1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
/*
* Copyright © 2018 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir_xfb_info.h"
#include <util/u_math.h>
static void
add_var_xfb_outputs(nir_xfb_info *xfb,
nir_variable *var,
unsigned *location,
unsigned *offset,
const struct glsl_type *type)
{
if (glsl_type_is_array(type) || glsl_type_is_matrix(type)) {
unsigned length = glsl_get_length(type);
const struct glsl_type *child_type = glsl_get_array_element(type);
for (unsigned i = 0; i < length; i++)
add_var_xfb_outputs(xfb, var, location, offset, child_type);
} else if (glsl_type_is_struct(type)) {
unsigned length = glsl_get_length(type);
for (unsigned i = 0; i < length; i++) {
const struct glsl_type *child_type = glsl_get_struct_field(type, i);
add_var_xfb_outputs(xfb, var, location, offset, child_type);
}
} else {
assert(var->data.xfb_buffer < NIR_MAX_XFB_BUFFERS);
if (xfb->buffers_written & (1 << var->data.xfb_buffer)) {
assert(xfb->strides[var->data.xfb_buffer] == var->data.xfb_stride);
assert(xfb->buffer_to_stream[var->data.xfb_buffer] == var->data.stream);
} else {
xfb->buffers_written |= (1 << var->data.xfb_buffer);
xfb->strides[var->data.xfb_buffer] = var->data.xfb_stride;
xfb->buffer_to_stream[var->data.xfb_buffer] = var->data.stream;
}
assert(var->data.stream < NIR_MAX_XFB_STREAMS);
xfb->streams_written |= (1 << var->data.stream);
unsigned comp_slots = glsl_get_component_slots(type);
unsigned attrib_slots = DIV_ROUND_UP(comp_slots, 4);
assert(attrib_slots == glsl_count_attribute_slots(type, false));
/* Ensure that we don't have, for instance, a dvec2 with a location_frac
* of 2 which would make it crass a location boundary even though it
* fits in a single slot. However, you can have a dvec3 which crosses
* the slot boundary with a location_frac of 2.
*/
assert(DIV_ROUND_UP(var->data.location_frac + comp_slots, 4) == attrib_slots);
assert(var->data.location_frac + comp_slots <= 8);
uint8_t comp_mask = ((1 << comp_slots) - 1) << var->data.location_frac;
assert(attrib_slots <= 2);
for (unsigned s = 0; s < attrib_slots; s++) {
nir_xfb_output_info *output = &xfb->outputs[xfb->output_count++];
output->buffer = var->data.xfb_buffer;
output->offset = *offset;
output->location = *location;
output->component_mask = (comp_mask >> (s * 4)) & 0xf;
(*location)++;
*offset += comp_slots * 4;
}
}
}
static int
compare_xfb_output_offsets(const void *_a, const void *_b)
{
const nir_xfb_output_info *a = _a, *b = _b;
return a->offset - b->offset;
}
nir_xfb_info *
nir_gather_xfb_info(const nir_shader *shader, void *mem_ctx)
{
assert(shader->info.stage == MESA_SHADER_VERTEX ||
shader->info.stage == MESA_SHADER_TESS_EVAL ||
shader->info.stage == MESA_SHADER_GEOMETRY);
/* Compute the number of outputs we have. This is simply the number of
* cumulative locations consumed by all the variables. If a location is
* represented by multiple variables, then they each count separately in
* number of outputs.
*/
unsigned num_outputs = 0;
nir_foreach_variable(var, &shader->outputs) {
if (var->data.explicit_xfb_buffer ||
var->data.explicit_xfb_stride) {
assert(var->data.explicit_xfb_buffer &&
var->data.explicit_xfb_stride &&
var->data.explicit_offset);
num_outputs += glsl_count_attribute_slots(var->type, false);
}
}
if (num_outputs == 0)
return NULL;
nir_xfb_info *xfb = rzalloc_size(mem_ctx, nir_xfb_info_size(num_outputs));
/* Walk the list of outputs and add them to the array */
nir_foreach_variable(var, &shader->outputs) {
if (var->data.explicit_xfb_buffer ||
var->data.explicit_xfb_stride) {
unsigned location = var->data.location;
unsigned offset = var->data.offset;
add_var_xfb_outputs(xfb, var, &location, &offset, var->type);
}
}
assert(xfb->output_count == num_outputs);
/* Everything is easier in the state setup code if the list is sorted in
* order of output offset.
*/
qsort(xfb->outputs, xfb->output_count, sizeof(xfb->outputs[0]),
compare_xfb_output_offsets);
/* Finally, do a sanity check */
unsigned max_offset[NIR_MAX_XFB_BUFFERS] = {0};
for (unsigned i = 0; i < xfb->output_count; i++) {
assert(xfb->outputs[i].offset >= max_offset[xfb->outputs[i].buffer]);
assert(xfb->outputs[i].component_mask != 0);
unsigned slots = util_bitcount(xfb->outputs[i].component_mask);
max_offset[xfb->outputs[i].buffer] = xfb->outputs[i].offset + slots * 4;
}
return xfb;
}
|