aboutsummaryrefslogtreecommitdiffstats
path: root/src/compiler/nir/nir_deref.c
blob: aa841223a3be9b80646a070d5580c16f16b05936 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
/*
 * Copyright © 2018 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "nir.h"
#include "nir_builder.h"
#include "nir_deref.h"
#include "util/hash_table.h"

static bool
is_trivial_deref_cast(nir_deref_instr *cast)
{
   nir_deref_instr *parent = nir_src_as_deref(cast->parent);
   if (!parent)
      return false;

   return cast->mode == parent->mode &&
          cast->type == parent->type &&
          cast->dest.ssa.num_components == parent->dest.ssa.num_components &&
          cast->dest.ssa.bit_size == parent->dest.ssa.bit_size;
}

void
nir_deref_path_init(nir_deref_path *path,
                    nir_deref_instr *deref, void *mem_ctx)
{
   assert(deref != NULL);

   /* The length of the short path is at most ARRAY_SIZE - 1 because we need
    * room for the NULL terminator.
    */
   static const int max_short_path_len = ARRAY_SIZE(path->_short_path) - 1;

   int count = 0;

   nir_deref_instr **tail = &path->_short_path[max_short_path_len];
   nir_deref_instr **head = tail;

   *tail = NULL;
   for (nir_deref_instr *d = deref; d; d = nir_deref_instr_parent(d)) {
      if (d->deref_type == nir_deref_type_cast && is_trivial_deref_cast(d))
         continue;
      count++;
      if (count <= max_short_path_len)
         *(--head) = d;
   }

   if (count <= max_short_path_len) {
      /* If we're under max_short_path_len, just use the short path. */
      path->path = head;
      goto done;
   }

#ifndef NDEBUG
   /* Just in case someone uses short_path by accident */
   for (unsigned i = 0; i < ARRAY_SIZE(path->_short_path); i++)
      path->_short_path[i] = (void *)(uintptr_t)0xdeadbeef;
#endif

   path->path = ralloc_array(mem_ctx, nir_deref_instr *, count + 1);
   head = tail = path->path + count;
   *tail = NULL;
   for (nir_deref_instr *d = deref; d; d = nir_deref_instr_parent(d)) {
      if (d->deref_type == nir_deref_type_cast && is_trivial_deref_cast(d))
         continue;
      *(--head) = d;
   }

done:
   assert(head == path->path);
   assert(tail == head + count);
   assert(*tail == NULL);
}

void
nir_deref_path_finish(nir_deref_path *path)
{
   if (path->path < &path->_short_path[0] ||
       path->path > &path->_short_path[ARRAY_SIZE(path->_short_path) - 1])
      ralloc_free(path->path);
}

/**
 * Recursively removes unused deref instructions
 */
bool
nir_deref_instr_remove_if_unused(nir_deref_instr *instr)
{
   bool progress = false;

   for (nir_deref_instr *d = instr; d; d = nir_deref_instr_parent(d)) {
      /* If anyone is using this deref, leave it alone */
      assert(d->dest.is_ssa);
      if (!list_is_empty(&d->dest.ssa.uses))
         break;

      nir_instr_remove(&d->instr);
      progress = true;
   }

   return progress;
}

bool
nir_deref_instr_has_indirect(nir_deref_instr *instr)
{
   while (instr->deref_type != nir_deref_type_var) {
      /* Consider casts to be indirects */
      if (instr->deref_type == nir_deref_type_cast)
         return true;

      if ((instr->deref_type == nir_deref_type_array ||
           instr->deref_type == nir_deref_type_ptr_as_array) &&
          !nir_src_is_const(instr->arr.index))
         return true;

      instr = nir_deref_instr_parent(instr);
   }

   return false;
}

bool
nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr)
{
   for (; instr; instr = nir_deref_instr_parent(instr)) {
      if (instr->deref_type == nir_deref_type_array &&
          nir_src_is_const(instr->arr.index) &&
           nir_src_as_uint(instr->arr.index) >=
           glsl_get_length(nir_deref_instr_parent(instr)->type))
         return true;
   }

   return false;
}

bool
nir_deref_instr_has_complex_use(nir_deref_instr *deref)
{
   nir_foreach_use(use_src, &deref->dest.ssa) {
      nir_instr *use_instr = use_src->parent_instr;

      switch (use_instr->type) {
      case nir_instr_type_deref: {
         nir_deref_instr *use_deref = nir_instr_as_deref(use_instr);

