aboutsummaryrefslogtreecommitdiffstats
path: root/src/amd/vulkan/si_cmd_buffer.c
blob: ad71ee55ac279b33b707d790ebef59b3c38510fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
/*
 * Copyright © 2016 Red Hat.
 * Copyright © 2016 Bas Nieuwenhuizen
 *
 * based on si_state.c
 * Copyright © 2015 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

/* command buffer handling for AMD GCN */

#include "radv_private.h"
#include "radv_shader.h"
#include "radv_cs.h"
#include "sid.h"
#include "radv_util.h"

static void
si_write_harvested_raster_configs(struct radv_physical_device *physical_device,
                                  struct radeon_cmdbuf *cs,
				  unsigned raster_config,
				  unsigned raster_config_1)
{
	unsigned num_se = MAX2(physical_device->rad_info.max_se, 1);
	unsigned raster_config_se[4];
	unsigned se;

	ac_get_harvested_configs(&physical_device->rad_info,
				 raster_config,
				 &raster_config_1,
				 raster_config_se);

	for (se = 0; se < num_se; se++) {
		/* GRBM_GFX_INDEX has a different offset on GFX6 and GFX7+ */
		if (physical_device->rad_info.chip_class < GFX7)
			radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX,
					      S_00802C_SE_INDEX(se) |
					      S_00802C_SH_BROADCAST_WRITES(1) |
					      S_00802C_INSTANCE_BROADCAST_WRITES(1));
		else
			radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
					       S_030800_SE_INDEX(se) | S_030800_SH_BROADCAST_WRITES(1) |
					       S_030800_INSTANCE_BROADCAST_WRITES(1));
		radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG, raster_config_se[se]);
	}

	/* GRBM_GFX_INDEX has a different offset on GFX6 and GFX7+ */
	if (physical_device->rad_info.chip_class < GFX7)
		radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX,
				      S_00802C_SE_BROADCAST_WRITES(1) |
				      S_00802C_SH_BROADCAST_WRITES(1) |
				      S_00802C_INSTANCE_BROADCAST_WRITES(1));
	else
		radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
				       S_030800_SE_BROADCAST_WRITES(1) | S_030800_SH_BROADCAST_WRITES(1) |
				       S_030800_INSTANCE_BROADCAST_WRITES(1));

	if (physical_device->rad_info.chip_class >= GFX7)
		radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1, raster_config_1);
}

void
si_emit_compute(struct radv_physical_device *physical_device,
                struct radeon_cmdbuf *cs)
{
	radeon_set_sh_reg_seq(cs, R_00B810_COMPUTE_START_X, 3);
	radeon_emit(cs, 0);
	radeon_emit(cs, 0);
	radeon_emit(cs, 0);

	radeon_set_sh_reg_seq(cs, R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0, 2);
	/* R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0 / SE1,
	 * renamed COMPUTE_DESTINATION_EN_SEn on gfx10. */
	radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff));
	radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff));

	if (physical_device->rad_info.chip_class >= GFX7) {
		/* Also set R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE2 / SE3 */
		radeon_set_sh_reg_seq(cs,
				      R_00B864_COMPUTE_STATIC_THREAD_MGMT_SE2, 2);
		radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) |
			    S_00B858_SH1_CU_EN(0xffff));
		radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) |
			    S_00B858_SH1_CU_EN(0xffff));
	}

	if (physical_device->rad_info.chip_class >= GFX10)
		radeon_set_sh_reg(cs, R_00B8A0_COMPUTE_PGM_RSRC3, 0);

	/* This register has been moved to R_00CD20_COMPUTE_MAX_WAVE_ID
	 * and is now per pipe, so it should be handled in the
	 * kernel if we want to use something other than the default value,
	 * which is now 0x22f.
	 */
	if (physical_device->rad_info.chip_class <= GFX6) {
		/* XXX: This should be:
		 * (number of compute units) * 4 * (waves per simd) - 1 */

		radeon_set_sh_reg(cs, R_00B82C_COMPUTE_MAX_WAVE_ID,
		                  0x190 /* Default value */);
	}
}

/* 12.4 fixed-point */
static unsigned radv_pack_float_12p4(float x)
{
	return x <= 0    ? 0 :
	       x >= 4096 ? 0xffff : x * 16;
}

static void
si_set_raster_config(struct radv_physical_device *physical_device,
		     struct radeon_cmdbuf *cs)
{
	unsigned num_rb = MIN2(physical_device->rad_info.num_render_backends, 16);
	unsigned rb_mask = physical_device->rad_info.enabled_rb_mask;
	unsigned raster_config, raster_config_1;

	ac_get_raster_config(&physical_device->rad_info,
			     &raster_config,
			     &raster_config_1, NULL);

	/* Always use the default config when all backends are enabled
	 * (or when we failed to determine the enabled backends).
	 */
	if (!rb_mask || util_bitcount(rb_mask) >= num_rb) {
		radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG,
				       raster_config);
		if (physical_device->rad_info.chip_class >= GFX7)
			radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1,
					       raster_config_1);
	} else {
		si_write_harvested_raster_configs(physical_device, cs,
						  raster_config,
						  raster_config_1);
	}
}

void
si_emit_graphics(struct radv_device *device,
		 struct radeon_cmdbuf *cs)
{
	struct radv_physical_device *physical_device = device->physical_device;

	bool has_clear_state = physical_device->rad_info.has_clear_state;
	int i;

	radeon_emit(cs, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
	radeon_emit(cs, CONTEXT_CONTROL_LOAD_ENABLE(1));
	radeon_emit(cs, CONTEXT_CONTROL_SHADOW_ENABLE(1));

	if (has_clear_state) {
		radeon_emit(cs, PKT3(PKT3_CLEAR_STATE, 0, 0));
		radeon_emit(cs, 0);
	}

	if (physical_device->rad_info.chip_class <= GFX8)
		si_set_raster_config(physical_device, cs);

	radeon_set_context_reg(cs, R_028A18_VGT_HOS_MAX_TESS_LEVEL, fui(64));
	if (!has_clear_state)
		radeon_set_context_reg(cs, R_028A1C_VGT_HOS_MIN_TESS_LEVEL, fui(0));

	/* FIXME calculate these values somehow ??? */
	if (physical_device->rad_info.chip_class <= GFX8) {
		radeon_set_context_reg(cs, R_028A54_VGT_GS_PER_ES, SI_GS_PER_ES);
		radeon_set_context_reg(cs, R_028A58_VGT_ES_PER_GS, 0x40);
	}

	if (!has_clear_state) {
		radeon_set_context_reg(cs, R_028A5C_VGT_GS_PER_VS, 0x2);
		radeon_set_context_reg(cs, R_028A8C_VGT_PRIMITIVEID_RESET, 0x0);
		radeon_set_context_reg(cs, R_028B98_VGT_STRMOUT_BUFFER_CONFIG, 0x0);
	}

	if (physical_device->rad_info.chip_class <= GFX9)
		radeon_set_context_reg(cs, R_028AA0_VGT_INSTANCE_STEP_RATE_0, 1);
	if (!has_clear_state)
		radeon_set_context_reg(cs, R_028AB8_VGT_VTX_CNT_EN, 0x0);
	if (physical_device->rad_info.chip_class < GFX7)
		radeon_set_config_reg(cs, R_008A14_PA_CL_ENHANCE, S_008A14_NUM_CLIP_SEQ(3) |
				      S_008A14_CLIP_VTX_REORDER_ENA(1));

	if (!has_clear_state)
		radeon_set_context_reg(cs, R_02882C_PA_SU_PRIM_FILTER_CNTL, 0);

	/* CLEAR_STATE doesn't clear these correctly on certain generations.
	 * I don't know why. Deduced by trial and error.
	 */
	if (physical_device->rad_info.chip_class <= GFX7 || !has_clear_state) {
		radeon_set_context_reg(cs, R_028B28_VGT_STRMOUT_DRAW_OPAQUE_OFFSET, 0);
		radeon_set_context_reg(cs, R_028204_PA_SC_WINDOW_SCISSOR_TL,
				       S_028204_WINDOW_OFFSET_DISABLE(1));
		radeon_set_context_reg(cs, R_028240_PA_SC_GENERIC_SCISSOR_TL,
				       S_028240_WINDOW_OFFSET_DISABLE(1));
		radeon_set_context_reg(cs, R_028244_PA_SC_GENERIC_SCISSOR_BR,
				       S_028244_BR_X(16384) | S_028244_BR_Y(16384));
		radeon_set_context_reg(cs, R_028030_PA_SC_SCREEN_SCISSOR_TL, 0);
		radeon_set_context_reg(cs, R_028034_PA_SC_SCREEN_SCISSOR_BR,
				       S_028034_BR_X(16384) | S_028034_BR_Y(16384));
	}

	if (!has_clear_state) {
		for (i = 0; i < 16; i++) {
			radeon_set_context_reg(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 + i*8, 0);
			radeon_set_context_reg(cs, R_0282D4_PA_SC_VPORT_ZMAX_0 + i*8, fui(1.0));
		}
	}

