aboutsummaryrefslogtreecommitdiffstats
path: root/src/amd/vulkan/radv_nir_to_llvm.c
blob: 0c13860fe281000cda00f7ccdb43905f884b093b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
/*
 * Copyright © 2016 Red Hat.
 * Copyright © 2016 Bas Nieuwenhuizen
 *
 * based in part on anv driver which is:
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "radv_private.h"
#include "radv_shader.h"
#include "radv_shader_helper.h"
#include "nir/nir.h"

#include <llvm-c/Core.h>
#include <llvm-c/TargetMachine.h>
#include <llvm-c/Transforms/Scalar.h>
#include <llvm-c/Transforms/Utils.h>

#include "sid.h"
#include "ac_binary.h"
#include "ac_llvm_util.h"
#include "ac_llvm_build.h"
#include "ac_shader_abi.h"
#include "ac_shader_util.h"
#include "ac_exp_param.h"

#define RADEON_LLVM_MAX_INPUTS (VARYING_SLOT_VAR31 + 1)

struct radv_shader_context {
	struct ac_llvm_context ac;
	const struct radv_nir_compiler_options *options;
	struct radv_shader_info *shader_info;
	const struct nir_shader *shader;
	struct ac_shader_abi abi;

	unsigned max_workgroup_size;
	LLVMContextRef context;
	LLVMValueRef main_function;

	LLVMValueRef descriptor_sets[MAX_SETS];
	LLVMValueRef ring_offsets;

	LLVMValueRef vertex_buffers;
	LLVMValueRef rel_auto_id;
	LLVMValueRef vs_prim_id;
	LLVMValueRef es2gs_offset;

	LLVMValueRef oc_lds;
	LLVMValueRef merged_wave_info;
	LLVMValueRef tess_factor_offset;
	LLVMValueRef tes_rel_patch_id;
	LLVMValueRef tes_u;
	LLVMValueRef tes_v;

	/* HW GS */
	/* On gfx10:
	 *  - bits 0..10: ordered_wave_id
	 *  - bits 12..20: number of vertices in group
	 *  - bits 22..30: number of primitives in group
	 */
	LLVMValueRef gs_tg_info;
	LLVMValueRef gs2vs_offset;
	LLVMValueRef gs_wave_id;
	LLVMValueRef gs_vtx_offset[6];

	LLVMValueRef esgs_ring;
	LLVMValueRef gsvs_ring[4];
	LLVMValueRef hs_ring_tess_offchip;
	LLVMValueRef hs_ring_tess_factor;

	/* Streamout */
	LLVMValueRef streamout_buffers;
	LLVMValueRef streamout_write_idx;
	LLVMValueRef streamout_config;
	LLVMValueRef streamout_offset[4];

	gl_shader_stage stage;

	LLVMValueRef inputs[RADEON_LLVM_MAX_INPUTS * 4];

	uint64_t output_mask;

	bool is_gs_copy_shader;
	LLVMValueRef gs_next_vertex[4];
	LLVMValueRef gs_curprim_verts[4];
	LLVMValueRef gs_generated_prims[4];
	LLVMValueRef gs_ngg_emit;
	LLVMValueRef gs_ngg_scratch;

	uint32_t tcs_num_inputs;
	uint32_t tcs_num_patches;

	LLVMValueRef vertexptr; /* GFX10 only */
};

struct radv_shader_output_values {
	LLVMValueRef values[4];
	unsigned slot_name;
	unsigned slot_index;
	unsigned usage_mask;
};

enum radeon_llvm_calling_convention {
	RADEON_LLVM_AMDGPU_VS = 87,
	RADEON_LLVM_AMDGPU_GS = 88,
	RADEON_LLVM_AMDGPU_PS = 89,
	RADEON_LLVM_AMDGPU_CS = 90,
	RADEON_LLVM_AMDGPU_HS = 93,
};

static inline struct radv_shader_context *
radv_shader_context_from_abi(struct ac_shader_abi *abi)
{
	struct radv_shader_context *ctx = NULL;
	return container_of(abi, ctx, abi);
}

static LLVMValueRef get_rel_patch_id(struct radv_shader_context *ctx)
{
	switch (ctx->stage) {
	case MESA_SHADER_TESS_CTRL:
		return ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
	case MESA_SHADER_TESS_EVAL:
		return ctx->tes_rel_patch_id;
		break;
	default:
		unreachable("Illegal stage");
	}
}

static unsigned
get_tcs_num_patches(struct radv_shader_context *ctx)
{
	unsigned num_tcs_input_cp = ctx->options->key.tcs.input_vertices;
	unsigned num_tcs_output_cp = ctx->shader->info.tess.tcs_vertices_out;
	uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
	uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
	uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->tcs.outputs_written);
	uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->tcs.patch_outputs_written);
	uint32_t output_vertex_size = num_tcs_outputs * 16;
	uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
	uint32_t output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
	unsigned num_patches;
	unsigned hardware_lds_size;

	/* Ensure that we only need one wave per SIMD so we don't need to check
	 * resource usage. Also ensures that the number of tcs in and out
	 * vertices per threadgroup are at most 256.
	 */
	num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4;
	/* Make sure that the data fits in LDS. This assumes the shaders only
	 * use LDS for the inputs and outputs.
	 */
	hardware_lds_size = 32768;

	/* Looks like STONEY hangs if we use more than 32 KiB LDS in a single
	 * threadgroup, even though there is more than 32 KiB LDS.
	 *
	 * Test: dEQP-VK.tessellation.shader_input_output.barrier
	 */
	if (ctx->options->chip_class >= GFX7 && ctx->options->family != CHIP_STONEY)
		hardware_lds_size = 65536;

	num_patches = MIN2(num_patches, hardware_lds_size / (input_patch_size + output_patch_size));
	/* Make sure the output data fits in the offchip buffer */
	num_patches = MIN2(num_patches, (ctx->options->tess_offchip_block_dw_size * 4) / output_patch_size);
	/* Not necessary for correctness, but improves performance. The
	 * specific value is taken from the proprietary driver.
	 */
	num_patches = MIN2(num_patches, 40);

	/* GFX6 bug workaround - limit LS-HS threadgroups to only one wave. */
	if (ctx->options->chip_class == GFX6) {
		unsigned one_wave = ctx->options->wave_size / MAX2(num_tcs_input_cp, num_tcs_output_cp);
		num_patches = MIN2(num_patches, one_wave);
	}
	return num_patches;
}

static unsigned
calculate_tess_lds_size(struct radv_shader_context *ctx)
{
	unsigned num_tcs_input_cp = ctx->options->key.tcs.input_vertices;
	unsigned num_tcs_output_cp;
	unsigned num_tcs_outputs, num_tcs_patch_outputs;
	unsigned input_vertex_size, output_vertex_size;
	unsigned input_patch_size, output_patch_size;
	unsigned pervertex_output_patch_size;
	unsigned output_patch0_offset;
	unsigned num_patches;
	unsigned lds_size;

	num_tcs_output_cp = ctx->shader->info.tess.tcs_vertices_out;
	num_tcs_outputs = util_last_bit64(ctx->shader_info->tcs.outputs_written);
	num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->tcs.patch_outputs_written);

	input_vertex_size = ctx->tcs_num_inputs * 16;
	output_vertex_size = num_tcs_outputs * 16;

	input_patch_size = num_tcs_input_cp * input_vertex_size;

	pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
	output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;

	num_patches = ctx->tcs_num_patches;
	output_patch0_offset = input_patch_size * num_patches;

	lds_size = output_patch0_offset + output_patch_size * num_patches;
	return lds_size;
}

/* Tessellation shaders pass outputs to the next shader using LDS.
 *
 * LS outputs = TCS inputs
 * TCS outputs = TES inputs
 *
 * The LDS layout is:
 * - TCS inputs for patch 0
 * - TCS inputs for patch 1
 * - TCS inputs for patch 2		= get_tcs_in_current_patch_offset (if RelPatchID==2)
 * - ...
 * - TCS outputs for patch 0            = get_tcs_out_patch0_offset
 * - Per-patch TCS outputs for patch 0  = get_tcs_out_patch0_patch_data_offset
 * - TCS outputs for patch 1
 * - Per-patch TCS outputs for patch 1
 * - TCS outputs for patch 2            = get_tcs_out_current_patch_offset (if RelPatchID==2)
 * - Per-patch TCS outputs for patch 2  = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
 * - ...
 *
 * All three shaders VS(LS), TCS, TES share the same LDS space.
 */
static LLVMValueRef
get_tcs_in_patch_stride(struct radv_shader_context *ctx)
{
	assert (ctx->stage == MESA_SHADER_TESS_CTRL);
	uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
	uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;

	input_patch_size /= 4;
	return LLVMConstInt(ctx->ac.i32, input_patch_size, false);
}

static LLVMValueRef
get_tcs_out_patch_stride(struct radv_shader_context *ctx)
{
	uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->tcs.outputs_written);
	uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->tcs.patch_outputs_written);
	uint32_t output_vertex_size = num_tcs_outputs * 16;
	uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
	uint32_t output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
	output_patch_size /= 4;
	return LLVMConstInt(ctx->ac.i32, output_patch_size, false);
}

static LLVMValueRef
get_tcs_out_vertex_stride(struct radv_shader_context *ctx)
{
	uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->tcs.outputs_written);
	uint32_t output_vertex_size = num_tcs_outputs * 16;
	output_vertex_size /= 4;
	return LLVMConstInt(ctx->ac.i32, output_vertex_size, false);
}

static LLVMValueRef
get_tcs_out_patch0_offset(struct radv_shader_context *ctx)
{
	assert (ctx->stage == MESA_SHADER_TESS_CTRL);
	uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
	uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
	uint32_t output_patch0_offset = input_patch_size;
	unsigned num_patches = ctx->tcs_num_patches;

	output_patch0_offset *= num_patches;
	output_patch0_offset /= 4;
	return LLVMConstInt(ctx->ac.i32, output_patch0_offset, false);
}

static LLVMValueRef
get_tcs_out_patch0_patch_data_offset(struct radv_shader_context *ctx)
{
	assert (ctx->stage == MESA_SHADER_TESS_CTRL);
	uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
	uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
	uint32_t output_patch0_offset = input_patch_size;

	uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->tcs.outputs_written);
	uint32_t output_vertex_size = num_tcs_outputs * 16;
	uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
	unsigned num_patches = ctx->tcs_num_patches;

	output_patch0_offset *= num_patches;
	output_patch0_offset += pervertex_output_patch_size;
	output_patch0_offset /= 4;
	return LLVMConstInt(ctx->ac.i32, output_patch0_offset, false);
}

static LLVMValueRef
get_tcs_in_current_patch_offset(struct radv_shader_context *ctx)
{
	LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
	LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);

	return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
}

static LLVMValueRef
get_tcs_out_current_patch_offset(struct radv_shader_context *ctx)
{
	LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
	LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
	LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);

	return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id,
			     patch0_offset);
}

static LLVMValueRef
get_tcs_out_current_patch_data_offset(struct radv_shader_context *ctx)
{
	LLVMValueRef patch0_patch_data_offset =
		get_tcs_out_patch0_patch_data_offset(ctx);
	LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
	LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);

	return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id,
			     patch0_patch_data_offset);
}

#define MAX_ARGS 64
struct arg_info {
	LLVMTypeRef types[MAX_ARGS];
	LLVMValueRef *assign[MAX_ARGS];
	uint8_t count;
	uint8_t sgpr_count;
	uint8_t num_sgprs_used;
	uint8_t num_vgprs_used;
};

enum ac_arg_regfile {
	ARG_SGPR,
	ARG_VGPR,
};

static void
add_arg(struct arg_info *info, enum ac_arg_regfile regfile, LLVMTypeRef type,
	LLVMValueRef *param_ptr)
{
	assert(info->count < MAX_ARGS);

	info->assign[info->count] = param_ptr;
	info->types[info->count] = type;
	info->count++;

	if (regfile == ARG_SGPR) {
		info->num_sgprs_used += ac_get_type_size(type) / 4;
		info->sgpr_count++;
	} else {
		assert(regfile == ARG_VGPR);
		info->num_vgprs_used += ac_get_type_size(type) / 4;
	}
}

static void assign_arguments(LLVMValueRef main_function,
			     struct arg_info *info)
{
	unsigned i;
	for (i = 0; i < info->count; i++) {
		if (info->assign[i])
			*info->assign[i] = LLVMGetParam(main_function, i);
	}
}

static LLVMValueRef
create_llvm_function(LLVMContextRef ctx, LLVMModuleRef module,
                     LLVMBuilderRef builder, LLVMTypeRef *return_types,
                     unsigned num_return_elems,
		     struct arg_info *args,
		     unsigned max_workgroup_size,
		     const struct radv_nir_compiler_options *options)
{
	LLVMTypeRef main_function_type, ret_type;
	LLVMBasicBlockRef main_function_body;

	if (num_return_elems)
		ret_type = LLVMStructTypeInContext(ctx, return_types,
		                                   num_return_elems, true);
	else
		ret_type = LLVMVoidTypeInContext(ctx);

	/* Setup the function */
	main_function_type =
	    LLVMFunctionType(ret_type, args->types, args->count, 0);
	LLVMValueRef main_function =
	    LLVMAddFunction(module, "main", main_function_type);
	main_function_body =
	    LLVMAppendBasicBlockInContext(ctx, main_function, "main_body");
	LLVMPositionBuilderAtEnd(builder, main_function_body);

	LLVMSetFunctionCallConv(main_function, RADEON_LLVM_AMDGPU_CS);
	for (unsigned i = 0; i < args->sgpr_count; ++i) {
		LLVMValueRef P = LLVMGetParam(main_function, i);

		ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_INREG);

		if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
			ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_NOALIAS);
			ac_add_attr_dereferenceable(P, UINT64_MAX);
		}
	}

	if (options->address32_hi) {
		ac_llvm_add_target_dep_function_attr(main_function,
						     "amdgpu-32bit-address-high-bits",
						     options->address32_hi);
	}

	ac_llvm_set_workgroup_size(main_function, max_workgroup_size);

	if (options->unsafe_math) {
		/* These were copied from some LLVM test. */
		LLVMAddTargetDependentFunctionAttr(main_function,
						   "less-precise-fpmad",
						   "true");
		LLVMAddTargetDependentFunctionAttr(main_function,
						   "no-infs-fp-math",
						   "true");
		LLVMAddTargetDependentFunctionAttr(main_function,
						   "no-nans-fp-math",
						   "true");
		LLVMAddTargetDependentFunctionAttr(main_function,
						   "unsafe-fp-math",
						   "true");
		LLVMAddTargetDependentFunctionAttr(main_function,
					   "no-signed-zeros-fp-math",
					   "true");
	}
	return main_function;
}


static void
set_loc(struct radv_userdata_info *ud_info, uint8_t *sgpr_idx,
	uint8_t num_sgprs)
{
	ud_info->sgpr_idx = *sgpr_idx;
	ud_info->num_sgprs = num_sgprs;
	*sgpr_idx += num_sgprs;
}

static void
set_loc_shader(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx,
	       uint8_t num_sgprs)
{
	struct radv_userdata_info *ud_info =
		&ctx->shader_info->user_sgprs_locs.shader_data[idx];
	assert(ud_info);

	set_loc(ud_info, sgpr_idx, num_sgprs);
}

static void
set_loc_shader_ptr(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx)
{
	bool use_32bit_pointers = idx != AC_UD_SCRATCH_RING_OFFSETS;

	set_loc_shader(ctx, idx, sgpr_idx, use_32bit_pointers ? 1 : 2);
}

static void
set_loc_desc(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx)
{
	struct radv_userdata_locations *locs =
		&ctx->shader_info->user_sgprs_locs;
	struct radv_userdata_info *ud_info = &locs->descriptor_sets[idx];
	assert(ud_info);

	set_loc(ud_info, sgpr_idx, 1);

	locs->descriptor_sets_enabled |= 1 << idx;
}

struct user_sgpr_info {
	bool need_ring_offsets;
	bool indirect_all_descriptor_sets;
	uint8_t remaining_sgprs;
};

static bool needs_view_index_sgpr(struct radv_shader_context *ctx,
				  gl_shader_stage stage)
{
	switch (stage) {
	case MESA_SHADER_VERTEX:
		if (ctx->shader_info->needs_multiview_view_index ||
		    (!ctx->options->key.vs_common_out.as_es && !ctx->options->key.vs_common_out.as_ls && ctx->options->key.has_multiview_view_index))
			return true;
		break;
	case MESA_SHADER_TESS_EVAL:
		if (ctx->shader_info->needs_multiview_view_index || (!ctx->options->key.vs_common_out.as_es && ctx->options->key.has_multiview_view_index))
			return true;
		break;
	case MESA_SHADER_GEOMETRY:
	case MESA_SHADER_TESS_CTRL:
		if (ctx->shader_info->needs_multiview_view_index)
			return true;
		break;
	default:
		break;
	}
	return false;
}

static uint8_t
count_vs_user_sgprs(struct radv_shader_context *ctx)
{
	uint8_t count = 0;

	if (ctx->shader_info->vs.has_vertex_buffers)
		count++;
	count += ctx->shader_info->vs.needs_draw_id ? 3 : 2;

	return count;
}

static void allocate_inline_push_consts(struct radv_shader_context *ctx,
					struct user_sgpr_info *user_sgpr_info)
{
	uint8_t remaining_sgprs = user_sgpr_info->remaining_sgprs;

	/* Only supported if shaders use push constants. */
	if (ctx->shader_info->min_push_constant_used == UINT8_MAX)
		return;

	/* Only supported if shaders don't have indirect push constants. */
	if (ctx->shader_info->has_indirect_push_constants)
		return;

	/* Only supported for 32-bit push constants. */
	if (!ctx->shader_info->has_only_32bit_push_constants)
		return;

	uint8_t num_push_consts =
		(ctx->shader_info->max_push_constant_used -
		 ctx->shader_info->min_push_constant_used) / 4;

	/* Check if the number of user SGPRs is large enough. */
	if (num_push_consts < remaining_sgprs) {
		ctx->shader_info->num_inline_push_consts = num_push_consts;
	} else {
		ctx->shader_info->num_inline_push_consts = remaining_sgprs;
	}