         /* A var deref has no sources */
         assert(use_deref->deref_type != nir_deref_type_var);

         /* If a deref shows up in an array index or something like that, it's
          * a complex use.
          */
         if (use_src != &use_deref->parent)
            return true;

         /* Anything that isn't a basic struct or array deref is considered to
          * be a "complex" use.  In particular, we don't allow ptr_as_array
          * because we assume that opt_deref will turn any non-complex
          * ptr_as_array derefs into regular array derefs eventually so passes
          * which only want to handle simple derefs will pick them up in a
          * later pass.
          */
         if (use_deref->deref_type != nir_deref_type_struct &&
             use_deref->deref_type != nir_deref_type_array_wildcard &&
             use_deref->deref_type != nir_deref_type_array)
            return true;

         if (nir_deref_instr_has_complex_use(use_deref))
            return true;

         continue;
      }

      case nir_instr_type_intrinsic: {
         nir_intrinsic_instr *use_intrin = nir_instr_as_intrinsic(use_instr);
         switch (use_intrin->intrinsic) {
         case nir_intrinsic_load_deref:
            assert(use_src == &use_intrin->src[0]);
            continue;

         case nir_intrinsic_copy_deref:
            assert(use_src == &use_intrin->src[0] ||
                   use_src == &use_intrin->src[1]);
            continue;

         case nir_intrinsic_store_deref:
            /* A use in src[1] of a store means we're taking that pointer and
             * writing it to a variable.  Because we have no idea who will
             * read that variable and what they will do with the pointer, it's
             * considered a "complex" use.  A use in src[0], on the other
             * hand, is a simple use because we're just going to dereference
             * it and write a value there.
             */
            if (use_src == &use_intrin->src[0])
               continue;
            return true;

         default:
            return true;
         }
         unreachable("Switch default failed");
      }

      default:
         return true;
      }
   }

   nir_foreach_if_use(use, &deref->dest.ssa)
      return true;

   return false;
}

unsigned
nir_deref_instr_ptr_as_array_stride(nir_deref_instr *deref)
{
   switch (deref->deref_type) {
   case nir_deref_type_array:
      return glsl_get_explicit_stride(nir_deref_instr_parent(deref)->type);
   case nir_deref_type_ptr_as_array:
      return nir_deref_instr_ptr_as_array_stride(nir_deref_instr_parent(deref));
   case nir_deref_type_cast:
      return deref->cast.ptr_stride;
   default:
      return 0;
   }
}

static unsigned
type_get_array_stride(const struct glsl_type *elem_type,
                      glsl_type_size_align_func size_align)
{
   unsigned elem_size, elem_align;
   size_align(elem_type, &elem_size, &elem_align);
   return ALIGN_POT(elem_size, elem_align);
}

static unsigned
struct_type_get_field_offset(const struct glsl_type *struct_type,
                             glsl_type_size_align_func size_align,
                             unsigned field_idx)
{
   assert(glsl_type_is_struct_or_ifc(struct_type));
   unsigned offset = 0;
   for (unsigned i = 0; i <= field_idx; i++) {
      unsigned elem_size, elem_align;
      size_align(glsl_get_struct_field(struct_type, i), &elem_size, &elem_align);
      offset = ALIGN_POT(offset, elem_align);
      if (i < field_idx)
         offset += elem_size;
   }
   return offset;
}

unsigned
nir_deref_instr_get_const_offset(nir_deref_instr *deref,
                                 glsl_type_size_align_func size_align)
{
   nir_deref_path path;
   nir_deref_path_init(&path, deref, NULL);

   assert(path.path[0]->deref_type == nir_deref_type_var);

   unsigned offset = 0;
   for (nir_deref_instr **p = &path.path[1]; *p; p++) {
      if ((*p)->deref_type == nir_deref_type_array) {
         offset += nir_src_as_uint((*p)->arr.index) *
                   type_get_array_stride((*p)->type, size_align);
      } else if ((*p)->deref_type == nir_deref_type_struct) {
         /* p starts at path[1], so this is safe */
         nir_deref_instr *parent = *(p - 1);
         offset += struct_type_get_field_offset(parent->type, size_align,
                                                (*p)->strct.index);
      } else {
         unreachable("Unsupported deref type");
      }
   }

   nir_deref_path_finish(&path);