	if (!has_clear_state) {
		radeon_set_context_reg(cs, R_02820C_PA_SC_CLIPRECT_RULE, 0xFFFF);
		radeon_set_context_reg(cs, R_028230_PA_SC_EDGERULE, 0xAAAAAAAA);
		/* PA_SU_HARDWARE_SCREEN_OFFSET must be 0 due to hw bug on GFX6 */
		radeon_set_context_reg(cs, R_028234_PA_SU_HARDWARE_SCREEN_OFFSET, 0);
		radeon_set_context_reg(cs, R_028820_PA_CL_NANINF_CNTL, 0);
		radeon_set_context_reg(cs, R_028AC0_DB_SRESULTS_COMPARE_STATE0, 0x0);
		radeon_set_context_reg(cs, R_028AC4_DB_SRESULTS_COMPARE_STATE1, 0x0);
		radeon_set_context_reg(cs, R_028AC8_DB_PRELOAD_CONTROL, 0x0);
	}

	radeon_set_context_reg(cs, R_02800C_DB_RENDER_OVERRIDE,
			       S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) |
			       S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE));

	if (physical_device->rad_info.chip_class >= GFX10) {
		radeon_set_context_reg(cs, R_028A98_VGT_DRAW_PAYLOAD_CNTL, 0);
		radeon_set_uconfig_reg(cs, R_030964_GE_MAX_VTX_INDX, ~0);
		radeon_set_uconfig_reg(cs, R_030924_GE_MIN_VTX_INDX, 0);
		radeon_set_uconfig_reg(cs, R_030928_GE_INDX_OFFSET, 0);
		radeon_set_uconfig_reg(cs, R_03097C_GE_STEREO_CNTL, 0);
		radeon_set_uconfig_reg(cs, R_030988_GE_USER_VGPR_EN, 0);
	} else if (physical_device->rad_info.chip_class == GFX9) {
		radeon_set_uconfig_reg(cs, R_030920_VGT_MAX_VTX_INDX, ~0);
		radeon_set_uconfig_reg(cs, R_030924_VGT_MIN_VTX_INDX, 0);
		radeon_set_uconfig_reg(cs, R_030928_VGT_INDX_OFFSET, 0);
	} else {
		/* These registers, when written, also overwrite the
		 * CLEAR_STATE context, so we can't rely on CLEAR_STATE setting
		 * them.  It would be an issue if there was another UMD
		 * changing them.
		 */
		radeon_set_context_reg(cs, R_028400_VGT_MAX_VTX_INDX, ~0);
		radeon_set_context_reg(cs, R_028404_VGT_MIN_VTX_INDX, 0);
		radeon_set_context_reg(cs, R_028408_VGT_INDX_OFFSET, 0);
	}

	if (physical_device->rad_info.chip_class >= GFX7) {
		if (physical_device->rad_info.chip_class >= GFX10) {
			/* Logical CUs 16 - 31 */
			radeon_set_sh_reg_idx(physical_device, cs, R_00B404_SPI_SHADER_PGM_RSRC4_HS,
					      3, S_00B404_CU_EN(0xffff));
			radeon_set_sh_reg_idx(physical_device, cs, R_00B104_SPI_SHADER_PGM_RSRC4_VS,
					      3, S_00B104_CU_EN(0xffff));
			radeon_set_sh_reg_idx(physical_device, cs, R_00B004_SPI_SHADER_PGM_RSRC4_PS,
					      3, S_00B004_CU_EN(0xffff));
		}

		if (physical_device->rad_info.chip_class >= GFX9) {
			radeon_set_sh_reg_idx(physical_device, cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
					      3, S_00B41C_CU_EN(0xffff) | S_00B41C_WAVE_LIMIT(0x3F));
		} else {
			radeon_set_sh_reg(cs, R_00B51C_SPI_SHADER_PGM_RSRC3_LS,
					  S_00B51C_CU_EN(0xffff) | S_00B51C_WAVE_LIMIT(0x3F));
			radeon_set_sh_reg(cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
					  S_00B41C_WAVE_LIMIT(0x3F));
			radeon_set_sh_reg(cs, R_00B31C_SPI_SHADER_PGM_RSRC3_ES,
					  S_00B31C_CU_EN(0xffff) | S_00B31C_WAVE_LIMIT(0x3F));
			/* If this is 0, Bonaire can hang even if GS isn't being used.
			 * Other chips are unaffected. These are suboptimal values,
			 * but we don't use on-chip GS.
			 */
			radeon_set_context_reg(cs, R_028A44_VGT_GS_ONCHIP_CNTL,
					       S_028A44_ES_VERTS_PER_SUBGRP(64) |
					       S_028A44_GS_PRIMS_PER_SUBGRP(4));
		}

		/* Compute LATE_ALLOC_VS.LIMIT. */
		unsigned num_cu_per_sh = physical_device->rad_info.num_good_cu_per_sh;
		unsigned late_alloc_wave64 = 0; /* The limit is per SH. */
		unsigned late_alloc_wave64_gs = 0;
		unsigned cu_mask_vs = 0xffff;
		unsigned cu_mask_gs = 0xffff;

		if (physical_device->rad_info.chip_class >= GFX10) {
			/* For Wave32, the hw will launch twice the number of late
			 * alloc waves, so 1 == 2x wave32.
			 */
			if (!physical_device->rad_info.use_late_alloc) {
				late_alloc_wave64 = 0;
			} else if (num_cu_per_sh <= 6) {
				late_alloc_wave64 = num_cu_per_sh - 2;
			} else {
				late_alloc_wave64 = (num_cu_per_sh - 2) * 4;

				/* CU2 & CU3 disabled because of the dual CU design */
				cu_mask_vs = 0xfff3;
				cu_mask_gs = 0xfff3; /* NGG only */
			}

			late_alloc_wave64_gs = late_alloc_wave64;

			/* Don't use late alloc for NGG on Navi14 due to a hw
			 * bug. If NGG is never used, enable all CUs.
			 */
			if (!physical_device->use_ngg ||
			    physical_device->rad_info.family == CHIP_NAVI14) {
				late_alloc_wave64_gs = 0;
				cu_mask_gs = 0xffff;
			}
		} else {
			if (!physical_device->rad_info.use_late_alloc) {
				late_alloc_wave64 = 0;
			} else if (num_cu_per_sh <= 4) {
				/* Too few available compute units per SH.
				 * Disallowing VS to run on one CU could hurt
				 * us more than late VS allocation would help.
				 *
				 * 2 is the highest safe number that allows us
				 * to keep all CUs enabled.
				 */
				late_alloc_wave64 = 2;
			} else {
				/* This is a good initial value, allowing 1
				 * late_alloc wave per SIMD on num_cu - 2.
				 */
				late_alloc_wave64 = (num_cu_per_sh - 2) * 4;
			}

			if (late_alloc_wave64 > 2)
				cu_mask_vs = 0xfffe; /* 1 CU disabled */
		}

		radeon_set_sh_reg_idx(physical_device, cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
				      3, S_00B118_CU_EN(cu_mask_vs) |
				      S_00B118_WAVE_LIMIT(0x3F));
		radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS,
				  S_00B11C_LIMIT(late_alloc_wave64));

		radeon_set_sh_reg_idx(physical_device, cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
				      3, S_00B21C_CU_EN(cu_mask_gs) | S_00B21C_WAVE_LIMIT(0x3F));

		if (physical_device->rad_info.chip_class >= GFX10) {
			radeon_set_sh_reg_idx(physical_device, cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
					      3, S_00B204_CU_EN(0xffff) |
					      S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64_gs));
		}

		radeon_set_sh_reg_idx(physical_device, cs, R_00B01C_SPI_SHADER_PGM_RSRC3_PS,
				      3, S_00B01C_CU_EN(0xffff) | S_00B01C_WAVE_LIMIT(0x3F));
	}

	if (physical_device->rad_info.chip_class >= GFX10) {
		/* Break up a pixel wave if it contains deallocs for more than
		 * half the parameter cache.
		 *
		 * To avoid a deadlock where pixel waves aren't launched
		 * because they're waiting for more pixels while the frontend
		 * is stuck waiting for PC space, the maximum allowed value is
		 * the size of the PC minus the largest possible allocation for
		 * a single primitive shader subgroup.
		 */
		radeon_set_context_reg(cs, R_028C50_PA_SC_NGG_MODE_CNTL,
				       S_028C50_MAX_DEALLOCS_IN_WAVE(512));
		radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14);

		/* Enable CMASK/FMASK/HTILE/DCC caching in L2 for small chips. */
		unsigned meta_write_policy, meta_read_policy;

