:
      return true;
   case nir_instr_type_intrinsic: {
      const nir_intrinsic_info *info =
         &nir_intrinsic_infos[nir_instr_as_intrinsic(instr)->intrinsic];
      return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
             (info->flags & NIR_INTRINSIC_CAN_REORDER);
   }
   case nir_instr_type_call:
   case nir_instr_type_jump:
   case nir_instr_type_ssa_undef:
      return false;
   case nir_instr_type_parallel_copy:
   default:
      unreachable("Invalid instruction type");
   }

   return false;
}

static nir_ssa_def *
nir_instr_get_dest_ssa_def(nir_instr *instr)
{
   switch (instr->type) {
   case nir_instr_type_alu:
      assert(nir_instr_as_alu(instr)->dest.dest.is_ssa);
      return &nir_instr_as_alu(instr)->dest.dest.ssa;
   case nir_instr_type_deref:
      assert(nir_instr_as_deref(instr)->dest.is_ssa);
      return &nir_instr_as_deref(instr)->dest.ssa;
   case nir_instr_type_load_const:
      return &nir_instr_as_load_const(instr)->def;
   case nir_instr_type_phi:
      assert(nir_instr_as_phi(instr)->dest.is_ssa);
      return &nir_instr_as_phi(instr)->dest.ssa;
   case nir_instr_type_intrinsic:
      assert(nir_instr_as_intrinsic(instr)->dest.is_ssa);
      return &nir_instr_as_intrinsic(instr)->dest.ssa;
   case nir_instr_type_tex:
      assert(nir_instr_as_tex(instr)->dest.is_ssa);
      return &nir_instr_as_tex(instr)->dest.ssa;
   default:
      unreachable("We never ask for any of these");
   }
}

static bool
cmp_func(const void *data1, const void *data2)
{
   return nir_instrs_equal(data1, data2);
}

struct set *
nir_instr_set_create(void *mem_ctx)
{
   return _mesa_set_create(mem_ctx, hash_instr, cmp_func);
}

void
nir_instr_set_destroy(struct set *instr_set)
{
   _mesa_set_destroy(instr_set, NULL);
}

bool
nir_instr_set_add_or_rewrite(struct set *instr_set, nir_instr *instr)
{
   if (!instr_can_rewrite(instr))
      return false;

   uint32_t hash = hash_instr(instr);
   struct set_entry *e = _mesa_set_search_pre_hashed(instr_set, hash, instr);
   if (e) {
      nir_ssa_def *def = nir_instr_get_dest_ssa_def(instr);
      nir_instr *match = (nir_instr *) e->key;
      nir_ssa_def *new_def = nir_instr_get_dest_ssa_def(match);

      /* It's safe to replace an exact instruction with an inexact one as
       * long as we make it exact.  If we got here, the two instructions are
       * exactly identical in every other way so, once we've set the exact
       * bit, they are the same.
       */
      if (instr->type == nir_instr_type_alu && nir_instr_as_alu(instr)->exact)
         nir_instr_as_alu(match)->exact = true;

      nir_ssa_def_rewrite_uses(def, nir_src_for_ssa(new_def));
      return true;
   }

   _mesa_set_add_pre_hashed(instr_set, hash, instr);
   return false;
}

void
nir_instr_set_remove(struct set *instr_set, nir_instr *instr)
{
   if (!instr_can_rewrite(instr))
      return;

   struct set_entry *entry = _mesa_set_search(instr_set, instr);
   if (entry)
      _mesa_set_remove(instr_set, entry);
}