   return offset;
}

nir_ssa_def *
nir_build_deref_offset(nir_builder *b, nir_deref_instr *deref,
                       glsl_type_size_align_func size_align)
{
   nir_deref_path path;
   nir_deref_path_init(&path, deref, NULL);

   assert(path.path[0]->deref_type == nir_deref_type_var);

   nir_ssa_def *offset = nir_imm_intN_t(b, 0, deref->dest.ssa.bit_size);
   for (nir_deref_instr **p = &path.path[1]; *p; p++) {
      if ((*p)->deref_type == nir_deref_type_array) {
         nir_ssa_def *index = nir_ssa_for_src(b, (*p)->arr.index, 1);
         int stride = type_get_array_stride((*p)->type, size_align);
         offset = nir_iadd(b, offset, nir_amul_imm(b, index, stride));
      } else if ((*p)->deref_type == nir_deref_type_struct) {
         /* p starts at path[1], so this is safe */
         nir_deref_instr *parent = *(p - 1);
         unsigned field_offset =
            struct_type_get_field_offset(parent->type, size_align,
                                         (*p)->strct.index);
         offset = nir_iadd_imm(b, offset, field_offset);
      } else {
         unreachable("Unsupported deref type");
      }
   }

   nir_deref_path_finish(&path);

   return offset;
}

bool
nir_remove_dead_derefs_impl(nir_function_impl *impl)
{
   bool progress = false;

   nir_foreach_block(block, impl) {
      nir_foreach_instr_safe(instr, block) {
         if (instr->type == nir_instr_type_deref &&
             nir_deref_instr_remove_if_unused(nir_instr_as_deref(instr)))
            progress = true;
      }
   }

   if (progress)
      nir_metadata_preserve(impl, nir_metadata_block_index |
                                  nir_metadata_dominance);

   return progress;
}

bool
nir_remove_dead_derefs(nir_shader *shader)
{
   bool progress = false;
   nir_foreach_function(function, shader) {
      if (function->impl && nir_remove_dead_derefs_impl(function->impl))
         progress = true;
   }

   return progress;
}

void
nir_fixup_deref_modes(nir_shader *shader)
{
   nir_foreach_function(function, shader) {
      if (!function->impl)
         continue;

      nir_foreach_block(block, function->impl) {
         nir_foreach_instr(instr, block) {
            if (instr->type != nir_instr_type_deref)
               continue;

            nir_deref_instr *deref = nir_instr_as_deref(instr);
            if (deref->deref_type == nir_deref_type_cast)
               continue;

            nir_variable_mode parent_mode;
            if (deref->deref_type == nir_deref_type_var) {
               parent_mode = deref->var->data.mode;
            } else {
               assert(deref->parent.is_ssa);
               nir_deref_instr *parent =
                  nir_instr_as_deref(deref->parent.ssa->parent_instr);
               parent_mode = parent->mode;
            }

            deref->mode = parent_mode;
         }
      }
   }
}

static bool
modes_may_alias(nir_variable_mode a, nir_variable_mode b)
{
   /* Generic pointers can alias with SSBOs */
   if ((a == nir_var_mem_ssbo || a == nir_var_mem_global) &&
       (b == nir_var_mem_ssbo || b == nir_var_mem_global))
      return true;

   /* In the general case, pointers can only alias if they have the same mode.
    *
    * NOTE: In future, with things like OpenCL generic pointers, this may not
    * be true and will have to be re-evaluated.  However, with graphics only,
    * it should be safe.
    */
   return a == b;
}

static bool
deref_path_contains_coherent_decoration(nir_deref_path *path)
{
   assert(path->path[0]->deref_type == nir_deref_type_var);

   if (path->path[0]->var->data.access & ACCESS_COHERENT)
      return true;

   for (nir_deref_instr **p = &path->path[1]; *p; p++) {
      if ((*p)->deref_type != nir_deref_type_struct)
         continue;

      const struct glsl_type *struct_type = (*(p - 1))->type;
      const struct glsl_struct_field *field =
         glsl_get_struct_field_data(struct_type, (*p)->strct.index);
      if (field->memory_coherent)
         return true;
   }

   return false;
}

nir_deref_compare_result
nir_compare_deref_paths(nir_deref_path *a_path,
                        nir_deref_path *b_path)
{
   if (!modes_may_alias(b_path->path[0]->mode, a_path->path[0]->mode))
      return nir_derefs_do_not_alias;

   if (a_path->path[0]->deref_type != b_path->path[0]->deref_type)
      return nir_derefs_may_alias_bit;

   if (a_path->path[0]->deref_type == nir_deref_type_var) {
      if (a_path->path[0]->var != b_path->path[0]->var) {
         /* Shader and function temporaries aren't backed by memory so two
          * distinct variables never alias.
          */
         static const nir_variable_mode temp_var_modes =
            nir_var_shader_temp | nir_var_function_temp;
         if ((a_path->path[0]->mode & temp_var_modes) ||
             (b_path->path[0]->mode & temp_var_modes))
            return nir_derefs_do_not_alias;