		/* TODO: investigate whether LRU improves performance on other chips too */
		if (physical_device->rad_info.num_render_backends <= 4) {
			meta_write_policy = V_02807C_CACHE_LRU_WR; /* cache writes */
			meta_read_policy =  V_02807C_CACHE_LRU_RD; /* cache reads */
		} else {
			meta_write_policy = V_02807C_CACHE_STREAM_WR; /* write combine */
			meta_read_policy =  V_02807C_CACHE_NOA_RD;    /* don't cache reads */
		}

		radeon_set_context_reg(cs, R_02807C_DB_RMI_L2_CACHE_CONTROL,
				       S_02807C_Z_WR_POLICY(V_02807C_CACHE_STREAM_WR) |
				       S_02807C_S_WR_POLICY(V_02807C_CACHE_STREAM_WR) |
				       S_02807C_HTILE_WR_POLICY(meta_write_policy) |
				       S_02807C_ZPCPSD_WR_POLICY(V_02807C_CACHE_STREAM_WR) |
				       S_02807C_Z_RD_POLICY(V_02807C_CACHE_NOA_RD) |
				       S_02807C_S_RD_POLICY(V_02807C_CACHE_NOA_RD) |
				       S_02807C_HTILE_RD_POLICY(meta_read_policy));

		radeon_set_context_reg(cs, R_028410_CB_RMI_GL2_CACHE_CONTROL,
				       S_028410_CMASK_WR_POLICY(meta_write_policy) |
				       S_028410_FMASK_WR_POLICY(meta_write_policy) |
				       S_028410_DCC_WR_POLICY(meta_write_policy) |
				       S_028410_COLOR_WR_POLICY(V_028410_CACHE_STREAM_WR) |
				       S_028410_CMASK_RD_POLICY(meta_read_policy) |
				       S_028410_FMASK_RD_POLICY(meta_read_policy) |
				       S_028410_DCC_RD_POLICY(meta_read_policy) |
				       S_028410_COLOR_RD_POLICY(V_028410_CACHE_NOA_RD));
		radeon_set_context_reg(cs, R_028428_CB_COVERAGE_OUT_CONTROL, 0);

		radeon_set_sh_reg(cs, R_00B0C0_SPI_SHADER_REQ_CTRL_PS,
				  S_00B0C0_SOFT_GROUPING_EN(1) |
				  S_00B0C0_NUMBER_OF_REQUESTS_PER_CU(4 - 1));
		radeon_set_sh_reg(cs, R_00B1C0_SPI_SHADER_REQ_CTRL_VS, 0);

		if (physical_device->rad_info.chip_class == GFX10) {
			/* SQ_NON_EVENT must be emitted before GE_PC_ALLOC is written. */
			radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
			radeon_emit(cs, EVENT_TYPE(V_028A90_SQ_NON_EVENT) | EVENT_INDEX(0));
		}

		/* TODO: For culling, replace 128 with 256. */
		radeon_set_uconfig_reg(cs, R_030980_GE_PC_ALLOC,
				       S_030980_OVERSUB_EN(physical_device->rad_info.use_late_alloc) |
				       S_030980_NUM_PC_LINES(128 * physical_device->rad_info.max_se - 1));
	}

	if (physical_device->rad_info.chip_class >= GFX9) {
		radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION,
				       S_028B50_ACCUM_ISOLINE(40) |
				       S_028B50_ACCUM_TRI(30) |
				       S_028B50_ACCUM_QUAD(24) |
				       S_028B50_DONUT_SPLIT(24) |
				       S_028B50_TRAP_SPLIT(6));
	} else if (physical_device->rad_info.chip_class >= GFX8) {
		uint32_t vgt_tess_distribution;

		vgt_tess_distribution = S_028B50_ACCUM_ISOLINE(32) |
			S_028B50_ACCUM_TRI(11) |
			S_028B50_ACCUM_QUAD(11) |
			S_028B50_DONUT_SPLIT(16);

		if (physical_device->rad_info.family == CHIP_FIJI ||
		    physical_device->rad_info.family >= CHIP_POLARIS10)
			vgt_tess_distribution |= S_028B50_TRAP_SPLIT(3);

		radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION,
				       vgt_tess_distribution);
	} else if (!has_clear_state) {
		radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14);
		radeon_set_context_reg(cs, R_028C5C_VGT_OUT_DEALLOC_CNTL, 16);
	}

	if (device->border_color_data.bo) {
		uint64_t border_color_va = radv_buffer_get_va(device->border_color_data.bo);

		radeon_set_context_reg(cs, R_028080_TA_BC_BASE_ADDR, border_color_va >> 8);
		if (physical_device->rad_info.chip_class >= GFX7) {
			radeon_set_context_reg(cs, R_028084_TA_BC_BASE_ADDR_HI,
					       S_028084_ADDRESS(border_color_va >> 40));
		}
	}

	if (physical_device->rad_info.chip_class >= GFX9) {
		radeon_set_context_reg(cs, R_028C48_PA_SC_BINNER_CNTL_1,
				       S_028C48_MAX_ALLOC_COUNT(physical_device->rad_info.pbb_max_alloc_count - 1) |
				       S_028C48_MAX_PRIM_PER_BATCH(1023));
		radeon_set_context_reg(cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
				       S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1));
		radeon_set_uconfig_reg(cs, R_030968_VGT_INSTANCE_BASE_ID, 0);
	}

	unsigned tmp = (unsigned)(1.0 * 8.0);
	radeon_set_context_reg_seq(cs, R_028A00_PA_SU_POINT_SIZE, 1);
	radeon_emit(cs, S_028A00_HEIGHT(tmp) | S_028A00_WIDTH(tmp));
	radeon_set_context_reg_seq(cs, R_028A04_PA_SU_POINT_MINMAX, 1);
	radeon_emit(cs, S_028A04_MIN_SIZE(radv_pack_float_12p4(0)) |
		    S_028A04_MAX_SIZE(radv_pack_float_12p4(8192/2)));

	if (!has_clear_state) {
		radeon_set_context_reg(cs, R_028004_DB_COUNT_CONTROL,
				       S_028004_ZPASS_INCREMENT_DISABLE(1));
	}

	/* Enable the Polaris small primitive filter control.
	 * XXX: There is possibly an issue when MSAA is off (see RadeonSI
	 * has_msaa_sample_loc_bug). But this doesn't seem to regress anything,
	 * and AMDVLK doesn't have a workaround as well.
	 */
	if (physical_device->rad_info.family >= CHIP_POLARIS10) {
		unsigned small_prim_filter_cntl =
			S_028830_SMALL_PRIM_FILTER_ENABLE(1) |
			/* Workaround for a hw line bug. */
			S_028830_LINE_FILTER_DISABLE(physical_device->rad_info.family <= CHIP_POLARIS12);

		radeon_set_context_reg(cs, R_028830_PA_SU_SMALL_PRIM_FILTER_CNTL,
				       small_prim_filter_cntl);
	}

	si_emit_compute(physical_device, cs);
}

void
cik_create_gfx_config(struct radv_device *device)
{
	struct radeon_cmdbuf *cs = device->ws->cs_create(device->ws, RING_GFX);
	if (!cs)
		return;

	si_emit_graphics(device, cs);

	while (cs->cdw & 7) {
		if (device->physical_device->rad_info.gfx_ib_pad_with_type2)
			radeon_emit(cs, 0x80000000);
		else
			radeon_emit(cs, 0xffff1000);
	}

	device->gfx_init = device->ws->buffer_create(device->ws,
						     cs->cdw * 4, 4096,
						     RADEON_DOMAIN_GTT,
						     RADEON_FLAG_CPU_ACCESS|
						     RADEON_FLAG_NO_INTERPROCESS_SHARING |
						     RADEON_FLAG_READ_ONLY,
						     RADV_BO_PRIORITY_CS);
	if (!device->gfx_init)
		goto fail;

	void *map = device->ws->buffer_map(device->gfx_init);
	if (!map) {
		device->ws->buffer_destroy(device->gfx_init);
		device->gfx_init = NULL;
		goto fail;
	}
	memcpy(map, cs->buf, cs->cdw * 4);

	device->ws->buffer_unmap(device->gfx_init);
	device->gfx_init_size_dw = cs->cdw;
fail:
	device->ws->cs_destroy(cs);
}

static void
get_viewport_xform(const VkViewport *viewport,
                   float scale[3], float translate[3])
{
	float x = viewport->x;
	float y = viewport->y;
	float half_width = 0.5f * viewport->width;
	float half_height = 0.5f * viewport->height;
	double n = viewport->minDepth;
	double f = viewport->maxDepth;

	scale[0] = half_width;
	translate[0] = half_width + x;
	scale[1] = half_height;
	translate[1] = half_height + y;

	scale[2] = (f - n);
	translate[2] = n;
}

void
si_write_viewport(struct radeon_cmdbuf *cs, int first_vp,
                  int count, const VkViewport *viewports)
{
	int i;

	assert(count);
	radeon_set_context_reg_seq(cs, R_02843C_PA_CL_VPORT_XSCALE +
				   first_vp * 4 * 6, count * 6);

	for (i = 0; i < count; i++) {
		float scale[3], translate[3];


		get_viewport_xform(&viewports[i], scale, translate);
		radeon_emit(cs, fui(scale[0]));
		radeon_emit(cs, fui(translate[0]));
		radeon_emit(cs, fui(scale[1]));
		radeon_emit(cs, fui(translate[1]));
		radeon_emit(cs, fui(scale[2]));
		radeon_emit(cs, fui(translate[2]));
	}

	radeon_set_context_reg_seq(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 +
				   first_vp * 4 * 2, count * 2);
	for (i = 0; i < count; i++) {
		float zmin = MIN2(viewports[i].minDepth, viewports[i].maxDepth);
		float zmax = MAX2(viewports[i].minDepth, viewports[i].maxDepth);
		radeon_emit(cs, fui(zmin));
		radeon_emit(cs, fui(zmax));
	}
}