	/* Clamp to the maximum number of allowed inlined push constants. */
	if (ctx->shader_info->num_inline_push_consts > AC_MAX_INLINE_PUSH_CONSTS)
		ctx->shader_info->num_inline_push_consts = AC_MAX_INLINE_PUSH_CONSTS;

	if (ctx->shader_info->num_inline_push_consts == num_push_consts &&
	    !ctx->shader_info->loads_dynamic_offsets) {
		/* Disable the default push constants path if all constants are
		 * inlined and if shaders don't use dynamic descriptors.
		 */
		ctx->shader_info->loads_push_constants = false;
	}

	ctx->shader_info->base_inline_push_consts =
		ctx->shader_info->min_push_constant_used / 4;
}

static void allocate_user_sgprs(struct radv_shader_context *ctx,
				gl_shader_stage stage,
				bool has_previous_stage,
				gl_shader_stage previous_stage,
				bool needs_view_index,
				struct user_sgpr_info *user_sgpr_info)
{
	uint8_t user_sgpr_count = 0;

	memset(user_sgpr_info, 0, sizeof(struct user_sgpr_info));

	/* until we sort out scratch/global buffers always assign ring offsets for gs/vs/es */
	if (stage == MESA_SHADER_GEOMETRY ||
	    stage == MESA_SHADER_VERTEX ||
	    stage == MESA_SHADER_TESS_CTRL ||
	    stage == MESA_SHADER_TESS_EVAL ||
	    ctx->is_gs_copy_shader)
		user_sgpr_info->need_ring_offsets = true;

	if (stage == MESA_SHADER_FRAGMENT &&
	    ctx->shader_info->ps.needs_sample_positions)
		user_sgpr_info->need_ring_offsets = true;

	/* 2 user sgprs will nearly always be allocated for scratch/rings */
	if (ctx->options->supports_spill || user_sgpr_info->need_ring_offsets) {
		user_sgpr_count += 2;
	}

	switch (stage) {
	case MESA_SHADER_COMPUTE:
		if (ctx->shader_info->cs.uses_grid_size)
			user_sgpr_count += 3;
		break;
	case MESA_SHADER_FRAGMENT:
		user_sgpr_count += ctx->shader_info->ps.needs_sample_positions;
		break;
	case MESA_SHADER_VERTEX:
		if (!ctx->is_gs_copy_shader)
			user_sgpr_count += count_vs_user_sgprs(ctx);
		break;
	case MESA_SHADER_TESS_CTRL:
		if (has_previous_stage) {
			if (previous_stage == MESA_SHADER_VERTEX)
				user_sgpr_count += count_vs_user_sgprs(ctx);
		}
		break;
	case MESA_SHADER_TESS_EVAL:
		break;
	case MESA_SHADER_GEOMETRY:
		if (has_previous_stage) {
			if (previous_stage == MESA_SHADER_VERTEX) {
				user_sgpr_count += count_vs_user_sgprs(ctx);
			}
		}
		break;
	default:
		break;
	}

	if (needs_view_index)
		user_sgpr_count++;

	if (ctx->shader_info->loads_push_constants)
		user_sgpr_count++;

	if (ctx->streamout_buffers)
		user_sgpr_count++;

	uint32_t available_sgprs = ctx->options->chip_class >= GFX9 && stage != MESA_SHADER_COMPUTE ? 32 : 16;
	uint32_t remaining_sgprs = available_sgprs - user_sgpr_count;
	uint32_t num_desc_set =
		util_bitcount(ctx->shader_info->desc_set_used_mask);

	if (remaining_sgprs < num_desc_set) {
		user_sgpr_info->indirect_all_descriptor_sets = true;
		user_sgpr_info->remaining_sgprs = remaining_sgprs - 1;
	} else {
		user_sgpr_info->remaining_sgprs = remaining_sgprs - num_desc_set;
	}

	allocate_inline_push_consts(ctx, user_sgpr_info);
}

static void
declare_global_input_sgprs(struct radv_shader_context *ctx,
			   const struct user_sgpr_info *user_sgpr_info,
			   struct arg_info *args,
			   LLVMValueRef *desc_sets)
{
	LLVMTypeRef type = ac_array_in_const32_addr_space(ctx->ac.i8);

	/* 1 for each descriptor set */
	if (!user_sgpr_info->indirect_all_descriptor_sets) {
		uint32_t mask = ctx->shader_info->desc_set_used_mask;

		while (mask) {
			int i = u_bit_scan(&mask);

			add_arg(args, ARG_SGPR, type, &ctx->descriptor_sets[i]);
		}
	} else {
		add_arg(args, ARG_SGPR, ac_array_in_const32_addr_space(type),
			desc_sets);
	}

	if (ctx->shader_info->loads_push_constants) {
		/* 1 for push constants and dynamic descriptors */
		add_arg(args, ARG_SGPR, type, &ctx->abi.push_constants);
	}

	for (unsigned i = 0; i < ctx->shader_info->num_inline_push_consts; i++) {
		add_arg(args, ARG_SGPR, ctx->ac.i32,
			&ctx->abi.inline_push_consts[i]);
	}
	ctx->abi.num_inline_push_consts = ctx->shader_info->num_inline_push_consts;
	ctx->abi.base_inline_push_consts = ctx->shader_info->base_inline_push_consts;

	if (ctx->shader_info->so.num_outputs) {
		add_arg(args, ARG_SGPR,
			ac_array_in_const32_addr_space(ctx->ac.v4i32),
			&ctx->streamout_buffers);
	}
}

static void
declare_vs_specific_input_sgprs(struct radv_shader_context *ctx,
				gl_shader_stage stage,
				bool has_previous_stage,
				gl_shader_stage previous_stage,
				struct arg_info *args)
{
	if (!ctx->is_gs_copy_shader &&
	    (stage == MESA_SHADER_VERTEX ||
	     (has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
		if (ctx->shader_info->vs.has_vertex_buffers) {
			add_arg(args, ARG_SGPR,
				ac_array_in_const32_addr_space(ctx->ac.v4i32),
				&ctx->vertex_buffers);
		}
		add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.base_vertex);
		add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.start_instance);
		if (ctx->shader_info->vs.needs_draw_id) {
			add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.draw_id);
		}
	}
}

static void
declare_vs_input_vgprs(struct radv_shader_context *ctx, struct arg_info *args)
{
	add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.vertex_id);
	if (!ctx->is_gs_copy_shader) {
		if (ctx->options->key.vs_common_out.as_ls) {
			add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->rel_auto_id);
			if (ctx->ac.chip_class >= GFX10) {
				add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* user vgpr */
				add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
			} else {
				add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
				add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* unused */
			}
		} else {
			if (ctx->ac.chip_class >= GFX10) {
				if (ctx->options->key.vs_common_out.as_ngg) {
					add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* user vgpr */
					add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* user vgpr */
					add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
				} else {
					add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* unused */
					add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->vs_prim_id);
					add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
				}
			} else {
				add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
				add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->vs_prim_id);
				add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* unused */
			}
		}
	}
}

static void
declare_streamout_sgprs(struct radv_shader_context *ctx, gl_shader_stage stage,
			struct arg_info *args)
{
	int i;

	/* Streamout SGPRs. */
	if (ctx->shader_info->so.num_outputs) {
		assert(stage == MESA_SHADER_VERTEX ||
		       stage == MESA_SHADER_TESS_EVAL);

		if (stage != MESA_SHADER_TESS_EVAL) {
			add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->streamout_config);
		} else {
			args->assign[args->count - 1] = &ctx->streamout_config;
			args->types[args->count - 1] = ctx->ac.i32;
		}

		add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->streamout_write_idx);
	}

	/* A streamout buffer offset is loaded if the stride is non-zero. */
	for (i = 0; i < 4; i++) {
		if (!ctx->shader_info->so.strides[i])
			continue;

		add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->streamout_offset[i]);
	}
}

static void
declare_tes_input_vgprs(struct radv_shader_context *ctx, struct arg_info *args)
{
	add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_u);
	add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_v);
	add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->tes_rel_patch_id);
	add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.tes_patch_id);
}

static void
set_global_input_locs(struct radv_shader_context *ctx,
		      const struct user_sgpr_info *user_sgpr_info,
		      LLVMValueRef desc_sets, uint8_t *user_sgpr_idx)
{
	uint32_t mask = ctx->shader_info->desc_set_used_mask;

	if (!user_sgpr_info->indirect_all_descriptor_sets) {
		while (mask) {
			int i = u_bit_scan(&mask);

			set_loc_desc(ctx, i, user_sgpr_idx);
		}
	} else {
		set_loc_shader_ptr(ctx, AC_UD_INDIRECT_DESCRIPTOR_SETS,
			           user_sgpr_idx);

		while (mask) {
			int i = u_bit_scan(&mask);

			ctx->descriptor_sets[i] =
				ac_build_load_to_sgpr(&ctx->ac, desc_sets,
						      LLVMConstInt(ctx->ac.i32, i, false));

		}

		ctx->shader_info->need_indirect_descriptor_sets = true;
	}

	if (ctx->shader_info->loads_push_constants) {
		set_loc_shader_ptr(ctx, AC_UD_PUSH_CONSTANTS, user_sgpr_idx);
	}

	if (ctx->shader_info->num_inline_push_consts) {
		set_loc_shader(ctx, AC_UD_INLINE_PUSH_CONSTANTS, user_sgpr_idx,
			       ctx->shader_info->num_inline_push_consts);
	}

	if (ctx->streamout_buffers) {
		set_loc_shader_ptr(ctx, AC_UD_STREAMOUT_BUFFERS,
			       user_sgpr_idx);
	}
}

static void
set_vs_specific_input_locs(struct radv_shader_context *ctx,
			   gl_shader_stage stage, bool has_previous_stage,
			   gl_shader_stage previous_stage,
			   uint8_t *user_sgpr_idx)
{
	if (!ctx->is_gs_copy_shader &&
	    (stage == MESA_SHADER_VERTEX ||
	     (has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
		if (ctx->shader_info->vs.has_vertex_buffers) {
			set_loc_shader_ptr(ctx, AC_UD_VS_VERTEX_BUFFERS,
					   user_sgpr_idx);
		}

		unsigned vs_num = 2;
		if (ctx->shader_info->vs.needs_draw_id)
			vs_num++;

		set_loc_shader(ctx, AC_UD_VS_BASE_VERTEX_START_INSTANCE,
			       user_sgpr_idx, vs_num);
	}
}

static void set_llvm_calling_convention(LLVMValueRef func,
                                        gl_shader_stage stage)
{
	enum radeon_llvm_calling_convention calling_conv;

	switch (stage) {
	case MESA_SHADER_VERTEX:
	case MESA_SHADER_TESS_EVAL:
		calling_conv = RADEON_LLVM_AMDGPU_VS;
		break;
	case MESA_SHADER_GEOMETRY:
		calling_conv = RADEON_LLVM_AMDGPU_GS;
		break;
	case MESA_SHADER_TESS_CTRL:
		calling_conv = RADEON_LLVM_AMDGPU_HS;
		break;
	case MESA_SHADER_FRAGMENT:
		calling_conv = RADEON_LLVM_AMDGPU_PS;
		break;
	case MESA_SHADER_COMPUTE:
		calling_conv = RADEON_LLVM_AMDGPU_CS;
		break;
	default:
		unreachable("Unhandle shader type");
	}

	LLVMSetFunctionCallConv(func, calling_conv);
}

/* Returns whether the stage is a stage that can be directly before the GS */
static bool is_pre_gs_stage(gl_shader_stage stage)
{
	return stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_TESS_EVAL;
}

static void create_function(struct radv_shader_context *ctx,
                            gl_shader_stage stage,
                            bool has_previous_stage,
                            gl_shader_stage previous_stage)
{
	uint8_t user_sgpr_idx;
	struct user_sgpr_info user_sgpr_info;
	struct arg_info args = {};
	LLVMValueRef desc_sets;
	bool needs_view_index = needs_view_index_sgpr(ctx, stage);

	if (ctx->ac.chip_class >= GFX10) {
		if (is_pre_gs_stage(stage) && ctx->options->key.vs_common_out.as_ngg) {
			/* On GFX10, VS is merged into GS for NGG. */
			previous_stage = stage;
			stage = MESA_SHADER_GEOMETRY;
			has_previous_stage = true;
		}
	}

	allocate_user_sgprs(ctx, stage, has_previous_stage,
			    previous_stage, needs_view_index, &user_sgpr_info);

	if (user_sgpr_info.need_ring_offsets && !ctx->options->supports_spill) {
		add_arg(&args, ARG_SGPR, ac_array_in_const_addr_space(ctx->ac.v4i32),
			&ctx->ring_offsets);
	}

	switch (stage) {
	case MESA_SHADER_COMPUTE:
		declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
					   &desc_sets);

		if (ctx->shader_info->cs.uses_grid_size) {
			add_arg(&args, ARG_SGPR, ctx->ac.v3i32,
				&ctx->abi.num_work_groups);
		}

		for (int i = 0; i < 3; i++) {
			ctx->abi.workgroup_ids[i] = NULL;
			if (ctx->shader_info->cs.uses_block_id[i]) {
				add_arg(&args, ARG_SGPR, ctx->ac.i32,
					&ctx->abi.workgroup_ids[i]);
			}
		}

		if (ctx->shader_info->cs.uses_local_invocation_idx)
			add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->abi.tg_size);
		add_arg(&args, ARG_VGPR, ctx->ac.v3i32,
			&ctx->abi.local_invocation_ids);
		break;
	case MESA_SHADER_VERTEX:
		declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
					   &desc_sets);

		declare_vs_specific_input_sgprs(ctx, stage, has_previous_stage,
						previous_stage, &args);

		if (needs_view_index)
			add_arg(&args, ARG_SGPR, ctx->ac.i32,
				&ctx->abi.view_index);
		if (ctx->options->key.vs_common_out.as_es) {
			add_arg(&args, ARG_SGPR, ctx->ac.i32,
				&ctx->es2gs_offset);
		} else if (ctx->options->key.vs_common_out.as_ls) {
			/* no extra parameters */
		} else {
			declare_streamout_sgprs(ctx, stage, &args);
		}

		declare_vs_input_vgprs(ctx, &args);
		break;
	case MESA_SHADER_TESS_CTRL:
		if (has_previous_stage) {
			// First 6 system regs
			add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
			add_arg(&args, ARG_SGPR, ctx->ac.i32,
				&ctx->merged_wave_info);
			add_arg(&args, ARG_SGPR, ctx->ac.i32,
				&ctx->tess_factor_offset);

			add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
			add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
			add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown

			declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
						   &desc_sets);

			declare_vs_specific_input_sgprs(ctx, stage,
							has_previous_stage,
							previous_stage, &args);

			if (needs_view_index)
				add_arg(&args, ARG_SGPR, ctx->ac.i32,
					&ctx->abi.view_index);

			add_arg(&args, ARG_VGPR, ctx->ac.i32,
				&ctx->abi.tcs_patch_id);
			add_arg(&args, ARG_VGPR, ctx->ac.i32,
				&ctx->abi.tcs_rel_ids);

			declare_vs_input_vgprs(ctx, &args);
		} else {
			declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
						   &desc_sets);

			if (needs_view_index)
				add_arg(&args, ARG_SGPR, ctx->ac.i32,
					&ctx->abi.view_index);

			add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
			add_arg(&args, ARG_SGPR, ctx->ac.i32,
				&ctx->tess_factor_offset);
			add_arg(&args, ARG_VGPR, ctx->ac.i32,
				&ctx->abi.tcs_patch_id);
			add_arg(&args, ARG_VGPR, ctx->ac.i32,
				&ctx->abi.tcs_rel_ids);
		}
		break;
	case MESA_SHADER_TESS_EVAL:
		declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
					   &desc_sets);

		if (needs_view_index)
			add_arg(&args, ARG_SGPR, ctx->ac.i32,
				&ctx->abi.view_index);

		if (ctx->options->key.vs_common_out.as_es) {
			add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
			add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
			add_arg(&args, ARG_SGPR, ctx->ac.i32,
				&ctx->es2gs_offset);
		} else {
			add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
			declare_streamout_sgprs(ctx, stage, &args);
			add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
		}
		declare_tes_input_vgprs(ctx, &args);
		break;
	case MESA_SHADER_GEOMETRY:
		if (has_previous_stage) {
			// First 6 system regs
			if (ctx->options->key.vs_common_out.as_ngg) {
				add_arg(&args, ARG_SGPR, ctx->ac.i32,
					&ctx->gs_tg_info);
			} else {
				add_arg(&args, ARG_SGPR, ctx->ac.i32,
					&ctx->gs2vs_offset);
			}

			add_arg(&args, ARG_SGPR, ctx->ac.i32,
				&ctx->merged_wave_info);
			add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);

			add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
			add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
			add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown

			declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
						   &desc_sets);

			if (previous_stage != MESA_SHADER_TESS_EVAL) {
				declare_vs_specific_input_sgprs(ctx, stage,
								has_previous_stage,
								previous_stage,
								&args);
			}

			if (needs_view_index)
				add_arg(&args, ARG_SGPR, ctx->ac.i32,
					&ctx->abi.view_index);

			add_arg(&args, ARG_VGPR, ctx->ac.i32,
				&ctx->gs_vtx_offset[0]);
			add_arg(&args, ARG_VGPR, ctx->ac.i32,
				&ctx->gs_vtx_offset[2]);
			add_arg(&args, ARG_VGPR, ctx->ac.i32,
				&ctx->abi.gs_prim_id);
			add_arg(&args, ARG_VGPR, ctx->ac.i32,
				&ctx->abi.gs_invocation_id);
			add_arg(&args, ARG_VGPR, ctx->ac.i32,
				&ctx->gs_vtx_offset[4]);

			if (previous_stage == MESA_SHADER_VERTEX) {
				declare_vs_input_vgprs(ctx, &args);
			} else {
				declare_tes_input_vgprs(ctx, &args);
			}
		} else {
			declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
						   &desc_sets);

			if (needs_view_index)
				add_arg(&args, ARG_SGPR, ctx->ac.i32,
					&ctx->abi.view_index);

			add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs2vs_offset);
			add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs_wave_id);
			add_arg(&args, ARG_VGPR, ctx->ac.i32,
				&ctx->gs_vtx_offset[0]);
			add_arg(&args, ARG_VGPR, ctx->ac.i32,
				&ctx->gs_vtx_offset[1]);
			add_arg(&args, ARG_VGPR, ctx->ac.i32,
				&ctx->abi.gs_prim_id);
			add_arg(&args, ARG_VGPR, ctx->ac.i32,
				&ctx->gs_vtx_offset[2]);
			add_arg(&args, ARG_VGPR, ctx->ac.i32,
				&ctx->gs_vtx_offset[3]);
			add_arg(&args, ARG_VGPR, ctx->ac.i32,
				&ctx->gs_vtx_offset[4]);
			add_arg(&args, ARG_VGPR, ctx->ac.i32,
				&ctx->gs_vtx_offset[5]);
			add_arg(&args, ARG_VGPR, ctx->ac.i32,
				&ctx->abi.gs_invocation_id);
		}
		break;
	case MESA_SHADER_FRAGMENT:
		declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
					   &desc_sets);

		add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->abi.prim_mask);
		add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->abi.persp_sample);
		add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->abi.persp_center);
		add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->abi.persp_centroid);
		add_arg(&args, ARG_VGPR, ctx->ac.v3i32, NULL); /* persp pull model */
		add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->abi.linear_sample);
		add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->abi.linear_center);
		add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->abi.linear_centroid);
		add_arg(&args, ARG_VGPR, ctx->ac.f32, NULL);  /* line stipple tex */
		add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[0]);
		add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[1]);
		add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[2]);
		add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[3]);
		add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.front_face);
		add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.ancillary);
		add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.sample_coverage);
		add_arg(&args, ARG_VGPR, ctx->ac.i32, NULL);  /* fixed pt */
		break;
	default:
		unreachable("Shader stage not implemented");
	}

	ctx->main_function = create_llvm_function(
	    ctx->context, ctx->ac.module, ctx->ac.builder, NULL, 0, &args,
	    ctx->max_workgroup_size, ctx->options);
	set_llvm_calling_convention(ctx->main_function, stage);


	ctx->shader_info->num_input_vgprs = 0;
	ctx->shader_info->num_input_sgprs = ctx->options->supports_spill ? 2 : 0;

	ctx->shader_info->num_input_sgprs += args.num_sgprs_used;

	if (ctx->stage != MESA_SHADER_FRAGMENT)
		ctx->shader_info->num_input_vgprs = args.num_vgprs_used;

	assign_arguments(ctx->main_function, &args);

	user_sgpr_idx = 0;

	if (ctx->options->supports_spill || user_sgpr_info.need_ring_offsets) {
		set_loc_shader_ptr(ctx, AC_UD_SCRATCH_RING_OFFSETS,
				   &user_sgpr_idx);
		if (ctx->options->supports_spill) {
			ctx->ring_offsets = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.implicit.buffer.ptr",
							       LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_CONST),
							       NULL, 0, AC_FUNC_ATTR_READNONE);
			ctx->ring_offsets = LLVMBuildBitCast(ctx->ac.builder, ctx->ring_offsets,
							     ac_array_in_const_addr_space(ctx->ac.v4i32), "");
		}
	}