         /* If they are both declared coherent or have coherent somewhere in
          * their path (due to a member of an interface being declared
          * coherent), we have to assume we that we could have any kind of
          * aliasing.  Otherwise, they could still alias but the client didn't
          * tell us and that's their fault.
          */
         if (deref_path_contains_coherent_decoration(a_path) &&
             deref_path_contains_coherent_decoration(b_path))
            return nir_derefs_may_alias_bit;

         /* If we can chase the deref all the way back to the variable and
          * they're not the same variable and at least one is not declared
          * coherent, we know they can't possibly alias.
          */
         return nir_derefs_do_not_alias;
      }
   } else {
      assert(a_path->path[0]->deref_type == nir_deref_type_cast);
      /* If they're not exactly the same cast, it's hard to compare them so we
       * just assume they alias.  Comparing casts is tricky as there are lots
       * of things such as mode, type, etc. to make sure work out; for now, we
       * just assume nit_opt_deref will combine them and compare the deref
       * instructions.
       *
       * TODO: At some point in the future, we could be clever and understand
       * that a float[] and int[] have the same layout and aliasing structure
       * but double[] and vec3[] do not and we could potentially be a bit
       * smarter here.
       */
      if (a_path->path[0] != b_path->path[0])
         return nir_derefs_may_alias_bit;
   }

   /* Start off assuming they fully compare.  We ignore equality for now.  In
    * the end, we'll determine that by containment.
    */
   nir_deref_compare_result result = nir_derefs_may_alias_bit |
                                     nir_derefs_a_contains_b_bit |
                                     nir_derefs_b_contains_a_bit;

   nir_deref_instr **a_p = &a_path->path[1];
   nir_deref_instr **b_p = &b_path->path[1];
   while (*a_p != NULL && *a_p == *b_p) {
      a_p++;
      b_p++;
   }

   /* We're at either the tail or the divergence point between the two deref
    * paths.  Look to see if either contains a ptr_as_array deref.  It it
    * does we don't know how to safely make any inferences.  Hopefully,
    * nir_opt_deref will clean most of these up and we can start inferring
    * things again.
    *
    * In theory, we could do a bit better.  For instance, we could detect the
    * case where we have exactly one ptr_as_array deref in the chain after the
    * divergence point and it's matched in both chains and the two chains have
    * different constant indices.
    */
   for (nir_deref_instr **t_p = a_p; *t_p; t_p++) {
      if ((*t_p)->deref_type == nir_deref_type_ptr_as_array)
         return nir_derefs_may_alias_bit;
   }
   for (nir_deref_instr **t_p = b_p; *t_p; t_p++) {
      if ((*t_p)->deref_type == nir_deref_type_ptr_as_array)
         return nir_derefs_may_alias_bit;
   }

   while (*a_p != NULL && *b_p != NULL) {
      nir_deref_instr *a_tail = *(a_p++);
      nir_deref_instr *b_tail = *(b_p++);

      switch (a_tail->deref_type) {
      case nir_deref_type_array:
      case nir_deref_type_array_wildcard: {
         assert(b_tail->deref_type == nir_deref_type_array ||
                b_tail->deref_type == nir_deref_type_array_wildcard);

         if (a_tail->deref_type == nir_deref_type_array_wildcard) {
            if (b_tail->deref_type != nir_deref_type_array_wildcard)
               result &= ~nir_derefs_b_contains_a_bit;
         } else if (b_tail->deref_type == nir_deref_type_array_wildcard) {
            if (a_tail->deref_type != nir_deref_type_array_wildcard)
               result &= ~nir_derefs_a_contains_b_bit;
         } else {
            assert(a_tail->deref_type == nir_deref_type_array &&
                   b_tail->deref_type == nir_deref_type_array);
            assert(a_tail->arr.index.is_ssa && b_tail->arr.index.is_ssa);