static VkRect2D si_scissor_from_viewport(const VkViewport *viewport)
{
	float scale[3], translate[3];
	VkRect2D rect;

	get_viewport_xform(viewport, scale, translate);

	rect.offset.x = translate[0] - fabsf(scale[0]);
	rect.offset.y = translate[1] - fabsf(scale[1]);
	rect.extent.width = ceilf(translate[0] + fabsf(scale[0])) - rect.offset.x;
	rect.extent.height = ceilf(translate[1] + fabsf(scale[1])) - rect.offset.y;

	return rect;
}

static VkRect2D si_intersect_scissor(const VkRect2D *a, const VkRect2D *b) {
	VkRect2D ret;
	ret.offset.x = MAX2(a->offset.x, b->offset.x);
	ret.offset.y = MAX2(a->offset.y, b->offset.y);
	ret.extent.width = MIN2(a->offset.x + a->extent.width,
	                        b->offset.x + b->extent.width) - ret.offset.x;
	ret.extent.height = MIN2(a->offset.y + a->extent.height,
	                         b->offset.y + b->extent.height) - ret.offset.y;
	return ret;
}

void
si_write_scissors(struct radeon_cmdbuf *cs, int first,
                  int count, const VkRect2D *scissors,
                  const VkViewport *viewports, bool can_use_guardband)
{
	int i;
	float scale[3], translate[3], guardband_x = INFINITY, guardband_y = INFINITY;
	const float max_range = 32767.0f;
	if (!count)
		return;

	radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL + first * 4 * 2, count * 2);
	for (i = 0; i < count; i++) {
		VkRect2D viewport_scissor = si_scissor_from_viewport(viewports + i);
		VkRect2D scissor = si_intersect_scissor(&scissors[i], &viewport_scissor);

		get_viewport_xform(viewports + i, scale, translate);
		scale[0] = fabsf(scale[0]);
		scale[1] = fabsf(scale[1]);

		if (scale[0] < 0.5)
			scale[0] = 0.5;
		if (scale[1] < 0.5)
			scale[1] = 0.5;

		guardband_x = MIN2(guardband_x, (max_range - fabsf(translate[0])) / scale[0]);
		guardband_y = MIN2(guardband_y, (max_range - fabsf(translate[1])) / scale[1]);

		radeon_emit(cs, S_028250_TL_X(scissor.offset.x) |
			    S_028250_TL_Y(scissor.offset.y) |
			    S_028250_WINDOW_OFFSET_DISABLE(1));
		radeon_emit(cs, S_028254_BR_X(scissor.offset.x + scissor.extent.width) |
			    S_028254_BR_Y(scissor.offset.y + scissor.extent.height));
	}
	if (!can_use_guardband) {
		guardband_x = 1.0;
		guardband_y = 1.0;
	}

	radeon_set_context_reg_seq(cs, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, 4);
	radeon_emit(cs, fui(guardband_y));
	radeon_emit(cs, fui(1.0));
	radeon_emit(cs, fui(guardband_x));
	radeon_emit(cs, fui(1.0));
}

static inline unsigned
radv_prims_for_vertices(struct radv_prim_vertex_count *info, unsigned num)
{
	if (num == 0)
		return 0;

	if (info->incr == 0)
		return 0;

	if (num < info->min)
		return 0;

	return 1 + ((num - info->min) / info->incr);
}

uint32_t
si_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer,
			  bool instanced_draw, bool indirect_draw,
			  bool count_from_stream_output,
			  uint32_t draw_vertex_count)
{
	enum chip_class chip_class = cmd_buffer->device->physical_device->rad_info.chip_class;
	enum radeon_family family = cmd_buffer->device->physical_device->rad_info.family;
	struct radeon_info *info = &cmd_buffer->device->physical_device->rad_info;
	const unsigned max_primgroup_in_wave = 2;
	/* SWITCH_ON_EOP(0) is always preferable. */
	bool wd_switch_on_eop = false;
	bool ia_switch_on_eop = false;
	bool ia_switch_on_eoi = false;
	bool partial_vs_wave = false;
	bool partial_es_wave = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.partial_es_wave;
	bool multi_instances_smaller_than_primgroup;

	multi_instances_smaller_than_primgroup = indirect_draw;
	if (!multi_instances_smaller_than_primgroup && instanced_draw) {
		uint32_t num_prims = radv_prims_for_vertices(&cmd_buffer->state.pipeline->graphics.prim_vertex_count, draw_vertex_count);
		if (num_prims < cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.primgroup_size)
			multi_instances_smaller_than_primgroup = true;
	}

	ia_switch_on_eoi = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.ia_switch_on_eoi;
	partial_vs_wave = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.partial_vs_wave;

	if (chip_class >= GFX7) {
		wd_switch_on_eop = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.wd_switch_on_eop;

		/* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0.
		 * We don't know that for indirect drawing, so treat it as
		 * always problematic. */
		if (family == CHIP_HAWAII &&
		    (instanced_draw || indirect_draw))
			wd_switch_on_eop = true;

		/* Performance recommendation for 4 SE Gfx7-8 parts if
		 * instances are smaller than a primgroup.
		 * Assume indirect draws always use small instances.
		 * This is needed for good VS wave utilization.
		 */
		if (chip_class <= GFX8 &&
		    info->max_se == 4 &&
		    multi_instances_smaller_than_primgroup)
			wd_switch_on_eop = true;

		/* Required on GFX7 and later. */
		if (info->max_se > 2 && !wd_switch_on_eop)
			ia_switch_on_eoi = true;

		/* Required by Hawaii and, for some special cases, by GFX8. */
		if (ia_switch_on_eoi &&
		    (family == CHIP_HAWAII ||
		     (chip_class == GFX8 &&
		      /* max primgroup in wave is always 2 - leave this for documentation */
		      (radv_pipeline_has_gs(cmd_buffer->state.pipeline) || max_primgroup_in_wave != 2))))
			partial_vs_wave = true;

		/* Instancing bug on Bonaire. */
		if (family == CHIP_BONAIRE && ia_switch_on_eoi &&
		    (instanced_draw || indirect_draw))
			partial_vs_wave = true;

		/* Hardware requirement when drawing primitives from a stream
		 * output buffer.
		 */
		if (count_from_stream_output)
			wd_switch_on_eop = true;

		/* If the WD switch is false, the IA switch must be false too. */
		assert(wd_switch_on_eop || !ia_switch_on_eop);
	}
	/* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
	if (chip_class <= GFX8 && ia_switch_on_eoi)
		partial_es_wave = true;

	if (radv_pipeline_has_gs(cmd_buffer->state.pipeline)) {
		/* GS hw bug with single-primitive instances and SWITCH_ON_EOI.
		 * The hw doc says all multi-SE chips are affected, but amdgpu-pro Vulkan
		 * only applies it to Hawaii. Do what amdgpu-pro Vulkan does.
		 */
		if (family == CHIP_HAWAII && ia_switch_on_eoi) {
			bool set_vgt_flush = indirect_draw;
			if (!set_vgt_flush && instanced_draw) {
				uint32_t num_prims = radv_prims_for_vertices(&cmd_buffer->state.pipeline->graphics.prim_vertex_count, draw_vertex_count);
				if (num_prims <= 1)
					set_vgt_flush = true;
			}
			if (set_vgt_flush)
				cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
		}
	}

	return cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.base |
		S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) |
		S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
		S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) |
		S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
		S_028AA8_WD_SWITCH_ON_EOP(chip_class >= GFX7 ? wd_switch_on_eop : 0);

}

void si_cs_emit_write_event_eop(struct radeon_cmdbuf *cs,
				enum chip_class chip_class,
				bool is_mec,
				unsigned event, unsigned event_flags,
				unsigned dst_sel, unsigned data_sel,
				uint64_t va,
				uint32_t new_fence,
				uint64_t gfx9_eop_bug_va)
{
	unsigned op = EVENT_TYPE(event) |
		EVENT_INDEX(event == V_028A90_CS_DONE ||
			    event == V_028A90_PS_DONE ? 6 : 5) |
		event_flags;
	unsigned is_gfx8_mec = is_mec && chip_class < GFX9;
	unsigned sel = EOP_DST_SEL(dst_sel) |
		       EOP_DATA_SEL(data_sel);