	/* For merged shaders the user SGPRs start at 8, with 8 system SGPRs in front (including
	 * the rw_buffers at s0/s1. With user SGPR0 = s8, lets restart the count from 0 */
	if (has_previous_stage)
		user_sgpr_idx = 0;

	set_global_input_locs(ctx, &user_sgpr_info, desc_sets, &user_sgpr_idx);

	switch (stage) {
	case MESA_SHADER_COMPUTE:
		if (ctx->shader_info->cs.uses_grid_size) {
			set_loc_shader(ctx, AC_UD_CS_GRID_SIZE,
				       &user_sgpr_idx, 3);
		}
		break;
	case MESA_SHADER_VERTEX:
		set_vs_specific_input_locs(ctx, stage, has_previous_stage,
					   previous_stage, &user_sgpr_idx);
		if (ctx->abi.view_index)
			set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
		break;
	case MESA_SHADER_TESS_CTRL:
		set_vs_specific_input_locs(ctx, stage, has_previous_stage,
					   previous_stage, &user_sgpr_idx);
		if (ctx->abi.view_index)
			set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
		break;
	case MESA_SHADER_TESS_EVAL:
		if (ctx->abi.view_index)
			set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
		break;
	case MESA_SHADER_GEOMETRY:
		if (has_previous_stage) {
			if (previous_stage == MESA_SHADER_VERTEX)
				set_vs_specific_input_locs(ctx, stage,
							   has_previous_stage,
							   previous_stage,
							   &user_sgpr_idx);
		}
		if (ctx->abi.view_index)
			set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
		break;
	case MESA_SHADER_FRAGMENT:
		break;
	default:
		unreachable("Shader stage not implemented");
	}

	if (stage == MESA_SHADER_TESS_CTRL ||
	    (stage == MESA_SHADER_VERTEX && ctx->options->key.vs_common_out.as_ls) ||
	    /* GFX9 has the ESGS ring buffer in LDS. */
	    (stage == MESA_SHADER_GEOMETRY && has_previous_stage)) {
		ac_declare_lds_as_pointer(&ctx->ac);
	}

	ctx->shader_info->num_user_sgprs = user_sgpr_idx;
}


static LLVMValueRef
radv_load_resource(struct ac_shader_abi *abi, LLVMValueRef index,
		   unsigned desc_set, unsigned binding)
{
	struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
	LLVMValueRef desc_ptr = ctx->descriptor_sets[desc_set];
	struct radv_pipeline_layout *pipeline_layout = ctx->options->layout;
	struct radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
	unsigned base_offset = layout->binding[binding].offset;
	LLVMValueRef offset, stride;

	if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
	    layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
		unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start +
			layout->binding[binding].dynamic_offset_offset;
		desc_ptr = ctx->abi.push_constants;
		base_offset = pipeline_layout->push_constant_size + 16 * idx;
		stride = LLVMConstInt(ctx->ac.i32, 16, false);
	} else
		stride = LLVMConstInt(ctx->ac.i32, layout->binding[binding].size, false);

	offset = LLVMConstInt(ctx->ac.i32, base_offset, false);

	if (layout->binding[binding].type != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
		offset = ac_build_imad(&ctx->ac, index, stride, offset);
	}

	desc_ptr = LLVMBuildGEP(ctx->ac.builder, desc_ptr, &offset, 1, "");
	desc_ptr = ac_cast_ptr(&ctx->ac, desc_ptr, ctx->ac.v4i32);
	LLVMSetMetadata(desc_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);

	if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
		uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
			S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
			S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
			S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);

		if (ctx->ac.chip_class >= GFX10) {
			desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
				     S_008F0C_OOB_SELECT(3) |
				     S_008F0C_RESOURCE_LEVEL(1);
		} else {
			desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
				     S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
		}

		LLVMValueRef desc_components[4] = {
			LLVMBuildPtrToInt(ctx->ac.builder, desc_ptr, ctx->ac.intptr, ""),
			LLVMConstInt(ctx->ac.i32, S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi), false),
			/* High limit to support variable sizes. */
			LLVMConstInt(ctx->ac.i32, 0xffffffff, false),
			LLVMConstInt(ctx->ac.i32, desc_type, false),
		};

		return ac_build_gather_values(&ctx->ac, desc_components, 4);
	}

	return desc_ptr;
}


/* The offchip buffer layout for TCS->TES is
 *
 * - attribute 0 of patch 0 vertex 0
 * - attribute 0 of patch 0 vertex 1
 * - attribute 0 of patch 0 vertex 2
 *   ...
 * - attribute 0 of patch 1 vertex 0
 * - attribute 0 of patch 1 vertex 1
 *   ...
 * - attribute 1 of patch 0 vertex 0
 * - attribute 1 of patch 0 vertex 1
 *   ...
 * - per patch attribute 0 of patch 0
 * - per patch attribute 0 of patch 1
 *   ...
 *
 * Note that every attribute has 4 components.
 */
static LLVMValueRef get_non_vertex_index_offset(struct radv_shader_context *ctx)
{
	uint32_t num_patches = ctx->tcs_num_patches;
	uint32_t num_tcs_outputs;
	if (ctx->stage == MESA_SHADER_TESS_CTRL)
		num_tcs_outputs = util_last_bit64(ctx->shader_info->tcs.outputs_written);
	else
		num_tcs_outputs = ctx->options->key.tes.tcs_num_outputs;

	uint32_t output_vertex_size = num_tcs_outputs * 16;
	uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;

	return LLVMConstInt(ctx->ac.i32, pervertex_output_patch_size * num_patches, false);
}

static LLVMValueRef calc_param_stride(struct radv_shader_context *ctx,
				      LLVMValueRef vertex_index)
{
	LLVMValueRef param_stride;
	if (vertex_index)
		param_stride = LLVMConstInt(ctx->ac.i32, ctx->shader->info.tess.tcs_vertices_out * ctx->tcs_num_patches, false);
	else
		param_stride = LLVMConstInt(ctx->ac.i32, ctx->tcs_num_patches, false);
	return param_stride;
}

static LLVMValueRef get_tcs_tes_buffer_address(struct radv_shader_context *ctx,
                                               LLVMValueRef vertex_index,
                                               LLVMValueRef param_index)
{
	LLVMValueRef base_addr;
	LLVMValueRef param_stride, constant16;
	LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
	LLVMValueRef vertices_per_patch = LLVMConstInt(ctx->ac.i32, ctx->shader->info.tess.tcs_vertices_out, false);
	constant16 = LLVMConstInt(ctx->ac.i32, 16, false);
	param_stride = calc_param_stride(ctx, vertex_index);
	if (vertex_index) {
		base_addr = ac_build_imad(&ctx->ac, rel_patch_id,
					  vertices_per_patch, vertex_index);
	} else {
		base_addr = rel_patch_id;
	}

	base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
	                         LLVMBuildMul(ctx->ac.builder, param_index,
	                                      param_stride, ""), "");

	base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");

	if (!vertex_index) {
		LLVMValueRef patch_data_offset = get_non_vertex_index_offset(ctx);

		base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
		                         patch_data_offset, "");
	}
	return base_addr;
}

static LLVMValueRef get_tcs_tes_buffer_address_params(struct radv_shader_context *ctx,
						      unsigned param,
						      unsigned const_index,
						      bool is_compact,
						      LLVMValueRef vertex_index,
						      LLVMValueRef indir_index)
{
	LLVMValueRef param_index;

	if (indir_index)
		param_index = LLVMBuildAdd(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, param, false),
					   indir_index, "");
	else {
		if (const_index && !is_compact)
			param += const_index;
		param_index = LLVMConstInt(ctx->ac.i32, param, false);
	}
	return get_tcs_tes_buffer_address(ctx, vertex_index, param_index);
}

static LLVMValueRef
get_dw_address(struct radv_shader_context *ctx,
	       LLVMValueRef dw_addr,
	       unsigned param,
	       unsigned const_index,
	       bool compact_const_index,
	       LLVMValueRef vertex_index,
	       LLVMValueRef stride,
	       LLVMValueRef indir_index)

{

	if (vertex_index) {
		dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
				       LLVMBuildMul(ctx->ac.builder,
						    vertex_index,
						    stride, ""), "");
	}

	if (indir_index)
		dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
				       LLVMBuildMul(ctx->ac.builder, indir_index,
						    LLVMConstInt(ctx->ac.i32, 4, false), ""), "");
	else if (const_index && !compact_const_index)
		dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
				       LLVMConstInt(ctx->ac.i32, const_index * 4, false), "");

	dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
			       LLVMConstInt(ctx->ac.i32, param * 4, false), "");

	if (const_index && compact_const_index)
		dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
				       LLVMConstInt(ctx->ac.i32, const_index, false), "");
	return dw_addr;
}

static LLVMValueRef
load_tcs_varyings(struct ac_shader_abi *abi,
		  LLVMTypeRef type,
		  LLVMValueRef vertex_index,
		  LLVMValueRef indir_index,
		  unsigned const_index,
		  unsigned location,
		  unsigned driver_location,
		  unsigned component,
		  unsigned num_components,
		  bool is_patch,
		  bool is_compact,
		  bool load_input)
{
	struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
	LLVMValueRef dw_addr, stride;
	LLVMValueRef value[4], result;
	unsigned param = shader_io_get_unique_index(location);

	if (load_input) {
		uint32_t input_vertex_size = (ctx->tcs_num_inputs * 16) / 4;
		stride = LLVMConstInt(ctx->ac.i32, input_vertex_size, false);
		dw_addr = get_tcs_in_current_patch_offset(ctx);
	} else {
		if (!is_patch) {
			stride = get_tcs_out_vertex_stride(ctx);
			dw_addr = get_tcs_out_current_patch_offset(ctx);
		} else {
			dw_addr = get_tcs_out_current_patch_data_offset(ctx);
			stride = NULL;
		}
	}

	dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
				 indir_index);

	for (unsigned i = 0; i < num_components + component; i++) {
		value[i] = ac_lds_load(&ctx->ac, dw_addr);
		dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
				       ctx->ac.i32_1, "");
	}
	result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
	return result;
}

static void
store_tcs_output(struct ac_shader_abi *abi,
		 const nir_variable *var,
		 LLVMValueRef vertex_index,
		 LLVMValueRef param_index,
		 unsigned const_index,
		 LLVMValueRef src,
		 unsigned writemask)
{
	struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
	const unsigned location = var->data.location;
	unsigned component = var->data.location_frac;
	const bool is_patch = var->data.patch;
	const bool is_compact = var->data.compact;
	LLVMValueRef dw_addr;
	LLVMValueRef stride = NULL;
	LLVMValueRef buf_addr = NULL;
	unsigned param;
	bool store_lds = true;

	if (is_patch) {
		if (!(ctx->shader->info.patch_outputs_read & (1U << (location - VARYING_SLOT_PATCH0))))
			store_lds = false;
	} else {
		if (!(ctx->shader->info.outputs_read & (1ULL << location)))
			store_lds = false;
	}

	param = shader_io_get_unique_index(location);
	if ((location == VARYING_SLOT_CLIP_DIST0 || location == VARYING_SLOT_CLIP_DIST1) && is_compact) {
		const_index += component;
		component = 0;

		if (const_index >= 4) {
			const_index -= 4;
			param++;
		}
	}

	if (!is_patch) {
		stride = get_tcs_out_vertex_stride(ctx);
		dw_addr = get_tcs_out_current_patch_offset(ctx);
	} else {
		dw_addr = get_tcs_out_current_patch_data_offset(ctx);
	}

	dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
				 param_index);
	buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index, is_compact,
						     vertex_index, param_index);

	bool is_tess_factor = false;
	if (location == VARYING_SLOT_TESS_LEVEL_INNER ||
	    location == VARYING_SLOT_TESS_LEVEL_OUTER)
		is_tess_factor = true;

	unsigned base = is_compact ? const_index : 0;
	for (unsigned chan = 0; chan < 8; chan++) {
		if (!(writemask & (1 << chan)))
			continue;
		LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
		value = ac_to_integer(&ctx->ac, value);
		value = LLVMBuildZExtOrBitCast(ctx->ac.builder, value, ctx->ac.i32, "");

		if (store_lds || is_tess_factor) {
			LLVMValueRef dw_addr_chan =
				LLVMBuildAdd(ctx->ac.builder, dw_addr,
				                           LLVMConstInt(ctx->ac.i32, chan, false), "");
			ac_lds_store(&ctx->ac, dw_addr_chan, value);
		}

		if (!is_tess_factor && writemask != 0xF)
			ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, value, 1,
						    buf_addr, ctx->oc_lds,
						    4 * (base + chan), ac_glc, false);
	}

	if (writemask == 0xF) {
		ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, src, 4,
					    buf_addr, ctx->oc_lds,
					    (base * 4), ac_glc, false);
	}
}

static LLVMValueRef
load_tes_input(struct ac_shader_abi *abi,
	       LLVMTypeRef type,
	       LLVMValueRef vertex_index,
	       LLVMValueRef param_index,
	       unsigned const_index,
	       unsigned location,
	       unsigned driver_location,
	       unsigned component,
	       unsigned num_components,
	       bool is_patch,
	       bool is_compact,
	       bool load_input)
{
	struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
	LLVMValueRef buf_addr;
	LLVMValueRef result;
	unsigned param = shader_io_get_unique_index(location);

	if ((location == VARYING_SLOT_CLIP_DIST0 || location == VARYING_SLOT_CLIP_DIST1) && is_compact) {
		const_index += component;
		component = 0;
		if (const_index >= 4) {
			const_index -= 4;
			param++;
		}
	}

	buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index,
						     is_compact, vertex_index, param_index);

	LLVMValueRef comp_offset = LLVMConstInt(ctx->ac.i32, component * 4, false);
	buf_addr = LLVMBuildAdd(ctx->ac.builder, buf_addr, comp_offset, "");

	result = ac_build_buffer_load(&ctx->ac, ctx->hs_ring_tess_offchip, num_components, NULL,
				      buf_addr, ctx->oc_lds, is_compact ? (4 * const_index) : 0, ac_glc, true, false);
	result = ac_trim_vector(&ctx->ac, result, num_components);
	return result;
}

static LLVMValueRef
load_gs_input(struct ac_shader_abi *abi,
	      unsigned location,
	      unsigned driver_location,
	      unsigned component,
	      unsigned num_components,
	      unsigned vertex_index,
	      unsigned const_index,
	      LLVMTypeRef type)
{
	struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
	LLVMValueRef vtx_offset;
	unsigned param, vtx_offset_param;
	LLVMValueRef value[4], result;

	vtx_offset_param = vertex_index;
	assert(vtx_offset_param < 6);
	vtx_offset = LLVMBuildMul(ctx->ac.builder, ctx->gs_vtx_offset[vtx_offset_param],
				  LLVMConstInt(ctx->ac.i32, 4, false), "");

	param = shader_io_get_unique_index(location);

	for (unsigned i = component; i < num_components + component; i++) {
		if (ctx->ac.chip_class >= GFX9) {
			LLVMValueRef dw_addr = ctx->gs_vtx_offset[vtx_offset_param];
			dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
			                       LLVMConstInt(ctx->ac.i32, param * 4 + i + const_index, 0), "");
			value[i] = ac_lds_load(&ctx->ac, dw_addr);
		} else {
			LLVMValueRef soffset =
				LLVMConstInt(ctx->ac.i32,
					     (param * 4 + i + const_index) * 256,
					     false);

			value[i] = ac_build_buffer_load(&ctx->ac,
							ctx->esgs_ring, 1,
							ctx->ac.i32_0,
							vtx_offset, soffset,
							0, ac_glc, true, false);
		}

		if (ac_get_type_size(type) == 2) {
			value[i] = LLVMBuildBitCast(ctx->ac.builder, value[i], ctx->ac.i32, "");
			value[i] = LLVMBuildTrunc(ctx->ac.builder, value[i], ctx->ac.i16, "");
		}
		value[i] = LLVMBuildBitCast(ctx->ac.builder, value[i], type, "");
	}
	result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
	result = ac_to_integer(&ctx->ac, result);
	return result;
}


static void radv_emit_kill(struct ac_shader_abi *abi, LLVMValueRef visible)
{
	struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
	ac_build_kill_if_false(&ctx->ac, visible);
}

static uint32_t
radv_get_sample_pos_offset(uint32_t num_samples)
{
	uint32_t sample_pos_offset = 0;

	switch (num_samples) {
	case 2:
		sample_pos_offset = 1;
		break;
	case 4:
		sample_pos_offset = 3;
		break;
	case 8:
		sample_pos_offset = 7;
		break;
	default:
		break;
	}
	return sample_pos_offset;
}

static LLVMValueRef load_sample_position(struct ac_shader_abi *abi,
					 LLVMValueRef sample_id)
{
	struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);