            if (nir_src_is_const(a_tail->arr.index) &&
                nir_src_is_const(b_tail->arr.index)) {
               /* If they're both direct and have different offsets, they
                * don't even alias much less anything else.
                */
               if (nir_src_as_uint(a_tail->arr.index) !=
                   nir_src_as_uint(b_tail->arr.index))
                  return nir_derefs_do_not_alias;
            } else if (a_tail->arr.index.ssa == b_tail->arr.index.ssa) {
               /* They're the same indirect, continue on */
            } else {
               /* They're not the same index so we can't prove anything about
                * containment.
                */
               result &= ~(nir_derefs_a_contains_b_bit | nir_derefs_b_contains_a_bit);
            }
         }
         break;
      }

      case nir_deref_type_struct: {
         /* If they're different struct members, they don't even alias */
         if (a_tail->strct.index != b_tail->strct.index)
            return nir_derefs_do_not_alias;
         break;
      }

      default:
         unreachable("Invalid deref type");
      }
   }

   /* If a is longer than b, then it can't contain b */
   if (*a_p != NULL)
      result &= ~nir_derefs_a_contains_b_bit;
   if (*b_p != NULL)
      result &= ~nir_derefs_b_contains_a_bit;

   /* If a contains b and b contains a they must be equal. */
   if ((result & nir_derefs_a_contains_b_bit) && (result & nir_derefs_b_contains_a_bit))
      result |= nir_derefs_equal_bit;

   return result;
}

nir_deref_compare_result
nir_compare_derefs(nir_deref_instr *a, nir_deref_instr *b)
{
   if (a == b) {
      return nir_derefs_equal_bit | nir_derefs_may_alias_bit |
             nir_derefs_a_contains_b_bit | nir_derefs_b_contains_a_bit;
   }

   nir_deref_path a_path, b_path;
   nir_deref_path_init(&a_path, a, NULL);
   nir_deref_path_init(&b_path, b, NULL);
   assert(a_path.path[0]->deref_type == nir_deref_type_var ||
          a_path.path[0]->deref_type == nir_deref_type_cast);
   assert(b_path.path[0]->deref_type == nir_deref_type_var ||
          b_path.path[0]->deref_type == nir_deref_type_cast);

   nir_deref_compare_result result = nir_compare_deref_paths(&a_path, &b_path);

   nir_deref_path_finish(&a_path);
   nir_deref_path_finish(&b_path);

   return result;
}

struct rematerialize_deref_state {
   bool progress;
   nir_builder builder;
   nir_block *block;
   struct hash_table *cache;
};

static nir_deref_instr *
rematerialize_deref_in_block(nir_deref_instr *deref,
                             struct rematerialize_deref_state *state)
{
   if (deref->instr.block == state->block)
      return deref;

   if (!state->cache) {
      state->cache = _mesa_pointer_hash_table_create(NULL);
   }

   struct hash_entry *cached = _mesa_hash_table_search(state->cache, deref);
   if (cached)
      return cached->data;

   nir_builder *b = &state->builder;
   nir_deref_instr *new_deref =
      nir_deref_instr_create(b->shader, deref->deref_type);
   new_deref->mode = deref->mode;
   new_deref->type = deref->type;

   if (deref->deref_type == nir_deref_type_var) {
      new_deref->var = deref->var;
   } else {
      nir_deref_instr *parent = nir_src_as_deref(deref->parent);
      if (parent) {
         parent = rematerialize_deref_in_block(parent, state);
         new_deref->parent = nir_src_for_ssa(&parent->dest.ssa);
      } else {
         nir_src_copy(&new_deref->parent, &deref->parent, new_deref);
      }
   }

   switch (deref->deref_type) {
   case nir_deref_type_var:
   case nir_deref_type_array_wildcard:
   case nir_deref_type_cast:
      /* Nothing more to do */
      break;

   case nir_deref_type_array:
   case nir_deref_type_ptr_as_array:
      assert(!nir_src_as_deref(deref->arr.index));
      nir_src_copy(&new_deref->arr.index, &deref->arr.index, new_deref);
      break;

   case nir_deref_type_struct:
      new_deref->strct.index = deref->strct.index;
      break;

   default:
      unreachable("Invalid deref instruction type");
   }

   nir_ssa_dest_init(&new_deref->instr, &new_deref->dest,
                     deref->dest.ssa.num_components,
                     deref->dest.ssa.bit_size,
                     deref->dest.ssa.name);
   nir_builder_instr_insert(b, &new_deref->instr);