	/* Wait for write confirmation before writing data, but don't send
	 * an interrupt. */
	if (data_sel != EOP_DATA_SEL_DISCARD)
		sel |= EOP_INT_SEL(EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM);

	if (chip_class >= GFX9 || is_gfx8_mec) {
		/* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion
		 * counters) must immediately precede every timestamp event to
		 * prevent a GPU hang on GFX9.
		 */
		if (chip_class == GFX9 && !is_mec) {
			radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
			radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
			radeon_emit(cs, gfx9_eop_bug_va);
			radeon_emit(cs, gfx9_eop_bug_va >> 32);
		}

		radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, is_gfx8_mec ? 5 : 6, false));
		radeon_emit(cs, op);
		radeon_emit(cs, sel);
		radeon_emit(cs, va);            /* address lo */
		radeon_emit(cs, va >> 32);      /* address hi */
		radeon_emit(cs, new_fence);     /* immediate data lo */
		radeon_emit(cs, 0); /* immediate data hi */
		if (!is_gfx8_mec)
			radeon_emit(cs, 0); /* unused */
	} else {
		if (chip_class == GFX7 ||
		    chip_class == GFX8) {
			/* Two EOP events are required to make all engines go idle
			 * (and optional cache flushes executed) before the timestamp
			 * is written.
			 */
			radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, false));
			radeon_emit(cs, op);
			radeon_emit(cs, va);
			radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
			radeon_emit(cs, 0); /* immediate data */
			radeon_emit(cs, 0); /* unused */
		}

		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, false));
		radeon_emit(cs, op);
		radeon_emit(cs, va);
		radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
		radeon_emit(cs, new_fence); /* immediate data */
		radeon_emit(cs, 0); /* unused */
	}
}

void
radv_cp_wait_mem(struct radeon_cmdbuf *cs, uint32_t op, uint64_t va,
		 uint32_t ref, uint32_t mask)
{
	assert(op == WAIT_REG_MEM_EQUAL ||
	       op == WAIT_REG_MEM_NOT_EQUAL ||
	       op == WAIT_REG_MEM_GREATER_OR_EQUAL);

	radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, false));
	radeon_emit(cs, op | WAIT_REG_MEM_MEM_SPACE(1));
	radeon_emit(cs, va);
	radeon_emit(cs, va >> 32);
	radeon_emit(cs, ref); /* reference value */
	radeon_emit(cs, mask); /* mask */
	radeon_emit(cs, 4); /* poll interval */
}

static void
si_emit_acquire_mem(struct radeon_cmdbuf *cs,
                    bool is_mec,
		    bool is_gfx9,
                    unsigned cp_coher_cntl)
{
	if (is_mec || is_gfx9) {
		uint32_t hi_val = is_gfx9 ? 0xffffff : 0xff;
		radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 5, false) |
		                            PKT3_SHADER_TYPE_S(is_mec));
		radeon_emit(cs, cp_coher_cntl);   /* CP_COHER_CNTL */
		radeon_emit(cs, 0xffffffff);      /* CP_COHER_SIZE */
		radeon_emit(cs, hi_val);          /* CP_COHER_SIZE_HI */
		radeon_emit(cs, 0);               /* CP_COHER_BASE */
		radeon_emit(cs, 0);               /* CP_COHER_BASE_HI */
		radeon_emit(cs, 0x0000000A);      /* POLL_INTERVAL */
	} else {
		/* ACQUIRE_MEM is only required on a compute ring. */
		radeon_emit(cs, PKT3(PKT3_SURFACE_SYNC, 3, false));
		radeon_emit(cs, cp_coher_cntl);   /* CP_COHER_CNTL */
		radeon_emit(cs, 0xffffffff);      /* CP_COHER_SIZE */
		radeon_emit(cs, 0);               /* CP_COHER_BASE */
		radeon_emit(cs, 0x0000000A);      /* POLL_INTERVAL */
	}
}

static void
gfx10_cs_emit_cache_flush(struct radeon_cmdbuf *cs,
			  enum chip_class chip_class,
			  uint32_t *flush_cnt,
			  uint64_t flush_va,
			  bool is_mec,
			  enum radv_cmd_flush_bits flush_bits,
			  uint64_t gfx9_eop_bug_va)
{
	uint32_t gcr_cntl = 0;
	unsigned cb_db_event = 0;

	/* We don't need these. */
	assert(!(flush_bits & (RADV_CMD_FLAG_VGT_STREAMOUT_SYNC)));

	if (flush_bits & RADV_CMD_FLAG_INV_ICACHE)
		gcr_cntl |= S_586_GLI_INV(V_586_GLI_ALL);
	if (flush_bits & RADV_CMD_FLAG_INV_SCACHE) {
		/* TODO: When writing to the SMEM L1 cache, we need to set SEQ
		 * to FORWARD when both L1 and L2 are written out (WB or INV).
		 */
		gcr_cntl |= S_586_GL1_INV(1) | S_586_GLK_INV(1);
	}
	if (flush_bits & RADV_CMD_FLAG_INV_VCACHE)
		gcr_cntl |= S_586_GL1_INV(1) | S_586_GLV_INV(1);
	if (flush_bits & RADV_CMD_FLAG_INV_L2) {
		/* Writeback and invalidate everything in L2. */
		gcr_cntl |= S_586_GL2_INV(1) | S_586_GL2_WB(1) |
		            S_586_GLM_INV(1) | S_586_GLM_WB(1);
	} else if (flush_bits & RADV_CMD_FLAG_WB_L2) {
		/* Writeback but do not invalidate.
		 * GLM doesn't support WB alone. If WB is set, INV must be set too.
		 */
		gcr_cntl |= S_586_GL2_WB(1) |
		            S_586_GLM_WB(1) | S_586_GLM_INV(1);
	}

	/* TODO: Implement this new flag for GFX9+.
	else if (flush_bits & RADV_CMD_FLAG_INV_L2_METADATA)
		gcr_cntl |= S_586_GLM_INV(1) | S_586_GLM_WB(1);
	*/

	if (flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) {
		/* TODO: trigger on RADV_CMD_FLAG_FLUSH_AND_INV_CB_META */
		if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
			/* Flush CMASK/FMASK/DCC. Will wait for idle later. */
			radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
			radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) |
					EVENT_INDEX(0));
		}

		/* TODO: trigger on RADV_CMD_FLAG_FLUSH_AND_INV_DB_META ? */
		if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
			/* Flush HTILE. Will wait for idle later. */
			radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
			radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) |
					EVENT_INDEX(0));
		}

		/* First flush CB/DB, then L1/L2. */
		gcr_cntl |= S_586_SEQ(V_586_SEQ_FORWARD);

		if ((flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) ==
		    (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) {
			cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
		} else if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
			cb_db_event = V_028A90_FLUSH_AND_INV_CB_DATA_TS;
		} else if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
			cb_db_event = V_028A90_FLUSH_AND_INV_DB_DATA_TS;
		} else {
			assert(0);
		}
	} else {
		/* Wait for graphics shaders to go idle if requested. */
		if (flush_bits & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) {
			radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
			radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
		} else if (flush_bits & RADV_CMD_FLAG_VS_PARTIAL_FLUSH) {
			radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
			radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
		}
	}

	if (flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH) {
		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
		radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH | EVENT_INDEX(4)));
	}

	if (cb_db_event) {
		/* CB/DB flush and invalidate (or possibly just a wait for a
		 * meta flush) via RELEASE_MEM.
		 *
		 * Combine this with other cache flushes when possible; this
		 * requires affected shaders to be idle, so do it after the
		 * CS_PARTIAL_FLUSH before (VS/PS partial flushes are always
		 * implied).
		 */
		/* Get GCR_CNTL fields, because the encoding is different in RELEASE_MEM. */
		unsigned glm_wb = G_586_GLM_WB(gcr_cntl);
		unsigned glm_inv = G_586_GLM_INV(gcr_cntl);
		unsigned glv_inv = G_586_GLV_INV(gcr_cntl);
		unsigned gl1_inv = G_586_GL1_INV(gcr_cntl);
		assert(G_586_GL2_US(gcr_cntl) == 0);
		assert(G_586_GL2_RANGE(gcr_cntl) == 0);
		assert(G_586_GL2_DISCARD(gcr_cntl) == 0);
		unsigned gl2_inv = G_586_GL2_INV(gcr_cntl);
		unsigned gl2_wb = G_586_GL2_WB(gcr_cntl);
		unsigned gcr_seq = G_586_SEQ(gcr_cntl);

		gcr_cntl &= C_586_GLM_WB &
			    C_586_GLM_INV &
			    C_586_GLV_INV &
			    C_586_GL1_INV &
			    C_586_GL2_INV &
			    C_586_GL2_WB; /* keep SEQ */

		assert(flush_cnt);
		(*flush_cnt)++;

		si_cs_emit_write_event_eop(cs, chip_class, false, cb_db_event,
					   S_490_GLM_WB(glm_wb) |
					   S_490_GLM_INV(glm_inv) |
					   S_490_GLV_INV(glv_inv) |
					   S_490_GL1_INV(gl1_inv) |
					   S_490_GL2_INV(gl2_inv) |
					   S_490_GL2_WB(gl2_wb) |
					   S_490_SEQ(gcr_seq),
					   EOP_DST_SEL_MEM,
					   EOP_DATA_SEL_VALUE_32BIT,
					   flush_va, *flush_cnt,
					   gfx9_eop_bug_va);

		radv_cp_wait_mem(cs, WAIT_REG_MEM_EQUAL, flush_va,
				 *flush_cnt, 0xffffffff);
	}

	/* VGT state sync */
	if (flush_bits & RADV_CMD_FLAG_VGT_FLUSH) {
		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
		radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
	}