	LLVMValueRef result;
	LLVMValueRef index = LLVMConstInt(ctx->ac.i32, RING_PS_SAMPLE_POSITIONS, false);
	LLVMValueRef ptr = LLVMBuildGEP(ctx->ac.builder, ctx->ring_offsets, &index, 1, "");

	ptr = LLVMBuildBitCast(ctx->ac.builder, ptr,
			       ac_array_in_const_addr_space(ctx->ac.v2f32), "");

	uint32_t sample_pos_offset =
		radv_get_sample_pos_offset(ctx->options->key.fs.num_samples);

	sample_id =
		LLVMBuildAdd(ctx->ac.builder, sample_id,
			     LLVMConstInt(ctx->ac.i32, sample_pos_offset, false), "");
	result = ac_build_load_invariant(&ctx->ac, ptr, sample_id);

	return result;
}


static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
{
	struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
	uint8_t log2_ps_iter_samples;

	if (ctx->shader_info->ps.force_persample) {
		log2_ps_iter_samples =
			util_logbase2(ctx->options->key.fs.num_samples);
	} else {
		log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
	}

	/* The bit pattern matches that used by fixed function fragment
	 * processing. */
	static const uint16_t ps_iter_masks[] = {
		0xffff, /* not used */
		0x5555,
		0x1111,
		0x0101,
		0x0001,
	};
	assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));

	uint32_t ps_iter_mask = ps_iter_masks[log2_ps_iter_samples];

	LLVMValueRef result, sample_id;
	sample_id = ac_unpack_param(&ctx->ac, abi->ancillary, 8, 4);
	sample_id = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, ps_iter_mask, false), sample_id, "");
	result = LLVMBuildAnd(ctx->ac.builder, sample_id, abi->sample_coverage, "");
	return result;
}


static void gfx10_ngg_gs_emit_vertex(struct radv_shader_context *ctx,
				     unsigned stream,
				     LLVMValueRef *addrs);

static void
visit_emit_vertex(struct ac_shader_abi *abi, unsigned stream, LLVMValueRef *addrs)
{
	LLVMValueRef gs_next_vertex;
	LLVMValueRef can_emit;
	unsigned offset = 0;
	struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);

	if (ctx->options->key.vs_common_out.as_ngg) {
		gfx10_ngg_gs_emit_vertex(ctx, stream, addrs);
		return;
	}

	/* Write vertex attribute values to GSVS ring */
	gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
				       ctx->gs_next_vertex[stream],
				       "");

	/* If this thread has already emitted the declared maximum number of
	 * vertices, kill it: excessive vertex emissions are not supposed to
	 * have any effect, and GS threads have no externally observable
	 * effects other than emitting vertices.
	 */
	can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
				 LLVMConstInt(ctx->ac.i32, ctx->shader->info.gs.vertices_out, false), "");
	ac_build_kill_if_false(&ctx->ac, can_emit);

	for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
		unsigned output_usage_mask =
			ctx->shader_info->gs.output_usage_mask[i];
		uint8_t output_stream =
			ctx->shader_info->gs.output_streams[i];
		LLVMValueRef *out_ptr = &addrs[i * 4];
		int length = util_last_bit(output_usage_mask);

		if (!(ctx->output_mask & (1ull << i)) ||
		    output_stream != stream)
			continue;

		for (unsigned j = 0; j < length; j++) {
			if (!(output_usage_mask & (1 << j)))
				continue;

			LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder,
							     out_ptr[j], "");
			LLVMValueRef voffset =
				LLVMConstInt(ctx->ac.i32, offset *
					     ctx->shader->info.gs.vertices_out, false);

			offset++;

			voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
			voffset = LLVMBuildMul(ctx->ac.builder, voffset, LLVMConstInt(ctx->ac.i32, 4, false), "");

			out_val = ac_to_integer(&ctx->ac, out_val);
			out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");

			ac_build_buffer_store_dword(&ctx->ac,
						    ctx->gsvs_ring[stream],
						    out_val, 1,
						    voffset, ctx->gs2vs_offset, 0,
						    ac_glc | ac_slc, true);
		}
	}

	gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex,
				      ctx->ac.i32_1, "");
	LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);

	ac_build_sendmsg(&ctx->ac,
			 AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
			 ctx->gs_wave_id);
}

static void
visit_end_primitive(struct ac_shader_abi *abi, unsigned stream)
{
	struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);

	if (ctx->options->key.vs_common_out.as_ngg) {
		LLVMBuildStore(ctx->ac.builder, ctx->ac.i32_0, ctx->gs_curprim_verts[stream]);
		return;
	}

	ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8), ctx->gs_wave_id);
}

static LLVMValueRef
load_tess_coord(struct ac_shader_abi *abi)
{
	struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);

	LLVMValueRef coord[4] = {
		ctx->tes_u,
		ctx->tes_v,
		ctx->ac.f32_0,
		ctx->ac.f32_0,
	};

	if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES)
		coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
					LLVMBuildFAdd(ctx->ac.builder, coord[0], coord[1], ""), "");

	return ac_build_gather_values(&ctx->ac, coord, 3);
}

static LLVMValueRef
load_patch_vertices_in(struct ac_shader_abi *abi)
{
	struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
	return LLVMConstInt(ctx->ac.i32, ctx->options->key.tcs.input_vertices, false);
}


static LLVMValueRef radv_load_base_vertex(struct ac_shader_abi *abi)
{
	return abi->base_vertex;
}

static LLVMValueRef radv_load_ssbo(struct ac_shader_abi *abi,
				   LLVMValueRef buffer_ptr, bool write)
{
	struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
	LLVMValueRef result;

	LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);

	result = LLVMBuildLoad(ctx->ac.builder, buffer_ptr, "");
	LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);

	return result;
}

static LLVMValueRef radv_load_ubo(struct ac_shader_abi *abi, LLVMValueRef buffer_ptr)
{
	struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
	LLVMValueRef result;

	if (LLVMGetTypeKind(LLVMTypeOf(buffer_ptr)) != LLVMPointerTypeKind) {
		/* Do not load the descriptor for inlined uniform blocks. */
		return buffer_ptr;
	}

	LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);

	result = LLVMBuildLoad(ctx->ac.builder, buffer_ptr, "");
	LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);

	return result;
}

static LLVMValueRef radv_get_sampler_desc(struct ac_shader_abi *abi,
					  unsigned descriptor_set,
					  unsigned base_index,
					  unsigned constant_index,
					  LLVMValueRef index,
					  enum ac_descriptor_type desc_type,
					  bool image, bool write,
					  bool bindless)
{
	struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
	LLVMValueRef list = ctx->descriptor_sets[descriptor_set];
	struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
	struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
	unsigned offset = binding->offset;
	unsigned stride = binding->size;
	unsigned type_size;
	LLVMBuilderRef builder = ctx->ac.builder;
	LLVMTypeRef type;

	assert(base_index < layout->binding_count);

	switch (desc_type) {
	case AC_DESC_IMAGE:
		type = ctx->ac.v8i32;
		type_size = 32;
		break;
	case AC_DESC_FMASK:
		type = ctx->ac.v8i32;
		offset += 32;
		type_size = 32;
		break;
	case AC_DESC_SAMPLER:
		type = ctx->ac.v4i32;
		if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) {
			offset += radv_combined_image_descriptor_sampler_offset(binding);
		}

		type_size = 16;
		break;
	case AC_DESC_BUFFER:
		type = ctx->ac.v4i32;
		type_size = 16;
		break;
	case AC_DESC_PLANE_0:
	case AC_DESC_PLANE_1:
	case AC_DESC_PLANE_2:
		type = ctx->ac.v8i32;
		type_size = 32;
		offset += 32 * (desc_type - AC_DESC_PLANE_0);
		break;
	default:
		unreachable("invalid desc_type\n");
	}

	offset += constant_index * stride;

	if (desc_type == AC_DESC_SAMPLER && binding->immutable_samplers_offset &&
	    (!index || binding->immutable_samplers_equal)) {
		if (binding->immutable_samplers_equal)
			constant_index = 0;

		const uint32_t *samplers = radv_immutable_samplers(layout, binding);

		LLVMValueRef constants[] = {
			LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 0], 0),
			LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 1], 0),
			LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 2], 0),
			LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 3], 0),
		};
		return ac_build_gather_values(&ctx->ac, constants, 4);
	}

	assert(stride % type_size == 0);

	LLVMValueRef adjusted_index = index;
	if (!adjusted_index)
		adjusted_index = ctx->ac.i32_0;

	adjusted_index = LLVMBuildMul(builder, adjusted_index, LLVMConstInt(ctx->ac.i32, stride / type_size, 0), "");

	LLVMValueRef val_offset = LLVMConstInt(ctx->ac.i32, offset, 0);
	list = LLVMBuildGEP(builder, list, &val_offset, 1, "");
	list = LLVMBuildPointerCast(builder, list,
				    ac_array_in_const32_addr_space(type), "");

	LLVMValueRef descriptor = ac_build_load_to_sgpr(&ctx->ac, list, adjusted_index);

	/* 3 plane formats always have same size and format for plane 1 & 2, so
	 * use the tail from plane 1 so that we can store only the first 16 bytes
	 * of the last plane. */
	if (desc_type == AC_DESC_PLANE_2) {
		LLVMValueRef descriptor2 = radv_get_sampler_desc(abi, descriptor_set, base_index, constant_index, index, AC_DESC_PLANE_1,image, write, bindless);

		LLVMValueRef components[8];
		for (unsigned i = 0; i < 4; ++i)
			components[i] = ac_llvm_extract_elem(&ctx->ac, descriptor, i);

		for (unsigned i = 4; i < 8; ++i)
			components[i] = ac_llvm_extract_elem(&ctx->ac, descriptor2, i);
		descriptor = ac_build_gather_values(&ctx->ac, components, 8);
	}

	return descriptor;
}

/* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
 * so we may need to fix it up. */
static LLVMValueRef
adjust_vertex_fetch_alpha(struct radv_shader_context *ctx,
                          unsigned adjustment,
                          LLVMValueRef alpha)
{
	if (adjustment == RADV_ALPHA_ADJUST_NONE)
		return alpha;

	LLVMValueRef c30 = LLVMConstInt(ctx->ac.i32, 30, 0);

	alpha = LLVMBuildBitCast(ctx->ac.builder, alpha, ctx->ac.f32, "");

	if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
		alpha = LLVMBuildFPToUI(ctx->ac.builder, alpha, ctx->ac.i32, "");
	else
		alpha = ac_to_integer(&ctx->ac, alpha);

	/* For the integer-like cases, do a natural sign extension.
	 *
	 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
	 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
	 * exponent.
	 */
	alpha = LLVMBuildShl(ctx->ac.builder, alpha,
	                     adjustment == RADV_ALPHA_ADJUST_SNORM ?
	                     LLVMConstInt(ctx->ac.i32, 7, 0) : c30, "");
	alpha = LLVMBuildAShr(ctx->ac.builder, alpha, c30, "");

	/* Convert back to the right type. */
	if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
		LLVMValueRef clamp;
		LLVMValueRef neg_one = LLVMConstReal(ctx->ac.f32, -1.0);
		alpha = LLVMBuildSIToFP(ctx->ac.builder, alpha, ctx->ac.f32, "");
		clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, alpha, neg_one, "");
		alpha = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, alpha, "");
	} else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
		alpha = LLVMBuildSIToFP(ctx->ac.builder, alpha, ctx->ac.f32, "");
	}

	return LLVMBuildBitCast(ctx->ac.builder, alpha, ctx->ac.i32, "");
}

static unsigned
get_num_channels_from_data_format(unsigned data_format)
{
	switch (data_format) {
	case V_008F0C_BUF_DATA_FORMAT_8:
	case V_008F0C_BUF_DATA_FORMAT_16:
	case V_008F0C_BUF_DATA_FORMAT_32:
		return 1;
	case V_008F0C_BUF_DATA_FORMAT_8_8:
	case V_008F0C_BUF_DATA_FORMAT_16_16:
	case V_008F0C_BUF_DATA_FORMAT_32_32:
		return 2;
	case V_008F0C_BUF_DATA_FORMAT_10_11_11:
	case V_008F0C_BUF_DATA_FORMAT_11_11_10:
	case V_008F0C_BUF_DATA_FORMAT_32_32_32:
		return 3;
	case V_008F0C_BUF_DATA_FORMAT_8_8_8_8:
	case V_008F0C_BUF_DATA_FORMAT_10_10_10_2:
	case V_008F0C_BUF_DATA_FORMAT_2_10_10_10:
	case V_008F0C_BUF_DATA_FORMAT_16_16_16_16:
	case V_008F0C_BUF_DATA_FORMAT_32_32_32_32:
		return 4;
	default:
		break;
	}

	return 4;
}

static LLVMValueRef
radv_fixup_vertex_input_fetches(struct radv_shader_context *ctx,
				LLVMValueRef value,
				unsigned num_channels,
				bool is_float)
{
	LLVMValueRef zero = is_float ? ctx->ac.f32_0 : ctx->ac.i32_0;
	LLVMValueRef one = is_float ? ctx->ac.f32_1 : ctx->ac.i32_1;
	LLVMValueRef chan[4];

	if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMVectorTypeKind) {
		unsigned vec_size = LLVMGetVectorSize(LLVMTypeOf(value));

		if (num_channels == 4 && num_channels == vec_size)
			return value;

		num_channels = MIN2(num_channels, vec_size);

		for (unsigned i = 0; i < num_channels; i++)
			chan[i] = ac_llvm_extract_elem(&ctx->ac, value, i);
	} else {
		if (num_channels) {
			assert(num_channels == 1);
			chan[0] = value;
		}
	}

	for (unsigned i = num_channels; i < 4; i++) {
		chan[i] = i == 3 ? one : zero;
		chan[i] = ac_to_integer(&ctx->ac, chan[i]);
	}

	return ac_build_gather_values(&ctx->ac, chan, 4);
}

static void
handle_vs_input_decl(struct radv_shader_context *ctx,
		     struct nir_variable *variable)
{
	LLVMValueRef t_list_ptr = ctx->vertex_buffers;
	LLVMValueRef t_offset;
	LLVMValueRef t_list;
	LLVMValueRef input;
	LLVMValueRef buffer_index;
	unsigned attrib_count = glsl_count_attribute_slots(variable->type, true);
	uint8_t input_usage_mask =
		ctx->shader_info->vs.input_usage_mask[variable->data.location];
	unsigned num_input_channels = util_last_bit(input_usage_mask);

	variable->data.driver_location = variable->data.location * 4;

	enum glsl_base_type type = glsl_get_base_type(variable->type);
	for (unsigned i = 0; i < attrib_count; ++i) {
		LLVMValueRef output[4];
		unsigned attrib_index = variable->data.location + i - VERT_ATTRIB_GENERIC0;
		unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[attrib_index];
		unsigned data_format = attrib_format & 0x0f;
		unsigned num_format = (attrib_format >> 4) & 0x07;
		bool is_float = num_format != V_008F0C_BUF_NUM_FORMAT_UINT &&
		                num_format != V_008F0C_BUF_NUM_FORMAT_SINT;

		if (ctx->options->key.vs.instance_rate_inputs & (1u << attrib_index)) {
			uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[attrib_index];

			if (divisor) {
				buffer_index = ctx->abi.instance_id;

				if (divisor != 1) {
					buffer_index = LLVMBuildUDiv(ctx->ac.builder, buffer_index,
					                             LLVMConstInt(ctx->ac.i32, divisor, 0), "");
				}
			} else {
				buffer_index = ctx->ac.i32_0;
			}

			buffer_index = LLVMBuildAdd(ctx->ac.builder, ctx->abi.start_instance, buffer_index, "");
		} else
			buffer_index = LLVMBuildAdd(ctx->ac.builder, ctx->abi.vertex_id,
			                            ctx->abi.base_vertex, "");

		/* Adjust the number of channels to load based on the vertex
		 * attribute format.
		 */
		unsigned num_format_channels = get_num_channels_from_data_format(data_format);
		unsigned num_channels = MIN2(num_input_channels, num_format_channels);
		unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[attrib_index];
		unsigned attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[attrib_index];
		unsigned attrib_stride = ctx->options->key.vs.vertex_attribute_strides[attrib_index];

		if (ctx->options->key.vs.post_shuffle & (1 << attrib_index)) {
			/* Always load, at least, 3 channels for formats that
			 * need to be shuffled because X<->Z.
			 */
			num_channels = MAX2(num_channels, 3);
		}

		if (attrib_stride != 0 && attrib_offset > attrib_stride) {
			LLVMValueRef buffer_offset =
				LLVMConstInt(ctx->ac.i32,
					     attrib_offset / attrib_stride, false);

			buffer_index = LLVMBuildAdd(ctx->ac.builder,
						    buffer_index,
						    buffer_offset, "");

			attrib_offset = attrib_offset % attrib_stride;
		}

		t_offset = LLVMConstInt(ctx->ac.i32, attrib_binding, false);
		t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);

		input = ac_build_struct_tbuffer_load(&ctx->ac, t_list,
						     buffer_index,
						     LLVMConstInt(ctx->ac.i32, attrib_offset, false),
						     ctx->ac.i32_0, ctx->ac.i32_0,
						     num_channels,
						     data_format, num_format, 0, true);

		if (ctx->options->key.vs.post_shuffle & (1 << attrib_index)) {
			LLVMValueRef c[4];
			c[0] = ac_llvm_extract_elem(&ctx->ac, input, 2);
			c[1] = ac_llvm_extract_elem(&ctx->ac, input, 1);
			c[2] = ac_llvm_extract_elem(&ctx->ac, input, 0);
			c[3] = ac_llvm_extract_elem(&ctx->ac, input, 3);

			input = ac_build_gather_values(&ctx->ac, c, 4);
		}

		input = radv_fixup_vertex_input_fetches(ctx, input, num_channels,
							is_float);

		for (unsigned chan = 0; chan < 4; chan++) {
			LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
			output[chan] = LLVMBuildExtractElement(ctx->ac.builder, input, llvm_chan, "");
			if (type == GLSL_TYPE_FLOAT16) {
				output[chan] = LLVMBuildBitCast(ctx->ac.builder, output[chan], ctx->ac.f32, "");
				output[chan] = LLVMBuildFPTrunc(ctx->ac.builder, output[chan], ctx->ac.f16, "");
			}
		}

		unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (attrib_index * 2)) & 3;
		output[3] = adjust_vertex_fetch_alpha(ctx, alpha_adjust, output[3]);

		for (unsigned chan = 0; chan < 4; chan++) {
			output[chan] = ac_to_integer(&ctx->ac, output[chan]);
			if (type == GLSL_TYPE_UINT16 || type == GLSL_TYPE_INT16)
				output[chan] = LLVMBuildTrunc(ctx->ac.builder, output[chan], ctx->ac.i16, "");

			ctx->inputs[ac_llvm_reg_index_soa(variable->data.location + i, chan)] = output[chan];
		}
	}
}

static void
handle_vs_inputs(struct radv_shader_context *ctx,
                 struct nir_shader *nir) {
	nir_foreach_variable(variable, &nir->inputs)
		handle_vs_input_decl(ctx, variable);
}

static void
prepare_interp_optimize(struct radv_shader_context *ctx,
                        struct nir_shader *nir)
{
	bool uses_center = false;
	bool uses_centroid = false;
	nir_foreach_variable(variable, &nir->inputs) {
		if (glsl_get_base_type(glsl_without_array(variable->type)) != GLSL_TYPE_FLOAT ||
		    variable->data.sample)
			continue;

		if (variable->data.centroid)
			uses_centroid = true;
		else
			uses_center = true;
	}

	if (uses_center && uses_centroid) {
		LLVMValueRef sel = LLVMBuildICmp(ctx->ac.builder, LLVMIntSLT, ctx->abi.prim_mask, ctx->ac.i32_0, "");
		ctx->abi.persp_centroid = LLVMBuildSelect(ctx->ac.builder, sel, ctx->abi.persp_center, ctx->abi.persp_centroid, "");
		ctx->abi.linear_centroid = LLVMBuildSelect(ctx->ac.builder, sel, ctx->abi.linear_center, ctx->abi.linear_centroid, "");
	}
}

static void
scan_shader_output_decl(struct radv_shader_context *ctx,
			struct nir_variable *variable,
			struct nir_shader *shader,
			gl_shader_stage stage)
{
	int idx = variable->data.location + variable->data.index;
	unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
	uint64_t mask_attribs;

	variable->data.driver_location = idx * 4;