   return new_deref;
}

static bool
rematerialize_deref_src(nir_src *src, void *_state)
{
   struct rematerialize_deref_state *state = _state;

   nir_deref_instr *deref = nir_src_as_deref(*src);
   if (!deref)
      return true;

   nir_deref_instr *block_deref = rematerialize_deref_in_block(deref, state);
   if (block_deref != deref) {
      nir_instr_rewrite_src(src->parent_instr, src,
                            nir_src_for_ssa(&block_deref->dest.ssa));
      nir_deref_instr_remove_if_unused(deref);
      state->progress = true;
   }

   return true;
}

/** Re-materialize derefs in every block
 *
 * This pass re-materializes deref instructions in every block in which it is
 * used.  After this pass has been run, every use of a deref will be of a
 * deref in the same block as the use.  Also, all unused derefs will be
 * deleted as a side-effect.
 *
 * Derefs used as sources of phi instructions are not rematerialized.
 */
bool
nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl)
{
   struct rematerialize_deref_state state = { 0 };
   nir_builder_init(&state.builder, impl);

   nir_foreach_block(block, impl) {
      state.block = block;

      /* Start each block with a fresh cache */
      if (state.cache)
         _mesa_hash_table_clear(state.cache, NULL);

      nir_foreach_instr_safe(instr, block) {
         if (instr->type == nir_instr_type_deref &&
             nir_deref_instr_remove_if_unused(nir_instr_as_deref(instr)))
            continue;

         /* If a deref is used in a phi, we can't rematerialize it, as the new
          * derefs would appear before the phi, which is not valid.
          */
         if (instr->type == nir_instr_type_phi)
            continue;

         state.builder.cursor = nir_before_instr(instr);
         nir_foreach_src(instr, rematerialize_deref_src, &state);
      }

#ifndef NDEBUG
      nir_if *following_if = nir_block_get_following_if(block);
      if (following_if)
         assert(!nir_src_as_deref(following_if->condition));
#endif
   }

   _mesa_hash_table_destroy(state.cache, NULL);

   return state.progress;
}

static bool
is_trivial_array_deref_cast(nir_deref_instr *cast)
{
   assert(is_trivial_deref_cast(cast));

   nir_deref_instr *parent = nir_src_as_deref(cast->parent);

   if (parent->deref_type == nir_deref_type_array) {
      return cast->cast.ptr_stride ==
             glsl_get_explicit_stride(nir_deref_instr_parent(parent)->type);
   } else if (parent->deref_type == nir_deref_type_ptr_as_array) {
      return cast->cast.ptr_stride ==
             nir_deref_instr_ptr_as_array_stride(parent);
   } else {
      return false;
   }
}

static bool
is_deref_ptr_as_array(nir_instr *instr)
{
   return instr->type == nir_instr_type_deref &&
          nir_instr_as_deref(instr)->deref_type == nir_deref_type_ptr_as_array;
}

/**
 * Remove casts that just wrap other casts.
 */
static bool
opt_remove_cast_cast(nir_deref_instr *cast)
{
   nir_deref_instr *first_cast = cast;

   while (true) {
      nir_deref_instr *parent = nir_deref_instr_parent(first_cast);
      if (parent == NULL || parent->deref_type != nir_deref_type_cast)
         break;
      first_cast = parent;
   }
   if (cast == first_cast)
      return false;

   nir_instr_rewrite_src(&cast->instr, &cast->parent,
                         nir_src_for_ssa(first_cast->parent.ssa));
   return true;
}

/**
 * Is this casting a struct to a contained struct.
 * struct a { struct b field0 };
 * ssa_5 is structa;
 * deref_cast (structb *)ssa_5 (function_temp structb);
 * converts to
 * deref_struct &ssa_5->field0 (function_temp structb);
 * This allows subsequent copy propagation to work.
 */
static bool
opt_replace_struct_wrapper_cast(nir_builder *b, nir_deref_instr *cast)
{
   nir_deref_instr *parent = nir_src_as_deref(cast->parent);
   if (!parent)
      return false;

   if (!glsl_type_is_struct(parent->type))
      return false;

   if (glsl_get_struct_field_offset(parent->type, 0) != 0)
      return false;

   if (cast->type != glsl_get_struct_field(parent->type, 0))
      return false;