	/* Ignore fields that only modify the behavior of other fields. */
	if (gcr_cntl & C_586_GL1_RANGE & C_586_GL2_RANGE & C_586_SEQ) {
		/* Flush caches and wait for the caches to assert idle.
		 * The cache flush is executed in the ME, but the PFP waits
		 * for completion.
		 */
		radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 6, 0));
		radeon_emit(cs, 0);		/* CP_COHER_CNTL */
		radeon_emit(cs, 0xffffffff);	/* CP_COHER_SIZE */
		radeon_emit(cs, 0xffffff);	/* CP_COHER_SIZE_HI */
		radeon_emit(cs, 0);		/* CP_COHER_BASE */
		radeon_emit(cs, 0);		/* CP_COHER_BASE_HI */
		radeon_emit(cs, 0x0000000A);	/* POLL_INTERVAL */
		radeon_emit(cs, gcr_cntl);	/* GCR_CNTL */
	} else if ((cb_db_event ||
		   (flush_bits & (RADV_CMD_FLAG_VS_PARTIAL_FLUSH |
			     RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
			     RADV_CMD_FLAG_CS_PARTIAL_FLUSH)))
		   && !is_mec) {
		/* We need to ensure that PFP waits as well. */
		radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
		radeon_emit(cs, 0);
	}

	if (flush_bits & RADV_CMD_FLAG_START_PIPELINE_STATS) {
		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
		radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) |
			        EVENT_INDEX(0));
	} else if (flush_bits & RADV_CMD_FLAG_STOP_PIPELINE_STATS) {
		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
		radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) |
			        EVENT_INDEX(0));
	}
}

void
si_cs_emit_cache_flush(struct radeon_cmdbuf *cs,
                       enum chip_class chip_class,
		       uint32_t *flush_cnt,
		       uint64_t flush_va,
                       bool is_mec,
                       enum radv_cmd_flush_bits flush_bits,
		       uint64_t gfx9_eop_bug_va)
{
	unsigned cp_coher_cntl = 0;
	uint32_t flush_cb_db = flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB |
					     RADV_CMD_FLAG_FLUSH_AND_INV_DB);

	if (chip_class >= GFX10) {
		/* GFX10 cache flush handling is quite different. */
		gfx10_cs_emit_cache_flush(cs, chip_class, flush_cnt, flush_va,
					  is_mec, flush_bits, gfx9_eop_bug_va);
		return;
	}

	if (flush_bits & RADV_CMD_FLAG_INV_ICACHE)
		cp_coher_cntl |= S_0085F0_SH_ICACHE_ACTION_ENA(1);
	if (flush_bits & RADV_CMD_FLAG_INV_SCACHE)
		cp_coher_cntl |= S_0085F0_SH_KCACHE_ACTION_ENA(1);

	if (chip_class <= GFX8) {
		if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
			cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) |
				S_0085F0_CB0_DEST_BASE_ENA(1) |
				S_0085F0_CB1_DEST_BASE_ENA(1) |
				S_0085F0_CB2_DEST_BASE_ENA(1) |
				S_0085F0_CB3_DEST_BASE_ENA(1) |
				S_0085F0_CB4_DEST_BASE_ENA(1) |
				S_0085F0_CB5_DEST_BASE_ENA(1) |
				S_0085F0_CB6_DEST_BASE_ENA(1) |
				S_0085F0_CB7_DEST_BASE_ENA(1);

			/* Necessary for DCC */
			if (chip_class >= GFX8) {
				si_cs_emit_write_event_eop(cs,
							   chip_class,
							   is_mec,
							   V_028A90_FLUSH_AND_INV_CB_DATA_TS,
							   0,
							   EOP_DST_SEL_MEM,
							   EOP_DATA_SEL_DISCARD,
							   0, 0,
							   gfx9_eop_bug_va);
			}
		}
		if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
			cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) |
				S_0085F0_DB_DEST_BASE_ENA(1);
		}
	}

	if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB_META) {
		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
		radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0));
	}

	if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB_META) {
		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
		radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0));
	}

	if (flush_bits & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) {
		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
		radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
	} else if (flush_bits & RADV_CMD_FLAG_VS_PARTIAL_FLUSH) {
		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
		radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
	}

	if (flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH) {
		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
		radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
	}

	if (chip_class == GFX9 && flush_cb_db) {
		unsigned cb_db_event, tc_flags;

		/* Set the CB/DB flush event. */
		cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;

		/* These are the only allowed combinations. If you need to
		 * do multiple operations at once, do them separately.
		 * All operations that invalidate L2 also seem to invalidate
		 * metadata. Volatile (VOL) and WC flushes are not listed here.
		 *
		 * TC    | TC_WB         = writeback & invalidate L2 & L1
		 * TC    | TC_WB | TC_NC = writeback & invalidate L2 for MTYPE == NC
		 *         TC_WB | TC_NC = writeback L2 for MTYPE == NC
		 * TC            | TC_NC = invalidate L2 for MTYPE == NC
		 * TC    | TC_MD         = writeback & invalidate L2 metadata (DCC, etc.)
		 * TCL1                  = invalidate L1
		 */
		tc_flags = EVENT_TC_ACTION_ENA |
		           EVENT_TC_MD_ACTION_ENA;

		/* Ideally flush TC together with CB/DB. */
		if (flush_bits & RADV_CMD_FLAG_INV_L2) {
			/* Writeback and invalidate everything in L2 & L1. */
			tc_flags = EVENT_TC_ACTION_ENA |
			           EVENT_TC_WB_ACTION_ENA;


			/* Clear the flags. */
		        flush_bits &= ~(RADV_CMD_FLAG_INV_L2 |
					 RADV_CMD_FLAG_WB_L2 |
					 RADV_CMD_FLAG_INV_VCACHE);
		}
		assert(flush_cnt);
		(*flush_cnt)++;

		si_cs_emit_write_event_eop(cs, chip_class, false, cb_db_event, tc_flags,
					   EOP_DST_SEL_MEM,
					   EOP_DATA_SEL_VALUE_32BIT,
					   flush_va, *flush_cnt,
					   gfx9_eop_bug_va);
		radv_cp_wait_mem(cs, WAIT_REG_MEM_EQUAL, flush_va,
				 *flush_cnt, 0xffffffff);
	}

	/* VGT state sync */
	if (flush_bits & RADV_CMD_FLAG_VGT_FLUSH) {
		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
		radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
	}

	/* VGT streamout state sync */
	if (flush_bits & RADV_CMD_FLAG_VGT_STREAMOUT_SYNC) {
		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
		radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_STREAMOUT_SYNC) | EVENT_INDEX(0));
	}

	/* Make sure ME is idle (it executes most packets) before continuing.
	 * This prevents read-after-write hazards between PFP and ME.
	 */
	if ((cp_coher_cntl ||
	     (flush_bits & (RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
			    RADV_CMD_FLAG_INV_VCACHE |
			    RADV_CMD_FLAG_INV_L2 |
			    RADV_CMD_FLAG_WB_L2))) &&
	    !is_mec) {
		radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
		radeon_emit(cs, 0);
	}

	if ((flush_bits & RADV_CMD_FLAG_INV_L2) ||
	    (chip_class <= GFX7 && (flush_bits & RADV_CMD_FLAG_WB_L2))) {
		si_emit_acquire_mem(cs, is_mec, chip_class == GFX9,
				    cp_coher_cntl |
				    S_0085F0_TC_ACTION_ENA(1) |
				    S_0085F0_TCL1_ACTION_ENA(1) |
				    S_0301F0_TC_WB_ACTION_ENA(chip_class >= GFX8));
		cp_coher_cntl = 0;
	} else {
		if(flush_bits & RADV_CMD_FLAG_WB_L2) {
			/* WB = write-back
			 * NC = apply to non-coherent MTYPEs
			 *      (i.e. MTYPE <= 1, which is what we use everywhere)
			 *
			 * WB doesn't work without NC.
			 */
			si_emit_acquire_mem(cs, is_mec,
					    chip_class == GFX9,
					    cp_coher_cntl |
					    S_0301F0_TC_WB_ACTION_ENA(1) |
					    S_0301F0_TC_NC_ACTION_ENA(1));
			cp_coher_cntl = 0;
		}
		if (flush_bits & RADV_CMD_FLAG_INV_VCACHE) {
			si_emit_acquire_mem(cs, is_mec,
					    chip_class == GFX9,
					    cp_coher_cntl |
					    S_0085F0_TCL1_ACTION_ENA(1));
			cp_coher_cntl = 0;
		}
	}