	/* tess ctrl has it's own load/store paths for outputs */
	if (stage == MESA_SHADER_TESS_CTRL)
		return;

	if (variable->data.compact) {
		unsigned component_count = variable->data.location_frac +
		                           glsl_get_length(variable->type);
		attrib_count = (component_count + 3) / 4;
	}

	mask_attribs = ((1ull << attrib_count) - 1) << idx;

	ctx->output_mask |= mask_attribs;
}


/* Initialize arguments for the shader export intrinsic */
static void
si_llvm_init_export_args(struct radv_shader_context *ctx,
			 LLVMValueRef *values,
			 unsigned enabled_channels,
			 unsigned target,
			 struct ac_export_args *args)
{
	/* Specify the channels that are enabled. */
	args->enabled_channels = enabled_channels;

	/* Specify whether the EXEC mask represents the valid mask */
	args->valid_mask = 0;

	/* Specify whether this is the last export */
	args->done = 0;

	/* Specify the target we are exporting */
	args->target = target;

	args->compr = false;
	args->out[0] = LLVMGetUndef(ctx->ac.f32);
	args->out[1] = LLVMGetUndef(ctx->ac.f32);
	args->out[2] = LLVMGetUndef(ctx->ac.f32);
	args->out[3] = LLVMGetUndef(ctx->ac.f32);

	if (!values)
		return;

	bool is_16bit = ac_get_type_size(LLVMTypeOf(values[0])) == 2;
	if (ctx->stage == MESA_SHADER_FRAGMENT) {
		unsigned index = target - V_008DFC_SQ_EXP_MRT;
		unsigned col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf;
		bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1;
		bool is_int10 = (ctx->options->key.fs.is_int10 >> index) & 1;
		unsigned chan;

		LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
		LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
				      unsigned bits, bool hi) = NULL;

		switch(col_format) {
		case V_028714_SPI_SHADER_ZERO:
			args->enabled_channels = 0; /* writemask */
			args->target = V_008DFC_SQ_EXP_NULL;
			break;

		case V_028714_SPI_SHADER_32_R:
			args->enabled_channels = 1;
			args->out[0] = values[0];
			break;

		case V_028714_SPI_SHADER_32_GR:
			args->enabled_channels = 0x3;
			args->out[0] = values[0];
			args->out[1] = values[1];
			break;

		case V_028714_SPI_SHADER_32_AR:
			if (ctx->ac.chip_class >= GFX10) {
				args->enabled_channels = 0x3;
				args->out[0] = values[0];
				args->out[1] = values[3];
			} else {
				args->enabled_channels = 0x9;
				args->out[0] = values[0];
				args->out[3] = values[3];
			}
			break;

		case V_028714_SPI_SHADER_FP16_ABGR:
			args->enabled_channels = 0x5;
			packf = ac_build_cvt_pkrtz_f16;
			if (is_16bit) {
				for (unsigned chan = 0; chan < 4; chan++)
					values[chan] = LLVMBuildFPExt(ctx->ac.builder,
								      values[chan],
								      ctx->ac.f32, "");
			}
			break;

		case V_028714_SPI_SHADER_UNORM16_ABGR:
			args->enabled_channels = 0x5;
			packf = ac_build_cvt_pknorm_u16;
			break;

		case V_028714_SPI_SHADER_SNORM16_ABGR:
			args->enabled_channels = 0x5;
			packf = ac_build_cvt_pknorm_i16;
			break;

		case V_028714_SPI_SHADER_UINT16_ABGR:
			args->enabled_channels = 0x5;
			packi = ac_build_cvt_pk_u16;
			if (is_16bit) {
				for (unsigned chan = 0; chan < 4; chan++)
					values[chan] = LLVMBuildZExt(ctx->ac.builder,
								      ac_to_integer(&ctx->ac, values[chan]),
								      ctx->ac.i32, "");
			}
			break;

		case V_028714_SPI_SHADER_SINT16_ABGR:
			args->enabled_channels = 0x5;
			packi = ac_build_cvt_pk_i16;
			if (is_16bit) {
				for (unsigned chan = 0; chan < 4; chan++)
					values[chan] = LLVMBuildSExt(ctx->ac.builder,
								      ac_to_integer(&ctx->ac, values[chan]),
								      ctx->ac.i32, "");
			}
			break;

		default:
		case V_028714_SPI_SHADER_32_ABGR:
			memcpy(&args->out[0], values, sizeof(values[0]) * 4);
			break;
		}

		/* Pack f16 or norm_i16/u16. */
		if (packf) {
			for (chan = 0; chan < 2; chan++) {
				LLVMValueRef pack_args[2] = {
					values[2 * chan],
					values[2 * chan + 1]
				};
				LLVMValueRef packed;

				packed = packf(&ctx->ac, pack_args);
				args->out[chan] = ac_to_float(&ctx->ac, packed);
			}
			args->compr = 1; /* COMPR flag */
		}

		/* Pack i16/u16. */
		if (packi) {
			for (chan = 0; chan < 2; chan++) {
				LLVMValueRef pack_args[2] = {
					ac_to_integer(&ctx->ac, values[2 * chan]),
					ac_to_integer(&ctx->ac, values[2 * chan + 1])
				};
				LLVMValueRef packed;

				packed = packi(&ctx->ac, pack_args,
					       is_int8 ? 8 : is_int10 ? 10 : 16,
					       chan == 1);
				args->out[chan] = ac_to_float(&ctx->ac, packed);
			}
			args->compr = 1; /* COMPR flag */
		}
		return;
	}

	if (is_16bit) {
		for (unsigned chan = 0; chan < 4; chan++) {
			values[chan] = LLVMBuildBitCast(ctx->ac.builder, values[chan], ctx->ac.i16, "");
			args->out[chan] = LLVMBuildZExt(ctx->ac.builder, values[chan], ctx->ac.i32, "");
		}
	} else
		memcpy(&args->out[0], values, sizeof(values[0]) * 4);

	for (unsigned i = 0; i < 4; ++i)
		args->out[i] = ac_to_float(&ctx->ac, args->out[i]);
}

static void
radv_export_param(struct radv_shader_context *ctx, unsigned index,
		  LLVMValueRef *values, unsigned enabled_channels)
{
	struct ac_export_args args;

	si_llvm_init_export_args(ctx, values, enabled_channels,
				 V_008DFC_SQ_EXP_PARAM + index, &args);
	ac_build_export(&ctx->ac, &args);
}

static LLVMValueRef
radv_load_output(struct radv_shader_context *ctx, unsigned index, unsigned chan)
{
	LLVMValueRef output = ctx->abi.outputs[ac_llvm_reg_index_soa(index, chan)];
	return LLVMBuildLoad(ctx->ac.builder, output, "");
}

static void
radv_emit_stream_output(struct radv_shader_context *ctx,
			 LLVMValueRef const *so_buffers,
			 LLVMValueRef const *so_write_offsets,
			 const struct radv_stream_output *output,
			 struct radv_shader_output_values *shader_out)
{
	unsigned num_comps = util_bitcount(output->component_mask);
	unsigned buf = output->buffer;
	unsigned offset = output->offset;
	unsigned start;
	LLVMValueRef out[4];

	assert(num_comps && num_comps <= 4);
	if (!num_comps || num_comps > 4)
		return;

	/* Get the first component. */
	start = ffs(output->component_mask) - 1;

	/* Load the output as int. */
	for (int i = 0; i < num_comps; i++) {
		out[i] = ac_to_integer(&ctx->ac, shader_out->values[start + i]);
	}

	/* Pack the output. */
	LLVMValueRef vdata = NULL;

	switch (num_comps) {
	case 1: /* as i32 */
		vdata = out[0];
		break;
	case 2: /* as v2i32 */
	case 3: /* as v4i32 (aligned to 4) */
		out[3] = LLVMGetUndef(ctx->ac.i32);
		/* fall through */
	case 4: /* as v4i32 */
		vdata = ac_build_gather_values(&ctx->ac, out,
					       !ac_has_vec3_support(ctx->ac.chip_class, false) ?
					       util_next_power_of_two(num_comps) :
					       num_comps);
		break;
	}

	ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf],
				    vdata, num_comps, so_write_offsets[buf],
				    ctx->ac.i32_0, offset,
				    ac_glc | ac_slc, false);
}

static void
radv_emit_streamout(struct radv_shader_context *ctx, unsigned stream)
{
	int i;

	/* Get bits [22:16], i.e. (so_param >> 16) & 127; */
	assert(ctx->streamout_config);
	LLVMValueRef so_vtx_count =
		ac_build_bfe(&ctx->ac, ctx->streamout_config,
			     LLVMConstInt(ctx->ac.i32, 16, false),
			     LLVMConstInt(ctx->ac.i32, 7, false), false);

	LLVMValueRef tid = ac_get_thread_id(&ctx->ac);

	/* can_emit = tid < so_vtx_count; */
	LLVMValueRef can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
					      tid, so_vtx_count, "");

	/* Emit the streamout code conditionally. This actually avoids
	 * out-of-bounds buffer access. The hw tells us via the SGPR
	 * (so_vtx_count) which threads are allowed to emit streamout data.
	 */
	ac_build_ifcc(&ctx->ac, can_emit, 6501);
	{
		/* The buffer offset is computed as follows:
		 *   ByteOffset = streamout_offset[buffer_id]*4 +
		 *                (streamout_write_index + thread_id)*stride[buffer_id] +
		 *                attrib_offset
		 */
		LLVMValueRef so_write_index = ctx->streamout_write_idx;

		/* Compute (streamout_write_index + thread_id). */
		so_write_index =
			LLVMBuildAdd(ctx->ac.builder, so_write_index, tid, "");

		/* Load the descriptor and compute the write offset for each
		 * enabled buffer.
		 */
		LLVMValueRef so_write_offset[4] = {};
		LLVMValueRef so_buffers[4] = {};
		LLVMValueRef buf_ptr = ctx->streamout_buffers;

		for (i = 0; i < 4; i++) {
			uint16_t stride = ctx->shader_info->so.strides[i];

			if (!stride)
				continue;

			LLVMValueRef offset =
				LLVMConstInt(ctx->ac.i32, i, false);

			so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac,
							      buf_ptr, offset);

			LLVMValueRef so_offset = ctx->streamout_offset[i];

			so_offset = LLVMBuildMul(ctx->ac.builder, so_offset,
						 LLVMConstInt(ctx->ac.i32, 4, false), "");

			so_write_offset[i] =
				ac_build_imad(&ctx->ac, so_write_index,
					      LLVMConstInt(ctx->ac.i32,
							   stride * 4, false),
					      so_offset);
		}

		/* Write streamout data. */
		for (i = 0; i < ctx->shader_info->so.num_outputs; i++) {
			struct radv_shader_output_values shader_out = {};
			struct radv_stream_output *output =
				&ctx->shader_info->so.outputs[i];

			if (stream != output->stream)
				continue;

			for (int j = 0; j < 4; j++) {
				shader_out.values[j] =
					radv_load_output(ctx, output->location, j);
			}

			radv_emit_stream_output(ctx, so_buffers,so_write_offset,
						output, &shader_out);
		}
	}
	ac_build_endif(&ctx->ac, 6501);
}

static void
radv_build_param_exports(struct radv_shader_context *ctx,
			 struct radv_shader_output_values *outputs,
			 unsigned noutput,
			 struct radv_vs_output_info *outinfo,
			 bool export_clip_dists)
{
	unsigned param_count = 0;

	for (unsigned i = 0; i < noutput; i++) {
		unsigned slot_name = outputs[i].slot_name;
		unsigned usage_mask = outputs[i].usage_mask;

		if (slot_name != VARYING_SLOT_LAYER &&
		    slot_name != VARYING_SLOT_PRIMITIVE_ID &&
		    slot_name != VARYING_SLOT_CLIP_DIST0 &&
		    slot_name != VARYING_SLOT_CLIP_DIST1 &&
		    slot_name < VARYING_SLOT_VAR0)
			continue;

		if ((slot_name == VARYING_SLOT_CLIP_DIST0 ||
		     slot_name == VARYING_SLOT_CLIP_DIST1) && !export_clip_dists)
			continue;

		radv_export_param(ctx, param_count, outputs[i].values, usage_mask);

		assert(i < ARRAY_SIZE(outinfo->vs_output_param_offset));
		outinfo->vs_output_param_offset[slot_name] = param_count++;
        }

	outinfo->param_exports = param_count;
}

/* Generate export instructions for hardware VS shader stage or NGG GS stage
 * (position and parameter data only).
 */
static void
radv_llvm_export_vs(struct radv_shader_context *ctx,
                    struct radv_shader_output_values *outputs,
                    unsigned noutput,
                    struct radv_vs_output_info *outinfo,
		    bool export_clip_dists)
{
	LLVMValueRef psize_value = NULL, layer_value = NULL, viewport_value = NULL;
	struct ac_export_args pos_args[4] = {};
	unsigned pos_idx, index;
	int i;

	/* Build position exports */
	for (i = 0; i < noutput; i++) {
		switch (outputs[i].slot_name) {
		case VARYING_SLOT_POS:
			si_llvm_init_export_args(ctx, outputs[i].values, 0xf,
						 V_008DFC_SQ_EXP_POS, &pos_args[0]);
			break;
		case VARYING_SLOT_PSIZ:
			psize_value = outputs[i].values[0];
			break;
		case VARYING_SLOT_LAYER:
			layer_value = outputs[i].values[0];
			break;
		case VARYING_SLOT_VIEWPORT:
			viewport_value = outputs[i].values[0];
			break;
		case VARYING_SLOT_CLIP_DIST0:
		case VARYING_SLOT_CLIP_DIST1:
			index = 2 + outputs[i].slot_index;
			si_llvm_init_export_args(ctx, outputs[i].values, 0xf,
						 V_008DFC_SQ_EXP_POS + index,
						 &pos_args[index]);
			break;
		default:
			break;
		}
	}

	/* We need to add the position output manually if it's missing. */
	if (!pos_args[0].out[0]) {
		pos_args[0].enabled_channels = 0xf; /* writemask */
		pos_args[0].valid_mask = 0; /* EXEC mask */
		pos_args[0].done = 0; /* last export? */
		pos_args[0].target = V_008DFC_SQ_EXP_POS;
		pos_args[0].compr = 0; /* COMPR flag */
		pos_args[0].out[0] = ctx->ac.f32_0; /* X */
		pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
		pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
		pos_args[0].out[3] = ctx->ac.f32_1;  /* W */
	}

	if (outinfo->writes_pointsize ||
	    outinfo->writes_layer ||
	    outinfo->writes_viewport_index) {
		pos_args[1].enabled_channels = ((outinfo->writes_pointsize == true ? 1 : 0) |
						(outinfo->writes_layer == true ? 4 : 0));
		pos_args[1].valid_mask = 0;
		pos_args[1].done = 0;
		pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
		pos_args[1].compr = 0;
		pos_args[1].out[0] = ctx->ac.f32_0; /* X */
		pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
		pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
		pos_args[1].out[3] = ctx->ac.f32_0;  /* W */

		if (outinfo->writes_pointsize == true)
			pos_args[1].out[0] = psize_value;
		if (outinfo->writes_layer == true)
			pos_args[1].out[2] = layer_value;
		if (outinfo->writes_viewport_index == true) {
			if (ctx->options->chip_class >= GFX9) {
				/* GFX9 has the layer in out.z[10:0] and the viewport
				 * index in out.z[19:16].
				 */
				LLVMValueRef v = viewport_value;
				v = ac_to_integer(&ctx->ac, v);
				v = LLVMBuildShl(ctx->ac.builder, v,
						 LLVMConstInt(ctx->ac.i32, 16, false),
						 "");
				v = LLVMBuildOr(ctx->ac.builder, v,
						ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");

				pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
				pos_args[1].enabled_channels |= 1 << 2;
			} else {
				pos_args[1].out[3] = viewport_value;
				pos_args[1].enabled_channels |= 1 << 3;
			}
		}
	}

	for (i = 0; i < 4; i++) {
		if (pos_args[i].out[0])
			outinfo->pos_exports++;
	}

	/* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
	 * Setting valid_mask=1 prevents it and has no other effect.
	 */
	if (ctx->ac.family == CHIP_NAVI10 ||
	    ctx->ac.family == CHIP_NAVI12 ||
	    ctx->ac.family == CHIP_NAVI14)
		pos_args[0].valid_mask = 1;

	pos_idx = 0;
	for (i = 0; i < 4; i++) {
		if (!pos_args[i].out[0])
			continue;