   nir_deref_instr *replace = nir_build_deref_struct(b, parent, 0);
   nir_ssa_def_rewrite_uses(&cast->dest.ssa, nir_src_for_ssa(&replace->dest.ssa));
   nir_deref_instr_remove_if_unused(cast);
   return true;
}

static bool
opt_deref_cast(nir_builder *b, nir_deref_instr *cast)
{
   bool progress;

   if (opt_replace_struct_wrapper_cast(b, cast))
      return true;

   progress = opt_remove_cast_cast(cast);
   if (!is_trivial_deref_cast(cast))
      return progress;

   bool trivial_array_cast = is_trivial_array_deref_cast(cast);

   assert(cast->dest.is_ssa);
   assert(cast->parent.is_ssa);

   nir_foreach_use_safe(use_src, &cast->dest.ssa) {
      /* If this isn't a trivial array cast, we can't propagate into
       * ptr_as_array derefs.
       */
      if (is_deref_ptr_as_array(use_src->parent_instr) &&
          !trivial_array_cast)
         continue;

      nir_instr_rewrite_src(use_src->parent_instr, use_src, cast->parent);
      progress = true;
   }

   /* If uses would be a bit crazy */
   assert(list_is_empty(&cast->dest.ssa.if_uses));

   nir_deref_instr_remove_if_unused(cast);
   return progress;
}

static bool
opt_deref_ptr_as_array(nir_builder *b, nir_deref_instr *deref)
{
   assert(deref->deref_type == nir_deref_type_ptr_as_array);

   nir_deref_instr *parent = nir_deref_instr_parent(deref);

   if (nir_src_is_const(deref->arr.index) &&
       nir_src_as_int(deref->arr.index) == 0) {
      /* If it's a ptr_as_array deref with an index of 0, it does nothing
       * and we can just replace its uses with its parent.
       *
       * The source of a ptr_as_array deref always has a deref_type of
       * nir_deref_type_array or nir_deref_type_cast.  If it's a cast, it
       * may be trivial and we may be able to get rid of that too.  Any
       * trivial cast of trivial cast cases should be handled already by
       * opt_deref_cast() above.
       */
      if (parent->deref_type == nir_deref_type_cast &&
          is_trivial_deref_cast(parent))
         parent = nir_deref_instr_parent(parent);
      nir_ssa_def_rewrite_uses(&deref->dest.ssa,
                               nir_src_for_ssa(&parent->dest.ssa));
      nir_instr_remove(&deref->instr);
      return true;
   }

   if (parent->deref_type != nir_deref_type_array &&
       parent->deref_type != nir_deref_type_ptr_as_array)
      return false;

   assert(parent->parent.is_ssa);
   assert(parent->arr.index.is_ssa);
   assert(deref->arr.index.is_ssa);

   nir_ssa_def *new_idx = nir_iadd(b, parent->arr.index.ssa,
                                      deref->arr.index.ssa);

   deref->deref_type = parent->deref_type;
   nir_instr_rewrite_src(&deref->instr, &deref->parent, parent->parent);
   nir_instr_rewrite_src(&deref->instr, &deref->arr.index,
                         nir_src_for_ssa(new_idx));
   return true;
}

bool
nir_opt_deref_impl(nir_function_impl *impl)
{
   bool progress = false;

   nir_builder b;
   nir_builder_init(&b, impl);

   nir_foreach_block(block, impl) {
      nir_foreach_instr_safe(instr, block) {
         if (instr->type != nir_instr_type_deref)
            continue;

         b.cursor = nir_before_instr(instr);

         nir_deref_instr *deref = nir_instr_as_deref(instr);
         switch (deref->deref_type) {
         case nir_deref_type_ptr_as_array:
            if (opt_deref_ptr_as_array(&b, deref))
               progress = true;
            break;

         case nir_deref_type_cast:
            if (opt_deref_cast(&b, deref))
               progress = true;
            break;

         default:
            /* Do nothing */
            break;
         }
      }
   }

   if (progress) {
      nir_metadata_preserve(impl, nir_metadata_block_index |
                                  nir_metadata_dominance);
   } else {
#ifndef NDEBUG
      impl->valid_metadata &= ~nir_metadata_not_properly_reset;
#endif
   }

   return progress;
}

bool
nir_opt_deref(nir_shader *shader)
{
   bool progress = false;

   nir_foreach_function(func, shader) {
      if (func->impl && nir_opt_deref_impl(func->impl))
         progress = true;
   }

   return progress;
}