	/* When one of the DEST_BASE flags is set, SURFACE_SYNC waits for idle.
	 * Therefore, it should be last. Done in PFP.
	 */
	if (cp_coher_cntl)
		si_emit_acquire_mem(cs, is_mec, chip_class == GFX9, cp_coher_cntl);

	if (flush_bits & RADV_CMD_FLAG_START_PIPELINE_STATS) {
		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
		radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) |
			        EVENT_INDEX(0));
	} else if (flush_bits & RADV_CMD_FLAG_STOP_PIPELINE_STATS) {
		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
		radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) |
			        EVENT_INDEX(0));
	}
}

void
si_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer)
{
	bool is_compute = cmd_buffer->queue_family_index == RADV_QUEUE_COMPUTE;

	if (is_compute)
		cmd_buffer->state.flush_bits &= ~(RADV_CMD_FLAG_FLUSH_AND_INV_CB |
	                                          RADV_CMD_FLAG_FLUSH_AND_INV_CB_META |
	                                          RADV_CMD_FLAG_FLUSH_AND_INV_DB |
	                                          RADV_CMD_FLAG_FLUSH_AND_INV_DB_META |
	                                          RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
	                                          RADV_CMD_FLAG_VS_PARTIAL_FLUSH |
	                                          RADV_CMD_FLAG_VGT_FLUSH |
						  RADV_CMD_FLAG_START_PIPELINE_STATS |
						  RADV_CMD_FLAG_STOP_PIPELINE_STATS);

	if (!cmd_buffer->state.flush_bits)
		return;

	radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 128);

	si_cs_emit_cache_flush(cmd_buffer->cs,
	                       cmd_buffer->device->physical_device->rad_info.chip_class,
			       &cmd_buffer->gfx9_fence_idx,
			       cmd_buffer->gfx9_fence_va,
	                       radv_cmd_buffer_uses_mec(cmd_buffer),
	                       cmd_buffer->state.flush_bits,
			       cmd_buffer->gfx9_eop_bug_va);


	if (unlikely(cmd_buffer->device->trace_bo))
		radv_cmd_buffer_trace_emit(cmd_buffer);

	/* Clear the caches that have been flushed to avoid syncing too much
	 * when there is some pending active queries.
	 */
	cmd_buffer->active_query_flush_bits &= ~cmd_buffer->state.flush_bits;

	cmd_buffer->state.flush_bits = 0;

	/* If the driver used a compute shader for resetting a query pool, it
	 * should be finished at this point.
	 */
	cmd_buffer->pending_reset_query = false;
}

/* sets the CP predication state using a boolean stored at va */
void
si_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer,
			      bool draw_visible, uint64_t va)
{
	uint32_t op = 0;

	if (va) {
		op = PRED_OP(PREDICATION_OP_BOOL64);

		/* PREDICATION_DRAW_VISIBLE means that if the 32-bit value is
		 * zero, all rendering commands are discarded. Otherwise, they
		 * are discarded if the value is non zero.
		 */
		op |= draw_visible ? PREDICATION_DRAW_VISIBLE :
				     PREDICATION_DRAW_NOT_VISIBLE;
	}
	if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) {
		radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 2, 0));
		radeon_emit(cmd_buffer->cs, op);
		radeon_emit(cmd_buffer->cs, va);
		radeon_emit(cmd_buffer->cs, va >> 32);
	} else {
		radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 1, 0));
		radeon_emit(cmd_buffer->cs, va);
		radeon_emit(cmd_buffer->cs, op | ((va >> 32) & 0xFF));
	}
}

/* Set this if you want the 3D engine to wait until CP DMA is done.
 * It should be set on the last CP DMA packet. */
#define CP_DMA_SYNC	(1 << 0)

/* Set this if the source data was used as a destination in a previous CP DMA
 * packet. It's for preventing a read-after-write (RAW) hazard between two
 * CP DMA packets. */
#define CP_DMA_RAW_WAIT	(1 << 1)
#define CP_DMA_USE_L2	(1 << 2)
#define CP_DMA_CLEAR	(1 << 3)

/* Alignment for optimal performance. */
#define SI_CPDMA_ALIGNMENT	32

/* The max number of bytes that can be copied per packet. */
static inline unsigned cp_dma_max_byte_count(struct radv_cmd_buffer *cmd_buffer)
{
	unsigned max = cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 ?
			       S_414_BYTE_COUNT_GFX9(~0u) :
			       S_414_BYTE_COUNT_GFX6(~0u);

	/* make it aligned for optimal performance */
	return max & ~(SI_CPDMA_ALIGNMENT - 1);
}

/* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
 * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
 * clear value.
 */
static void si_emit_cp_dma(struct radv_cmd_buffer *cmd_buffer,
			   uint64_t dst_va, uint64_t src_va,
			   unsigned size, unsigned flags)
{
	struct radeon_cmdbuf *cs = cmd_buffer->cs;
	uint32_t header = 0, command = 0;

	assert(size <= cp_dma_max_byte_count(cmd_buffer));

	radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 9);
	if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
		command |= S_414_BYTE_COUNT_GFX9(size);
	else
		command |= S_414_BYTE_COUNT_GFX6(size);

	/* Sync flags. */
	if (flags & CP_DMA_SYNC)
		header |= S_411_CP_SYNC(1);
	else {
		if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
			command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
		else
			command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
	}

	if (flags & CP_DMA_RAW_WAIT)
		command |= S_414_RAW_WAIT(1);

	/* Src and dst flags. */
	if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 &&
	    !(flags & CP_DMA_CLEAR) &&
	    src_va == dst_va)
		header |= S_411_DST_SEL(V_411_NOWHERE); /* prefetch only */
	else if (flags & CP_DMA_USE_L2)
		header |= S_411_DST_SEL(V_411_DST_ADDR_TC_L2);

	if (flags & CP_DMA_CLEAR)
		header |= S_411_SRC_SEL(V_411_DATA);
	else if (flags & CP_DMA_USE_L2)
		header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);

	if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX7) {
		radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, cmd_buffer->state.predicating));
		radeon_emit(cs, header);
		radeon_emit(cs, src_va);		/* SRC_ADDR_LO [31:0] */
		radeon_emit(cs, src_va >> 32);		/* SRC_ADDR_HI [31:0] */
		radeon_emit(cs, dst_va);		/* DST_ADDR_LO [31:0] */
		radeon_emit(cs, dst_va >> 32);		/* DST_ADDR_HI [31:0] */
		radeon_emit(cs, command);
	} else {
		assert(!(flags & CP_DMA_USE_L2));
		header |= S_411_SRC_ADDR_HI(src_va >> 32);
		radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, cmd_buffer->state.predicating));
		radeon_emit(cs, src_va);			/* SRC_ADDR_LO [31:0] */
		radeon_emit(cs, header);			/* SRC_ADDR_HI [15:0] + flags. */
		radeon_emit(cs, dst_va);			/* DST_ADDR_LO [31:0] */
		radeon_emit(cs, (dst_va >> 32) & 0xffff);	/* DST_ADDR_HI [15:0] */
		radeon_emit(cs, command);
	}

	/* CP DMA is executed in ME, but index buffers are read by PFP.
	 * This ensures that ME (CP DMA) is idle before PFP starts fetching
	 * indices. If we wanted to execute CP DMA in PFP, this packet
	 * should precede it.
	 */
	if (flags & CP_DMA_SYNC) {
		if (cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL) {
			radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
			radeon_emit(cs, 0);
		}

		/* CP will see the sync flag and wait for all DMAs to complete. */
		cmd_buffer->state.dma_is_busy = false;
	}

	if (unlikely(cmd_buffer->device->trace_bo))
		radv_cmd_buffer_trace_emit(cmd_buffer);
}

void si_cp_dma_prefetch(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
                        unsigned size)
{
	uint64_t aligned_va = va & ~(SI_CPDMA_ALIGNMENT - 1);
	uint64_t aligned_size = ((va + size + SI_CPDMA_ALIGNMENT -1) & ~(SI_CPDMA_ALIGNMENT - 1)) - aligned_va;

	si_emit_cp_dma(cmd_buffer, aligned_va, aligned_va,
		       aligned_size, CP_DMA_USE_L2);
}

static void si_cp_dma_prepare(struct radv_cmd_buffer *cmd_buffer, uint64_t byte_count,
			      uint64_t remaining_size, unsigned *flags)
{

	/* Flush the caches for the first copy only.
	 * Also wait for the previous CP DMA operations.
	 */
	if (cmd_buffer->state.flush_bits) {
		si_emit_cache_flush(cmd_buffer);
		*flags |= CP_DMA_RAW_WAIT;
	}

	/* Do the synchronization after the last dma, so that all data
	 * is written to memory.
	 */
	if (byte_count == remaining_size)
		*flags |= CP_DMA_SYNC;
}

static void si_cp_dma_realign_engine(struct radv_cmd_buffer *cmd_buffer, unsigned size)
{
	uint64_t va;
	uint32_t offset;
	unsigned dma_flags = 0;
	unsigned buf_size = SI_CPDMA_ALIGNMENT * 2;
	void *ptr;

	assert(size < SI_CPDMA_ALIGNMENT);

	radv_cmd_buffer_upload_alloc(cmd_buffer, buf_size, SI_CPDMA_ALIGNMENT,  &offset, &ptr);

	va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
	va += offset;

	si_cp_dma_prepare(cmd_buffer, size, size, &dma_flags);

	si_emit_cp_dma(cmd_buffer, va, va + SI_CPDMA_ALIGNMENT, size,
		       dma_flags);
}

void si_cp_dma_buffer_copy(struct radv_cmd_buffer *cmd_buffer,
			   uint64_t src_va, uint64_t dest_va,
			   uint64_t size)
{
	uint64_t main_src_va, main_dest_va;
	uint64_t skipped_size = 0, realign_size = 0;

	/* Assume that we are not going to sync after the last DMA operation. */
	cmd_buffer->state.dma_is_busy = true;

	if (cmd_buffer->device->physical_device->rad_info.family <= CHIP_CARRIZO ||
	    cmd_buffer->device->physical_device->rad_info.family == CHIP_STONEY) {
		/* If the size is not aligned, we must add a dummy copy at the end
		 * just to align the internal counter. Otherwise, the DMA engine
		 * would slow down by an order of magnitude for following copies.
		 */
		if (size % SI_CPDMA_ALIGNMENT)
			realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);

		/* If the copy begins unaligned, we must start copying from the next
		 * aligned block and the skipped part should be copied after everything
		 * else has been copied. Only the src alignment matters, not dst.
		 */
		if (src_va % SI_CPDMA_ALIGNMENT) {
			skipped_size = SI_CPDMA_ALIGNMENT - (src_va % SI_CPDMA_ALIGNMENT);
			/* The main part will be skipped if the size is too small. */
			skipped_size = MIN2(skipped_size, size);
			size -= skipped_size;
		}
	}
	main_src_va = src_va + skipped_size;
	main_dest_va = dest_va + skipped_size;

	while (size) {
		unsigned dma_flags = 0;
		unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer));

		if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10) {
			/* DMA operations via L2 are coherent and faster.
			 * TODO: GFX7-GFX9 should also support this but it
			 * requires tests/benchmarks.
			 */
			dma_flags |= CP_DMA_USE_L2;
		}

		si_cp_dma_prepare(cmd_buffer, byte_count,
				  size + skipped_size + realign_size,
				  &dma_flags);

		dma_flags &= ~CP_DMA_SYNC;

		si_emit_cp_dma(cmd_buffer, main_dest_va, main_src_va,
			       byte_count, dma_flags);

		size -= byte_count;
		main_src_va += byte_count;
		main_dest_va += byte_count;
	}

	if (skipped_size) {
		unsigned dma_flags = 0;

		si_cp_dma_prepare(cmd_buffer, skipped_size,
				  size + skipped_size + realign_size,
				  &dma_flags);

		si_emit_cp_dma(cmd_buffer, dest_va, src_va,
			       skipped_size, dma_flags);
	}
	if (realign_size)
		si_cp_dma_realign_engine(cmd_buffer, realign_size);
}

void si_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
			    uint64_t size, unsigned value)
{

	if (!size)
		return;

	assert(va % 4 == 0 && size % 4 == 0);

	/* Assume that we are not going to sync after the last DMA operation. */
	cmd_buffer->state.dma_is_busy = true;

	while (size) {
		unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer));
		unsigned dma_flags = CP_DMA_CLEAR;

		if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10) {
			/* DMA operations via L2 are coherent and faster.
			 * TODO: GFX7-GFX9 should also support this but it
			 * requires tests/benchmarks.
			 */
			dma_flags |= CP_DMA_USE_L2;
		}

		si_cp_dma_prepare(cmd_buffer, byte_count, size, &dma_flags);

		/* Emit the clear packet. */
		si_emit_cp_dma(cmd_buffer, va, value, byte_count,
			       dma_flags);

		size -= byte_count;
		va += byte_count;
	}
}

void si_cp_dma_wait_for_idle(struct radv_cmd_buffer *cmd_buffer)
{
	if (cmd_buffer->device->physical_device->rad_info.chip_class < GFX7)
		return;

	if (!cmd_buffer->state.dma_is_busy)
		return;

	/* Issue a dummy DMA that copies zero bytes.
	 *
	 * The DMA engine will see that there's no work to do and skip this
	 * DMA request, however, the CP will see the sync flag and still wait
	 * for all DMAs to complete.
	 */
	si_emit_cp_dma(cmd_buffer, 0, 0, 0, CP_DMA_SYNC);

	cmd_buffer->state.dma_is_busy = false;
}

/* For MSAA sample positions. */
#define FILL_SREG(s0x, s0y, s1x, s1y, s2x, s2y, s3x, s3y)  \
	((((unsigned)(s0x) & 0xf) << 0)  | (((unsigned)(s0y) & 0xf) << 4)  | \
	 (((unsigned)(s1x) & 0xf) << 8)  | (((unsigned)(s1y) & 0xf) << 12) | \
	 (((unsigned)(s2x) & 0xf) << 16) | (((unsigned)(s2y) & 0xf) << 20) | \
	 (((unsigned)(s3x) & 0xf) << 24) | (((unsigned)(s3y) & 0xf) << 28))

/* For obtaining location coordinates from registers */
#define SEXT4(x)		((int)((x) | ((x) & 0x8 ? 0xfffffff0 : 0)))
#define GET_SFIELD(reg, index)	SEXT4(((reg) >> ((index) * 4)) & 0xf)
#define GET_SX(reg, index)	GET_SFIELD((reg)[(index) / 4], ((index) % 4) * 2)
#define GET_SY(reg, index)	GET_SFIELD((reg)[(index) / 4], ((index) % 4) * 2 + 1)

/* 1x MSAA */
static const uint32_t sample_locs_1x =
	FILL_SREG(0, 0,   0, 0,   0, 0,   0, 0);
static const unsigned max_dist_1x = 0;
static const uint64_t centroid_priority_1x = 0x0000000000000000ull;

/* 2xMSAA */
static const uint32_t sample_locs_2x =
	FILL_SREG(4,4,   -4, -4,   0, 0,   0, 0);
static const unsigned max_dist_2x = 4;
static const uint64_t centroid_priority_2x = 0x1010101010101010ull;

/* 4xMSAA */
static const uint32_t sample_locs_4x =
	FILL_SREG(-2,-6,   6, -2,   -6, 2,  2, 6);
static const unsigned max_dist_4x = 6;
static const uint64_t centroid_priority_4x = 0x3210321032103210ull;

/* 8xMSAA */
static const uint32_t sample_locs_8x[] = {
	FILL_SREG( 1,-3,  -1, 3,   5, 1,  -3,-5),
	FILL_SREG(-5, 5,  -7,-1,   3, 7,   7,-7),
	/* The following are unused by hardware, but we emit them to IBs
	 * instead of multiple SET_CONTEXT_REG packets. */
	0,
	0,
};
static const unsigned max_dist_8x = 7;
static const uint64_t centroid_priority_8x = 0x7654321076543210ull;

unsigned radv_get_default_max_sample_dist(int log_samples)
{
	unsigned max_dist[] = {
		max_dist_1x,
		max_dist_2x,
		max_dist_4x,
		max_dist_8x,
	};
	return max_dist[log_samples];
}

void radv_emit_default_sample_locations(struct radeon_cmdbuf *cs, int nr_samples)
{
	switch (nr_samples) {
	default:
	case 1:
		radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
		radeon_emit(cs, (uint32_t)centroid_priority_1x);
		radeon_emit(cs, centroid_priority_1x >> 32);
		radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_1x);
		radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_1x);
		radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_1x);
		radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_1x);
		break;
	case 2:
		radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
		radeon_emit(cs, (uint32_t)centroid_priority_2x);
		radeon_emit(cs, centroid_priority_2x >> 32);
		radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_2x);
		radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_2x);
		radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_2x);
		radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_2x);
		break;
	case 4:
		radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
		radeon_emit(cs, (uint32_t)centroid_priority_4x);
		radeon_emit(cs, centroid_priority_4x >> 32);
		radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_4x);
		radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_4x);
		radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_4x);
		radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_4x);
		break;
	case 8:
		radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
		radeon_emit(cs, (uint32_t)centroid_priority_8x);
		radeon_emit(cs, centroid_priority_8x >> 32);
		radeon_set_context_reg_seq(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 14);
		radeon_emit_array(cs, sample_locs_8x, 4);
		radeon_emit_array(cs, sample_locs_8x, 4);
		radeon_emit_array(cs, sample_locs_8x, 4);
		radeon_emit_array(cs, sample_locs_8x, 2);
		break;
	}
}

static void radv_get_sample_position(struct radv_device *device,
				     unsigned sample_count,
				     unsigned sample_index, float *out_value)
{
	const uint32_t *sample_locs;

	switch (sample_count) {
	case 1:
	default:
		sample_locs = &sample_locs_1x;
		break;
	case 2:
		sample_locs = &sample_locs_2x;
		break;
	case 4:
		sample_locs = &sample_locs_4x;
		break;
	case 8:
		sample_locs = sample_locs_8x;
		break;
	}

	out_value[0] = (GET_SX(sample_locs, sample_index) + 8) / 16.0f;
	out_value[1] = (GET_SY(sample_locs, sample_index) + 8) / 16.0f;
}

void radv_device_init_msaa(struct radv_device *device)
{
	int i;

	radv_get_sample_position(device, 1, 0, device->sample_locations_1x[0]);

	for (i = 0; i < 2; i++)
		radv_get_sample_position(device, 2, i, device->sample_locations_2x[i]);
	for (i = 0; i < 4; i++)
		radv_get_sample_position(device, 4, i, device->sample_locations_4x[i]);
	for (i = 0; i < 8; i++)
		radv_get_sample_position(device, 8, i, device->sample_locations_8x[i]);
}