		/* Specify the target we are exporting */
		pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;

		if (pos_idx == outinfo->pos_exports)
			/* Specify that this is the last export */
			pos_args[i].done = 1;

		ac_build_export(&ctx->ac, &pos_args[i]);
	}

	/* Build parameter exports */
	radv_build_param_exports(ctx, outputs, noutput, outinfo, export_clip_dists);
}

static void
handle_vs_outputs_post(struct radv_shader_context *ctx,
		       bool export_prim_id,
		       bool export_clip_dists,
		       struct radv_vs_output_info *outinfo)
{
	struct radv_shader_output_values *outputs;
	unsigned noutput = 0;

	if (ctx->options->key.has_multiview_view_index) {
		LLVMValueRef* tmp_out = &ctx->abi.outputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
		if(!*tmp_out) {
			for(unsigned i = 0; i < 4; ++i)
				ctx->abi.outputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, i)] =
				            ac_build_alloca_undef(&ctx->ac, ctx->ac.f32, "");
		}

		LLVMBuildStore(ctx->ac.builder, ac_to_float(&ctx->ac, ctx->abi.view_index),  *tmp_out);
		ctx->output_mask |= 1ull << VARYING_SLOT_LAYER;
	}

	memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
	       sizeof(outinfo->vs_output_param_offset));
	outinfo->pos_exports = 0;

	if (ctx->shader_info->so.num_outputs &&
	    !ctx->is_gs_copy_shader) {
		/* The GS copy shader emission already emits streamout. */
		radv_emit_streamout(ctx, 0);
	}

	/* Allocate a temporary array for the output values. */
	unsigned num_outputs = util_bitcount64(ctx->output_mask) + export_prim_id;
	outputs = malloc(num_outputs * sizeof(outputs[0]));

	for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
		if (!(ctx->output_mask & (1ull << i)))
			continue;

		outputs[noutput].slot_name = i;
		outputs[noutput].slot_index = i == VARYING_SLOT_CLIP_DIST1;

		if (ctx->stage == MESA_SHADER_VERTEX &&
		    !ctx->is_gs_copy_shader) {
			outputs[noutput].usage_mask =
				ctx->shader_info->vs.output_usage_mask[i];
		} else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
			outputs[noutput].usage_mask =
				ctx->shader_info->tes.output_usage_mask[i];
		} else {
			assert(ctx->is_gs_copy_shader);
			outputs[noutput].usage_mask =
				ctx->shader_info->gs.output_usage_mask[i];
		}

		for (unsigned j = 0; j < 4; j++) {
			outputs[noutput].values[j] =
				ac_to_float(&ctx->ac, radv_load_output(ctx, i, j));
		}

		noutput++;
	}

	/* Export PrimitiveID. */
	if (export_prim_id) {
		outputs[noutput].slot_name = VARYING_SLOT_PRIMITIVE_ID;
		outputs[noutput].slot_index = 0;
		outputs[noutput].usage_mask = 0x1;
		outputs[noutput].values[0] = ctx->vs_prim_id;
		for (unsigned j = 1; j < 4; j++)
			outputs[noutput].values[j] = ctx->ac.f32_0;
		noutput++;
	}

	radv_llvm_export_vs(ctx, outputs, noutput, outinfo, export_clip_dists);

	free(outputs);
}

static void
handle_es_outputs_post(struct radv_shader_context *ctx,
		       struct radv_es_output_info *outinfo)
{
	int j;
	LLVMValueRef lds_base = NULL;

	if (ctx->ac.chip_class  >= GFX9) {
		unsigned itemsize_dw = outinfo->esgs_itemsize / 4;
		LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
		LLVMValueRef wave_idx = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 24, 4);
		vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
					 LLVMBuildMul(ctx->ac.builder, wave_idx,
						      LLVMConstInt(ctx->ac.i32,
								   ctx->ac.wave_size, false), ""), "");
		lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
					LLVMConstInt(ctx->ac.i32, itemsize_dw, 0), "");
	}

	for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
		LLVMValueRef dw_addr = NULL;
		LLVMValueRef *out_ptr = &ctx->abi.outputs[i * 4];
		unsigned output_usage_mask;
		int param_index;

		if (!(ctx->output_mask & (1ull << i)))
			continue;

		if (ctx->stage == MESA_SHADER_VERTEX) {
			output_usage_mask =
				ctx->shader_info->vs.output_usage_mask[i];
		} else {
			assert(ctx->stage == MESA_SHADER_TESS_EVAL);
			output_usage_mask =
				ctx->shader_info->tes.output_usage_mask[i];
		}

		param_index = shader_io_get_unique_index(i);

		if (lds_base) {
			dw_addr = LLVMBuildAdd(ctx->ac.builder, lds_base,
			                       LLVMConstInt(ctx->ac.i32, param_index * 4, false),
			                       "");
		}

		for (j = 0; j < 4; j++) {
			if (!(output_usage_mask & (1 << j)))
				continue;

			LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, out_ptr[j], "");
			out_val = ac_to_integer(&ctx->ac, out_val);
			out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");

			if (ctx->ac.chip_class  >= GFX9) {
				LLVMValueRef dw_addr_offset =
					LLVMBuildAdd(ctx->ac.builder, dw_addr,
						     LLVMConstInt(ctx->ac.i32,
								  j, false), "");

				ac_lds_store(&ctx->ac, dw_addr_offset, out_val);
			} else {
				ac_build_buffer_store_dword(&ctx->ac,
				                            ctx->esgs_ring,
				                            out_val, 1,
				                            NULL, ctx->es2gs_offset,
				                            (4 * param_index + j) * 4,
				                            ac_glc | ac_slc, true);
			}
		}
	}
}

static void
handle_ls_outputs_post(struct radv_shader_context *ctx)
{
	LLVMValueRef vertex_id = ctx->rel_auto_id;
	uint32_t num_tcs_inputs = util_last_bit64(ctx->shader_info->vs.ls_outputs_written);
	LLVMValueRef vertex_dw_stride = LLVMConstInt(ctx->ac.i32, num_tcs_inputs * 4, false);
	LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
						 vertex_dw_stride, "");

	for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
		LLVMValueRef *out_ptr = &ctx->abi.outputs[i * 4];

		if (!(ctx->output_mask & (1ull << i)))
			continue;

		int param = shader_io_get_unique_index(i);
		LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
						    LLVMConstInt(ctx->ac.i32, param * 4, false),
						    "");
		for (unsigned j = 0; j < 4; j++) {
			LLVMValueRef value = LLVMBuildLoad(ctx->ac.builder, out_ptr[j], "");
			value = ac_to_integer(&ctx->ac, value);
			value = LLVMBuildZExtOrBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
			ac_lds_store(&ctx->ac, dw_addr, value);
			dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr, ctx->ac.i32_1, "");
		}
	}
}

static LLVMValueRef get_wave_id_in_tg(struct radv_shader_context *ctx)
{
	return ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 24, 4);
}

static LLVMValueRef get_tgsize(struct radv_shader_context *ctx)
{
	return ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 28, 4);
}

static LLVMValueRef get_thread_id_in_tg(struct radv_shader_context *ctx)
{
	LLVMBuilderRef builder = ctx->ac.builder;
	LLVMValueRef tmp;
	tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
			   LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false), "");
	return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), "");
}

static LLVMValueRef ngg_get_vtx_cnt(struct radv_shader_context *ctx)
{
	return ac_build_bfe(&ctx->ac, ctx->gs_tg_info,
			    LLVMConstInt(ctx->ac.i32, 12, false),
			    LLVMConstInt(ctx->ac.i32, 9, false),
			    false);
}

static LLVMValueRef ngg_get_prim_cnt(struct radv_shader_context *ctx)
{
	return ac_build_bfe(&ctx->ac, ctx->gs_tg_info,
			    LLVMConstInt(ctx->ac.i32, 22, false),
			    LLVMConstInt(ctx->ac.i32, 9, false),
			    false);
}

static LLVMValueRef
ngg_gs_get_vertex_storage(struct radv_shader_context *ctx)
{
	unsigned num_outputs = util_bitcount64(ctx->output_mask);

	if (ctx->options->key.has_multiview_view_index)
		num_outputs++;

	LLVMTypeRef elements[2] = {
		LLVMArrayType(ctx->ac.i32, 4 * num_outputs),
		LLVMArrayType(ctx->ac.i8, 4),
	};
	LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false);
	type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS);
	return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, "");
}

/**
 * Return a pointer to the LDS storage reserved for the N'th vertex, where N
 * is in emit order; that is:
 * - during the epilogue, N is the threadidx (relative to the entire threadgroup)
 * - during vertex emit, i.e. while the API GS shader invocation is running,
 *   N = threadidx * gs_max_out_vertices + emitidx
 *
 * Goals of the LDS memory layout:
 * 1. Eliminate bank conflicts on write for geometry shaders that have all emits
 *    in uniform control flow
 * 2. Eliminate bank conflicts on read for export if, additionally, there is no
 *    culling
 * 3. Agnostic to the number of waves (since we don't know it before compiling)
 * 4. Allow coalescing of LDS instructions (ds_write_b128 etc.)
 * 5. Avoid wasting memory.
 *
 * We use an AoS layout due to point 4 (this also helps point 3). In an AoS
 * layout, elimination of bank conflicts requires that each vertex occupy an
 * odd number of dwords. We use the additional dword to store the output stream
 * index as well as a flag to indicate whether this vertex ends a primitive
 * for rasterization.
 *
 * Swizzling is required to satisfy points 1 and 2 simultaneously.
 *
 * Vertices are stored in export order (gsthread * gs_max_out_vertices + emitidx).
 * Indices are swizzled in groups of 32, which ensures point 1 without
 * disturbing point 2.
 *
 * \return an LDS pointer to type {[N x i32], [4 x i8]}
 */
static LLVMValueRef
ngg_gs_vertex_ptr(struct radv_shader_context *ctx, LLVMValueRef vertexidx)
{
	LLVMBuilderRef builder = ctx->ac.builder;
	LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx);

	/* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */
	unsigned write_stride_2exp = ffs(ctx->shader->info.gs.vertices_out) - 1;
	if (write_stride_2exp) {
		LLVMValueRef row =
			LLVMBuildLShr(builder, vertexidx,
				      LLVMConstInt(ctx->ac.i32, 5, false), "");
		LLVMValueRef swizzle =
			LLVMBuildAnd(builder, row,
				     LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1,
						  false), "");
		vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, "");
	}

	return ac_build_gep0(&ctx->ac, storage, vertexidx);
}

static LLVMValueRef
ngg_gs_emit_vertex_ptr(struct radv_shader_context *ctx, LLVMValueRef gsthread,
		       LLVMValueRef emitidx)
{
	LLVMBuilderRef builder = ctx->ac.builder;
	LLVMValueRef tmp;

	tmp = LLVMConstInt(ctx->ac.i32, ctx->shader->info.gs.vertices_out, false);
	tmp = LLVMBuildMul(builder, tmp, gsthread, "");
	const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, "");
	return ngg_gs_vertex_ptr(ctx, vertexidx);
}

/* Send GS Alloc Req message from the first wave of the group to SPI.
 * Message payload is:
 * - bits 0..10: vertices in group
 * - bits 12..22: primitives in group
 */
static void build_sendmsg_gs_alloc_req(struct radv_shader_context *ctx,
				       LLVMValueRef vtx_cnt,
				       LLVMValueRef prim_cnt)
{
	LLVMBuilderRef builder = ctx->ac.builder;
	LLVMValueRef tmp;

	tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
	ac_build_ifcc(&ctx->ac, tmp, 5020);

	tmp = LLVMBuildShl(builder, prim_cnt, LLVMConstInt(ctx->ac.i32, 12, false),"");
	tmp = LLVMBuildOr(builder, tmp, vtx_cnt, "");
	ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_ALLOC_REQ, tmp);

	ac_build_endif(&ctx->ac, 5020);
}

struct ngg_prim {
	unsigned num_vertices;
	LLVMValueRef isnull;
	LLVMValueRef index[3];
	LLVMValueRef edgeflag[3];
};

static void build_export_prim(struct radv_shader_context *ctx,
			      const struct ngg_prim *prim)
{
	LLVMBuilderRef builder = ctx->ac.builder;
	struct ac_export_args args;
	LLVMValueRef tmp;

	tmp = LLVMBuildZExt(builder, prim->isnull, ctx->ac.i32, "");
	args.out[0] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 31, false), "");

	for (unsigned i = 0; i < prim->num_vertices; ++i) {
		tmp = LLVMBuildShl(builder, prim->index[i],
				   LLVMConstInt(ctx->ac.i32, 10 * i, false), "");
		args.out[0] = LLVMBuildOr(builder, args.out[0], tmp, "");
		tmp = LLVMBuildZExt(builder, prim->edgeflag[i], ctx->ac.i32, "");
		tmp = LLVMBuildShl(builder, tmp,
				   LLVMConstInt(ctx->ac.i32, 10 * i + 9, false), "");
		args.out[0] = LLVMBuildOr(builder, args.out[0], tmp, "");
	}

	args.out[0] = LLVMBuildBitCast(builder, args.out[0], ctx->ac.f32, "");
	args.out[1] = LLVMGetUndef(ctx->ac.f32);
	args.out[2] = LLVMGetUndef(ctx->ac.f32);
	args.out[3] = LLVMGetUndef(ctx->ac.f32);

	args.target = V_008DFC_SQ_EXP_PRIM;
	args.enabled_channels = 1;
	args.done = true;
	args.valid_mask = false;
	args.compr = false;

	ac_build_export(&ctx->ac, &args);
}

static void
handle_ngg_outputs_post(struct radv_shader_context *ctx)
{
	LLVMBuilderRef builder = ctx->ac.builder;
	unsigned num_vertices = 3;
	LLVMValueRef tmp;

	assert((ctx->stage == MESA_SHADER_VERTEX ||
	        ctx->stage == MESA_SHADER_TESS_EVAL) && !ctx->is_gs_copy_shader);

	LLVMValueRef prims_in_wave = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 8, 8);
	LLVMValueRef vtx_in_wave = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 0, 8);
	LLVMValueRef is_gs_thread = LLVMBuildICmp(builder, LLVMIntULT,
						  ac_get_thread_id(&ctx->ac), prims_in_wave, "");
	LLVMValueRef is_es_thread = LLVMBuildICmp(builder, LLVMIntULT,
						  ac_get_thread_id(&ctx->ac), vtx_in_wave, "");
	LLVMValueRef vtxindex[] = {
		ac_unpack_param(&ctx->ac, ctx->gs_vtx_offset[0], 0, 16),
		ac_unpack_param(&ctx->ac, ctx->gs_vtx_offset[0], 16, 16),
		ac_unpack_param(&ctx->ac, ctx->gs_vtx_offset[2], 0, 16),
	};

	/* TODO: streamout */

	/* Copy Primitive IDs from GS threads to the LDS address corresponding
	 * to the ES thread of the provoking vertex.
	 */
	if (ctx->stage == MESA_SHADER_VERTEX &&
	    ctx->options->key.vs_common_out.export_prim_id) {
		/* TODO: streamout */

		ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
		/* Extract the PROVOKING_VTX_INDEX field. */
		LLVMValueRef provoking_vtx_in_prim =
			LLVMConstInt(ctx->ac.i32, 0, false);

		/* provoking_vtx_index = vtxindex[provoking_vtx_in_prim]; */
		LLVMValueRef indices = ac_build_gather_values(&ctx->ac, vtxindex, 3);
		LLVMValueRef provoking_vtx_index =
			LLVMBuildExtractElement(builder, indices, provoking_vtx_in_prim, "");

		LLVMBuildStore(builder, ctx->abi.gs_prim_id,
			       ac_build_gep0(&ctx->ac, ctx->esgs_ring, provoking_vtx_index));
		ac_build_endif(&ctx->ac, 5400);
	}

	/* TODO: primitive culling */

	build_sendmsg_gs_alloc_req(ctx, ngg_get_vtx_cnt(ctx), ngg_get_prim_cnt(ctx));

	/* TODO: streamout queries */
	/* Export primitive data to the index buffer. Format is:
	 *  - bits 0..8: index 0
	 *  - bit 9: edge flag 0
	 *  - bits 10..18: index 1
	 *  - bit 19: edge flag 1
	 *  - bits 20..28: index 2
	 *  - bit 29: edge flag 2
	 *  - bit 31: null primitive (skip)
	 *
	 * For the first version, we will always build up all three indices
	 * independent of the primitive type. The additional garbage data
	 * shouldn't hurt.
	 *
	 * TODO: culling depends on the primitive type, so can have some
	 * interaction here.
	 */
	ac_build_ifcc(&ctx->ac, is_gs_thread, 6001);
	{
		struct ngg_prim prim = {};

		prim.num_vertices = num_vertices;
		prim.isnull = ctx->ac.i1false;
		memcpy(prim.index, vtxindex, sizeof(vtxindex[0]) * 3);

		for (unsigned i = 0; i < num_vertices; ++i) {
			tmp = LLVMBuildLShr(builder, ctx->abi.gs_invocation_id,
					    LLVMConstInt(ctx->ac.i32, 8 + i, false), "");
			prim.edgeflag[i] = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
		}

		build_export_prim(ctx, &prim);
	}
	ac_build_endif(&ctx->ac, 6001);

	/* Export per-vertex data (positions and parameters). */
	ac_build_ifcc(&ctx->ac, is_es_thread, 6002);
	{
		struct radv_vs_output_info *outinfo =
			ctx->stage == MESA_SHADER_TESS_EVAL ? &ctx->shader_info->tes.outinfo : &ctx->shader_info->vs.outinfo;

		/* Exporting the primitive ID is handled below. */
		/* TODO: use the new VS export path */
		handle_vs_outputs_post(ctx, false,
				       ctx->options->key.vs_common_out.export_clip_dists,
				       outinfo);

		if (ctx->options->key.vs_common_out.export_prim_id) {
			unsigned param_count = outinfo->param_exports;
			LLVMValueRef values[4];

			if (ctx->stage == MESA_SHADER_VERTEX) {
				/* Wait for GS stores to finish. */
				ac_build_s_barrier(&ctx->ac);

				tmp = ac_build_gep0(&ctx->ac, ctx->esgs_ring,
						    get_thread_id_in_tg(ctx));
				values[0] = LLVMBuildLoad(builder, tmp, "");
			} else {
				assert(ctx->stage == MESA_SHADER_TESS_EVAL);
				values[0] = ctx->abi.tes_patch_id;
			}

			values[0] = ac_to_float(&ctx->ac, values[0]);
			for (unsigned j = 1; j < 4; j++)
				values[j] = ctx->ac.f32_0;

			radv_export_param(ctx, param_count, values, 0x1);

			outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = param_count++;
			outinfo->param_exports = param_count;
		}
	}
	ac_build_endif(&ctx->ac, 6002);
}

static void gfx10_ngg_gs_emit_prologue(struct radv_shader_context *ctx)
{
	/* Zero out the part of LDS scratch that is used to accumulate the
	 * per-stream generated primitive count.
	 */
	LLVMBuilderRef builder = ctx->ac.builder;
	LLVMValueRef scratchptr = ctx->gs_ngg_scratch;
	LLVMValueRef tid = get_thread_id_in_tg(ctx);
	LLVMBasicBlockRef merge_block;
	LLVMValueRef cond;

	LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx->ac.builder));
	LLVMBasicBlockRef then_block = LLVMAppendBasicBlockInContext(ctx->ac.context, fn, "");
	merge_block = LLVMAppendBasicBlockInContext(ctx->ac.context, fn, "");

	cond = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->ac.i32, 4, false), "");
	LLVMBuildCondBr(ctx->ac.builder, cond, then_block, merge_block);
	LLVMPositionBuilderAtEnd(ctx->ac.builder, then_block);

	LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid);
	LLVMBuildStore(builder, ctx->ac.i32_0, ptr);

	LLVMBuildBr(ctx->ac.builder, merge_block);
	LLVMPositionBuilderAtEnd(ctx->ac.builder, merge_block);

	ac_build_s_barrier(&ctx->ac);
}

static void gfx10_ngg_gs_emit_epilogue_1(struct radv_shader_context *ctx)
{
	LLVMBuilderRef builder = ctx->ac.builder;
	LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false);
	LLVMValueRef tmp;

	/* Zero out remaining (non-emitted) primitive flags.
	 *
	 * Note: Alternatively, we could pass the relevant gs_next_vertex to
	 *       the emit threads via LDS. This is likely worse in the expected
	 *       typical case where each GS thread emits the full set of
	 *       vertices.
	 */
	for (unsigned stream = 0; stream < 4; ++stream) {
		unsigned num_components;

		num_components =
			ctx->shader_info->gs.num_stream_output_components[stream];
		if (!num_components)
			continue;

		const LLVMValueRef gsthread = get_thread_id_in_tg(ctx);

		ac_build_bgnloop(&ctx->ac, 5100);

		const LLVMValueRef vertexidx =
			LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
		tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx,
			LLVMConstInt(ctx->ac.i32, ctx->shader->info.gs.vertices_out, false), "");
		ac_build_ifcc(&ctx->ac, tmp, 5101);
		ac_build_break(&ctx->ac);
		ac_build_endif(&ctx->ac, 5101);

		tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
		LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);

		tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx);
		LLVMValueRef gep_idx[3] = {
			ctx->ac.i32_0, /* implied C-style array */
			ctx->ac.i32_1, /* second entry of struct */
			LLVMConstInt(ctx->ac.i32, stream, false),
		};
		tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
		LLVMBuildStore(builder, i8_0, tmp);

		ac_build_endloop(&ctx->ac, 5100);
	}
}

static void gfx10_ngg_gs_emit_epilogue_2(struct radv_shader_context *ctx)
{
	const unsigned verts_per_prim = si_conv_gl_prim_to_vertices(ctx->shader->info.gs.output_primitive);
	LLVMBuilderRef builder = ctx->ac.builder;
	LLVMValueRef tmp, tmp2;

	ac_build_s_barrier(&ctx->ac);

	const LLVMValueRef tid = get_thread_id_in_tg(ctx);
	LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);

	/* TODO: streamout */

	/* TODO: culling */

	/* Determine vertex liveness. */
	LLVMValueRef vertliveptr = ac_build_alloca(&ctx->ac, ctx->ac.i1, "vertexlive");

	tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
	ac_build_ifcc(&ctx->ac, tmp, 5120);
	{
		for (unsigned i = 0; i < verts_per_prim; ++i) {
			const LLVMValueRef primidx =
				LLVMBuildAdd(builder, tid,
					     LLVMConstInt(ctx->ac.i32, i, false), "");

			if (i > 0) {
				tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, "");
				ac_build_ifcc(&ctx->ac, tmp, 5121 + i);
			}

			/* Load primitive liveness */
			tmp = ngg_gs_vertex_ptr(ctx, primidx);
			LLVMValueRef gep_idx[3] = {
				ctx->ac.i32_0, /* implicit C-style array */
				ctx->ac.i32_1, /* second value of struct */
				ctx->ac.i32_0, /* stream 0 */
			};
			tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
			tmp = LLVMBuildLoad(builder, tmp, "");
			const LLVMValueRef primlive =
				LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");

			tmp = LLVMBuildLoad(builder, vertliveptr, "");
			tmp = LLVMBuildOr(builder, tmp, primlive, ""),
			LLVMBuildStore(builder, tmp, vertliveptr);

			if (i > 0)
				ac_build_endif(&ctx->ac, 5121 + i);
		}
	}
	ac_build_endif(&ctx->ac, 5120);

	/* Inclusive scan addition across the current wave. */
	LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, "");
	struct ac_wg_scan vertlive_scan = {};
	vertlive_scan.op = nir_op_iadd;
	vertlive_scan.enable_reduce = true;
	vertlive_scan.enable_exclusive = true;
	vertlive_scan.src = vertlive;
	vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->ac.i32_0);
	vertlive_scan.waveidx = get_wave_id_in_tg(ctx);
	vertlive_scan.numwaves = get_tgsize(ctx);
	vertlive_scan.maxwaves = 8;

	ac_build_wg_scan(&ctx->ac, &vertlive_scan);

	/* Skip all exports (including index exports) when possible. At least on
	 * early gfx10 revisions this is also to avoid hangs.
	 */
	LLVMValueRef have_exports =
		LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, "");
	num_emit_threads =
		LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, "");

	/* Allocate export space. Send this message as early as possible, to
	 * hide the latency of the SQ <-> SPI roundtrip.
	 *
	 * Note: We could consider compacting primitives for export as well.
	 *       PA processes 1 non-null prim / clock, but it fetches 4 DW of
	 *       prim data per clock and skips null primitives at no additional
	 *       cost. So compacting primitives can only be beneficial when
	 *       there are 4 or more contiguous null primitives in the export
	 *       (in the common case of single-dword prim exports).
	 */
	build_sendmsg_gs_alloc_req(ctx, vertlive_scan.result_reduce, num_emit_threads);

	/* Setup the reverse vertex compaction permutation. We re-use stream 1
	 * of the primitive liveness flags, relying on the fact that each
	 * threadgroup can have at most 256 threads. */
	ac_build_ifcc(&ctx->ac, vertlive, 5130);
	{
		tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive);
		LLVMValueRef gep_idx[3] = {
			ctx->ac.i32_0, /* implicit C-style array */
			ctx->ac.i32_1, /* second value of struct */
			ctx->ac.i32_1, /* stream 1 */
		};
		tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
		tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, "");
		LLVMBuildStore(builder, tmp2, tmp);
	}
	ac_build_endif(&ctx->ac, 5130);

	ac_build_s_barrier(&ctx->ac);

	/* Export primitive data */
	tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
	ac_build_ifcc(&ctx->ac, tmp, 5140);
	{
		struct ngg_prim prim = {};
		prim.num_vertices = verts_per_prim;

		tmp = ngg_gs_vertex_ptr(ctx, tid);
		LLVMValueRef gep_idx[3] = {
			ctx->ac.i32_0, /* implicit C-style array */
			ctx->ac.i32_1, /* second value of struct */
			ctx->ac.i32_0, /* primflag */
		};
		tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
		tmp = LLVMBuildLoad(builder, tmp, "");
		prim.isnull = LLVMBuildICmp(builder, LLVMIntEQ, tmp,
					    LLVMConstInt(ctx->ac.i8, 0, false), "");

		for (unsigned i = 0; i < verts_per_prim; ++i) {
			prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive,
				LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
			prim.edgeflag[i] = ctx->ac.i1false;
		}

		build_export_prim(ctx, &prim);
	}
	ac_build_endif(&ctx->ac, 5140);

	/* Export position and parameter data */
	tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, "");
	ac_build_ifcc(&ctx->ac, tmp, 5145);
	{
		struct radv_vs_output_info *outinfo = &ctx->shader_info->vs.outinfo;
		bool export_view_index = ctx->options->key.has_multiview_view_index;
		struct radv_shader_output_values *outputs;
		unsigned noutput = 0;

		/* Allocate a temporary array for the output values. */
		unsigned num_outputs = util_bitcount64(ctx->output_mask) + export_view_index;
		outputs = calloc(num_outputs, sizeof(outputs[0]));

		memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
		       sizeof(outinfo->vs_output_param_offset));
		outinfo->pos_exports = 0;

		tmp = ngg_gs_vertex_ptr(ctx, tid);
		LLVMValueRef gep_idx[3] = {
			ctx->ac.i32_0, /* implicit C-style array */
			ctx->ac.i32_1, /* second value of struct */
			ctx->ac.i32_1, /* stream 1: source data index */
		};
		tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
		tmp = LLVMBuildLoad(builder, tmp, "");
		tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
		const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp);

		unsigned out_idx = 0;
		gep_idx[1] = ctx->ac.i32_0;
		for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
			unsigned output_usage_mask =
				ctx->shader_info->gs.output_usage_mask[i];
			int length = util_last_bit(output_usage_mask);

			if (!(ctx->output_mask & (1ull << i)))
				continue;

			outputs[noutput].slot_name = i;
			outputs[noutput].slot_index = i == VARYING_SLOT_CLIP_DIST1;
			outputs[noutput].usage_mask = output_usage_mask;

			for (unsigned j = 0; j < length; j++, out_idx++) {
				if (!(output_usage_mask & (1 << j)))
					continue;

				gep_idx[2] = LLVMConstInt(ctx->ac.i32, out_idx, false);
				tmp = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
				tmp = LLVMBuildLoad(builder, tmp, "");

				LLVMTypeRef type = LLVMGetAllocatedType(ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
				if (ac_get_type_size(type) == 2) {
					tmp = ac_to_integer(&ctx->ac, tmp);
					tmp = LLVMBuildTrunc(ctx->ac.builder, tmp, ctx->ac.i16, "");
				}

				outputs[noutput].values[j] = ac_to_float(&ctx->ac, tmp);
			}

			for (unsigned j = length; j < 4; j++)
				outputs[noutput].values[j] = LLVMGetUndef(ctx->ac.f32);

			noutput++;
		}

		/* Export ViewIndex. */
		if (export_view_index) {
			outputs[noutput].slot_name = VARYING_SLOT_LAYER;
			outputs[noutput].slot_index = 0;
			outputs[noutput].usage_mask = 0x1;
			outputs[noutput].values[0] = ac_to_float(&ctx->ac, ctx->abi.view_index);
			for (unsigned j = 1; j < 4; j++)
				outputs[noutput].values[j] = ctx->ac.f32_0;
			noutput++;
		}

		radv_llvm_export_vs(ctx, outputs, noutput, outinfo,
				    ctx->options->key.vs_common_out.export_clip_dists);
		FREE(outputs);
	}
	ac_build_endif(&ctx->ac, 5145);
}

static void gfx10_ngg_gs_emit_vertex(struct radv_shader_context *ctx,
				     unsigned stream,
				     LLVMValueRef *addrs)
{
	LLVMBuilderRef builder = ctx->ac.builder;
	LLVMValueRef tmp;
	const LLVMValueRef vertexidx =
		LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");

	/* If this thread has already emitted the declared maximum number of
	 * vertices, skip the write: excessive vertex emissions are not
	 * supposed to have any effect.
	 */
	const LLVMValueRef can_emit =
		LLVMBuildICmp(builder, LLVMIntULT, vertexidx,
			      LLVMConstInt(ctx->ac.i32, ctx->shader->info.gs.vertices_out, false), "");
	ac_build_kill_if_false(&ctx->ac, can_emit);

	tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
	tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, "");
	LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);

	const LLVMValueRef vertexptr =
		ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx);
	unsigned out_idx = 0;
	for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
		unsigned output_usage_mask =
			ctx->shader_info->gs.output_usage_mask[i];
		uint8_t output_stream =
			ctx->shader_info->gs.output_streams[i];
		LLVMValueRef *out_ptr = &addrs[i * 4];
		int length = util_last_bit(output_usage_mask);

		if (!(ctx->output_mask & (1ull << i)) ||
		    output_stream != stream)
			continue;

		for (unsigned j = 0; j < length; j++, out_idx++) {
			if (!(output_usage_mask & (1 << j)))
				continue;

			LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder,
							     out_ptr[j], "");
			LLVMValueRef gep_idx[3] = {
				ctx->ac.i32_0, /* implied C-style array */
				ctx->ac.i32_0, /* first entry of struct */
				LLVMConstInt(ctx->ac.i32, out_idx, false),
			};
			LLVMValueRef ptr = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");

			out_val = ac_to_integer(&ctx->ac, out_val);
			out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");

			LLVMBuildStore(builder, out_val, ptr);
		}
	}
	assert(out_idx * 4 <= ctx->shader_info->gs.gsvs_vertex_size);

	/* Determine and store whether this vertex completed a primitive. */
	const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], "");

	tmp = LLVMConstInt(ctx->ac.i32, si_conv_gl_prim_to_vertices(ctx->shader->info.gs.output_primitive) - 1, false);
	const LLVMValueRef iscompleteprim =
		LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, "");

	tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, "");
	LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]);

	LLVMValueRef gep_idx[3] = {
		ctx->ac.i32_0, /* implied C-style array */
		ctx->ac.i32_1, /* second struct entry */
		LLVMConstInt(ctx->ac.i32, stream, false),
	};
	const LLVMValueRef primflagptr =
		LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");

	tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, "");
	LLVMBuildStore(builder, tmp, primflagptr);

	tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
	tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), "");
	LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]);
}

static void
write_tess_factors(struct radv_shader_context *ctx)
{
	unsigned stride, outer_comps, inner_comps;
	LLVMValueRef invocation_id = ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 8, 5);
	LLVMValueRef rel_patch_id = ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
	unsigned tess_inner_index = 0, tess_outer_index;
	LLVMValueRef lds_base, lds_inner = NULL, lds_outer, byteoffset, buffer;
	LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
	int i;
	ac_emit_barrier(&ctx->ac, ctx->stage);

	switch (ctx->options->key.tcs.primitive_mode) {
	case GL_ISOLINES:
		stride = 2;
		outer_comps = 2;
		inner_comps = 0;
		break;
	case GL_TRIANGLES:
		stride = 4;
		outer_comps = 3;
		inner_comps = 1;
		break;
	case GL_QUADS:
		stride = 6;
		outer_comps = 4;
		inner_comps = 2;
		break;
	default:
		return;
	}

	ac_build_ifcc(&ctx->ac,
			LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
				      invocation_id, ctx->ac.i32_0, ""), 6503);

	lds_base = get_tcs_out_current_patch_data_offset(ctx);

	if (inner_comps) {
		tess_inner_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
		lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
					 LLVMConstInt(ctx->ac.i32, tess_inner_index * 4, false), "");
	}

	tess_outer_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
	lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
				 LLVMConstInt(ctx->ac.i32, tess_outer_index * 4, false), "");

	for (i = 0; i < 4; i++) {
		inner[i] = LLVMGetUndef(ctx->ac.i32);
		outer[i] = LLVMGetUndef(ctx->ac.i32);
	}

	// LINES reversal
	if (ctx->options->key.tcs.primitive_mode == GL_ISOLINES) {
		outer[0] = out[1] = ac_lds_load(&ctx->ac, lds_outer);
		lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_outer,
					 ctx->ac.i32_1, "");
		outer[1] = out[0] = ac_lds_load(&ctx->ac, lds_outer);
	} else {
		for (i = 0; i < outer_comps; i++) {
			outer[i] = out[i] =
				ac_lds_load(&ctx->ac, lds_outer);
			lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_outer,
						 ctx->ac.i32_1, "");
		}
		for (i = 0; i < inner_comps; i++) {
			inner[i] = out[outer_comps+i] =
				ac_lds_load(&ctx->ac, lds_inner);
			lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_inner,
						 ctx->ac.i32_1, "");
		}
	}

	/* Convert the outputs to vectors for stores. */
	vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
	vec1 = NULL;

	if (stride > 4)
		vec1 = ac_build_gather_values(&ctx->ac, out + 4, stride - 4);


	buffer = ctx->hs_ring_tess_factor;
	tf_base = ctx->tess_factor_offset;
	byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
				  LLVMConstInt(ctx->ac.i32, 4 * stride, false), "");
	unsigned tf_offset = 0;

	if (ctx->options->chip_class <= GFX8) {
		ac_build_ifcc(&ctx->ac,
		                LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
		                              rel_patch_id, ctx->ac.i32_0, ""), 6504);

		/* Store the dynamic HS control word. */
		ac_build_buffer_store_dword(&ctx->ac, buffer,
					    LLVMConstInt(ctx->ac.i32, 0x80000000, false),
					    1, ctx->ac.i32_0, tf_base,
					    0, ac_glc, false);
		tf_offset += 4;

		ac_build_endif(&ctx->ac, 6504);
	}

	/* Store the tessellation factors. */
	ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
				    MIN2(stride, 4), byteoffset, tf_base,
				    tf_offset, ac_glc, false);
	if (vec1)
		ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
					    stride - 4, byteoffset, tf_base,
					    16 + tf_offset, ac_glc, false);

	//store to offchip for TES to read - only if TES reads them
	if (ctx->options->key.tcs.tes_reads_tess_factors) {
		LLVMValueRef inner_vec, outer_vec, tf_outer_offset;
		LLVMValueRef tf_inner_offset;
		unsigned param_outer, param_inner;

		param_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
		tf_outer_offset = get_tcs_tes_buffer_address(ctx, NULL,
							     LLVMConstInt(ctx->ac.i32, param_outer, 0));

		outer_vec = ac_build_gather_values(&ctx->ac, outer,
						   util_next_power_of_two(outer_comps));

		ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, outer_vec,
					    outer_comps, tf_outer_offset,
					    ctx->oc_lds, 0, ac_glc, false);
		if (inner_comps) {
			param_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
			tf_inner_offset = get_tcs_tes_buffer_address(ctx, NULL,
								     LLVMConstInt(ctx->ac.i32, param_inner, 0));

			inner_vec = inner_comps == 1 ? inner[0] :
				ac_build_gather_values(&ctx->ac, inner, inner_comps);
			ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, inner_vec,
						    inner_comps, tf_inner_offset,
						    ctx->oc_lds, 0, ac_glc, false);
		}
	}
	
	ac_build_endif(&ctx->ac, 6503);
}

static void
handle_tcs_outputs_post(struct radv_shader_context *ctx)
{
	write_tess_factors(ctx);
}

static bool
si_export_mrt_color(struct radv_shader_context *ctx,
		    LLVMValueRef *color, unsigned index,
		    struct ac_export_args *args)
{
	/* Export */
	si_llvm_init_export_args(ctx, color, 0xf,
				 V_008DFC_SQ_EXP_MRT + index, args);
	if (!args->enabled_channels)
		return false; /* unnecessary NULL export */

	return true;
}

static void
radv_export_mrt_z(struct radv_shader_context *ctx,
		  LLVMValueRef depth, LLVMValueRef stencil,
		  LLVMValueRef samplemask)
{
	struct ac_export_args args;

	ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);

	ac_build_export(&ctx->ac, &args);
}

static void
handle_fs_outputs_post(struct radv_shader_context *ctx)
{
	unsigned index = 0;
	LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
	struct ac_export_args color_args[8];

	for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
		LLVMValueRef values[4];

		if (!(ctx->output_mask & (1ull << i)))
			continue;

		if (i < FRAG_RESULT_DATA0)
			continue;

		for (unsigned j = 0; j < 4; j++)
			values[j] = ac_to_float(&ctx->ac,
						radv_load_output(ctx, i, j));

		bool ret = si_export_mrt_color(ctx, values,
					       i - FRAG_RESULT_DATA0,
					       &color_args[index]);
		if (ret)
			index++;
	}

	/* Process depth, stencil, samplemask. */
	if (ctx->shader_info->ps.writes_z) {
		depth = ac_to_float(&ctx->ac,
				    radv_load_output(ctx, FRAG_RESULT_DEPTH, 0));
	}
	if (ctx->shader_info->ps.writes_stencil) {
		stencil = ac_to_float(&ctx->ac,
				      radv_load_output(ctx, FRAG_RESULT_STENCIL, 0));
	}
	if (ctx->shader_info->ps.writes_sample_mask) {
		samplemask = ac_to_float(&ctx->ac,
					 radv_load_output(ctx, FRAG_RESULT_SAMPLE_MASK, 0));
	}

	/* Set the DONE bit on last non-null color export only if Z isn't
	 * exported.
	 */
	if (index > 0 &&
	    !ctx->shader_info->ps.writes_z &&
	    !ctx->shader_info->ps.writes_stencil &&
	    !ctx->shader_info->ps.writes_sample_mask) {
		unsigned last = index - 1;

               color_args[last].valid_mask = 1; /* whether the EXEC mask is valid */
               color_args[last].done = 1; /* DONE bit */
	}

	/* Export PS outputs. */
	for (unsigned i = 0; i < index; i++)
		ac_build_export(&ctx->ac, &color_args[i]);

	if (depth || stencil || samplemask)
		radv_export_mrt_z(ctx, depth, stencil, samplemask);
	else if (!index)
		ac_build_export_null(&ctx->ac);
}

static void
emit_gs_epilogue(struct radv_shader_context *ctx)
{
	if (ctx->options->key.vs_common_out.as_ngg) {
		gfx10_ngg_gs_emit_epilogue_1(ctx);
		return;
	}

	if (ctx->ac.chip_class >= GFX10)
		LLVMBuildFence(ctx->ac.builder, LLVMAtomicOrderingRelease, false, "");

	ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE, ctx->gs_wave_id);
}

static void
handle_shader_outputs_post(struct ac_shader_abi *abi, unsigned max_outputs,
			   LLVMValueRef *addrs)
{
	struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);

	switch (ctx->stage) {
	case MESA_SHADER_VERTEX:
		if (ctx->options->key.vs_common_out.as_ls)
			handle_ls_outputs_post(ctx);
		else if (ctx->options->key.vs_common_out.as_es)
			handle_es_outputs_post(ctx, &ctx->shader_info->vs.es_info);
		else if (ctx->options->key.vs_common_out.as_ngg)
			break; /* handled outside of the shader body */
		else
			handle_vs_outputs_post(ctx, ctx->options->key.vs_common_out.export_prim_id,
					       ctx->options->key.vs_common_out.export_clip_dists,
					       &ctx->shader_info->vs.outinfo);
		break;
	case MESA_SHADER_FRAGMENT:
		handle_fs_outputs_post(ctx);
		break;
	case MESA_SHADER_GEOMETRY:
		emit_gs_epilogue(ctx);
		break;
	case MESA_SHADER_TESS_CTRL:
		handle_tcs_outputs_post(ctx);
		break;
	case MESA_SHADER_TESS_EVAL:
		if (ctx->options->key.vs_common_out.as_es)
			handle_es_outputs_post(ctx, &ctx->shader_info->tes.es_info);
		else if (ctx->options->key.vs_common_out.as_ngg)
			break; /* handled outside of the shader body */
		else
			handle_vs_outputs_post(ctx, ctx->options->key.vs_common_out.export_prim_id,
					       ctx->options->key.vs_common_out.export_clip_dists,
					       &ctx->shader_info->tes.outinfo);
		break;
	default:
		break;
	}
}

static void ac_llvm_finalize_module(struct radv_shader_context *ctx,
				    LLVMPassManagerRef passmgr,
				    const struct radv_nir_compiler_options *options)
{
	LLVMRunPassManager(passmgr, ctx->ac.module);
	LLVMDisposeBuilder(ctx->ac.builder);

	ac_llvm_context_dispose(&ctx->ac);
}

static void
ac_nir_eliminate_const_vs_outputs(struct radv_shader_context *ctx)
{
	struct radv_vs_output_info *outinfo;

	switch (ctx->stage) {
	case MESA_SHADER_FRAGMENT:
	case MESA_SHADER_COMPUTE:
	case MESA_SHADER_TESS_CTRL:
	case MESA_SHADER_GEOMETRY:
		return;
	case MESA_SHADER_VERTEX:
		if (ctx->options->key.vs_common_out.as_ls ||
		    ctx->options->key.vs_common_out.as_es)
			return;
		outinfo = &ctx->shader_info->vs.outinfo;
		break;
	case MESA_SHADER_TESS_EVAL:
		if (ctx->options->key.vs_common_out.as_es)
			return;
		outinfo = &ctx->shader_info->tes.outinfo;
		break;
	default:
		unreachable("Unhandled shader type");
	}

	ac_optimize_vs_outputs(&ctx->ac,
			       ctx->main_function,
			       outinfo->vs_output_param_offset,
			       VARYING_SLOT_MAX,
			       &outinfo->param_exports);
}

static void
ac_setup_rings(struct radv_shader_context *ctx)
{
	if (ctx->options->chip_class <= GFX8 &&
	    (ctx->stage == MESA_SHADER_GEOMETRY ||
	     ctx->options->key.vs_common_out.as_es || ctx->options->key.vs_common_out.as_es)) {
		unsigned ring = ctx->stage == MESA_SHADER_GEOMETRY ? RING_ESGS_GS
								   : RING_ESGS_VS;
		LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, ring, false);

		ctx->esgs_ring = ac_build_load_to_sgpr(&ctx->ac,
						       ctx->ring_offsets,
						       offset);
	}

	if (ctx->is_gs_copy_shader) {
		ctx->gsvs_ring[0] =
			ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets,
					      LLVMConstInt(ctx->ac.i32,
							   RING_GSVS_VS, false));
	}

	if (ctx->stage == MESA_SHADER_GEOMETRY) {
		/* The conceptual layout of the GSVS ring is
		 *   v0c0 .. vLv0 v0c1 .. vLc1 ..
		 * but the real memory layout is swizzled across
		 * threads:
		 *   t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
		 *   t16v0c0 ..
		 * Override the buffer descriptor accordingly.
		 */
		LLVMTypeRef v2i64 = LLVMVectorType(ctx->ac.i64, 2);
		uint64_t stream_offset = 0;
		unsigned num_records = ctx->ac.wave_size;
		LLVMValueRef base_ring;

		base_ring =
			ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets,
					      LLVMConstInt(ctx->ac.i32,
							   RING_GSVS_GS, false));

		for (unsigned stream = 0; stream < 4; stream++) {
			unsigned num_components, stride;
			LLVMValueRef ring, tmp;

			num_components =
				ctx->shader_info->gs.num_stream_output_components[stream];

			if (!num_components)
				continue;

			stride = 4 * num_components * ctx->shader->info.gs.vertices_out;

			/* Limit on the stride field for <= GFX7. */
			assert(stride < (1 << 14));

			ring = LLVMBuildBitCast(ctx->ac.builder,
						base_ring, v2i64, "");
			tmp = LLVMBuildExtractElement(ctx->ac.builder,
						      ring, ctx->ac.i32_0, "");
			tmp = LLVMBuildAdd(ctx->ac.builder, tmp,
					   LLVMConstInt(ctx->ac.i64,
							stream_offset, 0), "");
			ring = LLVMBuildInsertElement(ctx->ac.builder,
						      ring, tmp, ctx->ac.i32_0, "");

			stream_offset += stride * ctx->ac.wave_size;

			ring = LLVMBuildBitCast(ctx->ac.builder, ring,
						ctx->ac.v4i32, "");

			tmp = LLVMBuildExtractElement(ctx->ac.builder, ring,
						      ctx->ac.i32_1, "");
			tmp = LLVMBuildOr(ctx->ac.builder, tmp,
					  LLVMConstInt(ctx->ac.i32,
						       S_008F04_STRIDE(stride), false), "");
			ring = LLVMBuildInsertElement(ctx->ac.builder, ring, tmp,
						      ctx->ac.i32_1, "");

			ring = LLVMBuildInsertElement(ctx->ac.builder, ring,
						      LLVMConstInt(ctx->ac.i32,
								   num_records, false),
						      LLVMConstInt(ctx->ac.i32, 2, false), "");

			ctx->gsvs_ring[stream] = ring;
		}
	}

	if (ctx->stage == MESA_SHADER_TESS_CTRL ||
	    ctx->stage == MESA_SHADER_TESS_EVAL) {
		ctx->hs_ring_tess_offchip = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_OFFCHIP, false));
		ctx->hs_ring_tess_factor = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_FACTOR, false));
	}
}

unsigned
radv_nir_get_max_workgroup_size(enum chip_class chip_class,
				gl_shader_stage stage,
				const struct nir_shader *nir)
{
	const unsigned backup_sizes[] = {chip_class >= GFX9 ? 128 : 64, 1, 1};
	return radv_get_max_workgroup_size(chip_class, stage, nir ? nir->info.cs.local_size : backup_sizes);
}

/* Fixup the HW not emitting the TCS regs if there are no HS threads. */
static void ac_nir_fixup_ls_hs_input_vgprs(struct radv_shader_context *ctx)
{
	LLVMValueRef count = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 8, 8);
	LLVMValueRef hs_empty = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, count,
	                                      ctx->ac.i32_0, "");
	ctx->abi.instance_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->rel_auto_id, ctx->abi.instance_id, "");
	ctx->rel_auto_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_rel_ids, ctx->rel_auto_id, "");
	ctx->abi.vertex_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_patch_id, ctx->abi.vertex_id, "");
}

static void prepare_gs_input_vgprs(struct radv_shader_context *ctx)
{
	for(int i = 5; i >= 0; --i) {
		ctx->gs_vtx_offset[i] = ac_unpack_param(&ctx->ac, ctx->gs_vtx_offset[i & ~1],
							(i & 1) * 16, 16);
	}

	ctx->gs_wave_id = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 16, 8);
}

/* Ensure that the esgs ring is declared.
 *
 * We declare it with 64KB alignment as a hint that the
 * pointer value will always be 0.
 */
static void declare_esgs_ring(struct radv_shader_context *ctx)
{
	if (ctx->esgs_ring)
		return;

	assert(!LLVMGetNamedGlobal(ctx->ac.module, "esgs_ring"));

	ctx->esgs_ring = LLVMAddGlobalInAddressSpace(
		ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0),
		"esgs_ring",
		AC_ADDR_SPACE_LDS);
	LLVMSetLinkage(ctx->esgs_ring, LLVMExternalLinkage);
	LLVMSetAlignment(ctx->esgs_ring, 64 * 1024);
}

static
LLVMModuleRef ac_translate_nir_to_llvm(struct ac_llvm_compiler *ac_llvm,
                                       struct nir_shader *const *shaders,
                                       int shader_count,
                                       struct radv_shader_info *shader_info,
                                       const struct radv_nir_compiler_options *options)
{
	struct radv_shader_context ctx = {0};
	unsigned i;
	ctx.options = options;
	ctx.shader_info = shader_info;

	enum ac_float_mode float_mode =
		options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
				       AC_FLOAT_MODE_DEFAULT;

	ac_llvm_context_init(&ctx.ac, ac_llvm, options->chip_class,
			     options->family, float_mode, options->wave_size, 64);
	ctx.context = ctx.ac.context;

	radv_nir_shader_info_init(shader_info);

	for(int i = 0; i < shader_count; ++i)
		radv_nir_shader_info_pass(shaders[i], options, shader_info);

	for (i = 0; i < MAX_SETS; i++)
		shader_info->user_sgprs_locs.descriptor_sets[i].sgpr_idx = -1;
	for (i = 0; i < AC_UD_MAX_UD; i++)
		shader_info->user_sgprs_locs.shader_data[i].sgpr_idx = -1;

	ctx.max_workgroup_size = 0;
	for (int i = 0; i < shader_count; ++i) {
		ctx.max_workgroup_size = MAX2(ctx.max_workgroup_size,
		                              radv_nir_get_max_workgroup_size(ctx.options->chip_class,
									      shaders[i]->info.stage,
									      shaders[i]));
	}

	if (ctx.ac.chip_class >= GFX10) {
		if (is_pre_gs_stage(shaders[0]->info.stage) &&
		    options->key.vs_common_out.as_ngg) {
			ctx.max_workgroup_size = 128;
		}
	}

	create_function(&ctx, shaders[shader_count - 1]->info.stage, shader_count >= 2,
	                shader_count >= 2 ? shaders[shader_count - 2]->info.stage  : MESA_SHADER_VERTEX);

	ctx.abi.inputs = &ctx.inputs[0];
	ctx.abi.emit_outputs = handle_shader_outputs_post;
	ctx.abi.emit_vertex = visit_emit_vertex;
	ctx.abi.load_ubo = radv_load_ubo;
	ctx.abi.load_ssbo = radv_load_ssbo;
	ctx.abi.load_sampler_desc = radv_get_sampler_desc;
	ctx.abi.load_resource = radv_load_resource;
	ctx.abi.clamp_shadow_reference = false;
	ctx.abi.robust_buffer_access = options->robust_buffer_access;

	bool is_ngg = is_pre_gs_stage(shaders[0]->info.stage) &&  ctx.options->key.vs_common_out.as_ngg;
	if (shader_count >= 2 || is_ngg)
		ac_init_exec_full_mask(&ctx.ac);

	if (options->has_ls_vgpr_init_bug &&
	    shaders[shader_count - 1]->info.stage == MESA_SHADER_TESS_CTRL)
		ac_nir_fixup_ls_hs_input_vgprs(&ctx);

	for(int i = 0; i < shader_count; ++i) {
		ctx.stage = shaders[i]->info.stage;
		ctx.shader = shaders[i];
		ctx.output_mask = 0;

		if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
			for (int i = 0; i < 4; i++) {
				ctx.gs_next_vertex[i] =
					ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
			}
			if (ctx.options->key.vs_common_out.as_ngg) {
				for (unsigned i = 0; i < 4; ++i) {
					ctx.gs_curprim_verts[i] =
						ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
					ctx.gs_generated_prims[i] =
						ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
				}

				/* TODO: streamout */

				LLVMTypeRef ai32 = LLVMArrayType(ctx.ac.i32, 8);
				ctx.gs_ngg_scratch =
					LLVMAddGlobalInAddressSpace(ctx.ac.module,
								    ai32, "ngg_scratch", AC_ADDR_SPACE_LDS);
				LLVMSetInitializer(ctx.gs_ngg_scratch, LLVMGetUndef(ai32));
				LLVMSetAlignment(ctx.gs_ngg_scratch, 4);

				ctx.gs_ngg_emit = LLVMBuildIntToPtr(ctx.ac.builder, ctx.ac.i32_0,
					LLVMPointerType(LLVMArrayType(ctx.ac.i32, 0), AC_ADDR_SPACE_LDS),
					"ngg_emit");
			}

			ctx.abi.load_inputs = load_gs_input;
			ctx.abi.emit_primitive = visit_end_primitive;
		} else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
			ctx.abi.load_tess_varyings = load_tcs_varyings;
			ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
			ctx.abi.store_tcs_outputs = store_tcs_output;
			if (shader_count == 1)
				ctx.tcs_num_inputs = ctx.options->key.tcs.num_inputs;
			else
				ctx.tcs_num_inputs = util_last_bit64(shader_info->vs.ls_outputs_written);
			ctx.tcs_num_patches = get_tcs_num_patches(&ctx);
		} else if (shaders[i]->info.stage == MESA_SHADER_TESS_EVAL) {
			ctx.abi.load_tess_varyings = load_tes_input;
			ctx.abi.load_tess_coord = load_tess_coord;
			ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
			ctx.tcs_num_patches = ctx.options->key.tes.num_patches;
		} else if (shaders[i]->info.stage == MESA_SHADER_VERTEX) {
			ctx.abi.load_base_vertex = radv_load_base_vertex;
		} else if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT) {
			ctx.abi.load_sample_position = load_sample_position;
			ctx.abi.load_sample_mask_in = load_sample_mask_in;
			ctx.abi.emit_kill = radv_emit_kill;
		}

		if (shaders[i]->info.stage == MESA_SHADER_VERTEX &&
		    ctx.options->key.vs_common_out.as_ngg &&
		    ctx.options->key.vs_common_out.export_prim_id) {
			declare_esgs_ring(&ctx);
		}

		bool nested_barrier = false;

		if (i) {
			if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY &&
			    ctx.options->key.vs_common_out.as_ngg) {
				gfx10_ngg_gs_emit_prologue(&ctx);
				nested_barrier = false;
			} else {
				nested_barrier = true;
			}
		}

		if (nested_barrier) {
			/* Execute a barrier before the second shader in
			 * a merged shader.
			 *
			 * Execute the barrier inside the conditional block,
			 * so that empty waves can jump directly to s_endpgm,
			 * which will also signal the barrier.
			 *
			 * This is possible in gfx9, because an empty wave
			 * for the second shader does not participate in
			 * the epilogue. With NGG, empty waves may still
			 * be required to export data (e.g. GS output vertices),
			 * so we cannot let them exit early.
			 *
			 * If the shader is TCS and the TCS epilog is present
			 * and contains a barrier, it will wait there and then
			 * reach s_endpgm.
			*/
			ac_emit_barrier(&ctx.ac, ctx.stage);
		}

		nir_foreach_variable(variable, &shaders[i]->outputs)
			scan_shader_output_decl(&ctx, variable, shaders[i], shaders[i]->info.stage);

		ac_setup_rings(&ctx);

		LLVMBasicBlockRef merge_block;
		if (shader_count >= 2 || is_ngg) {
			LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx.ac.builder));
			LLVMBasicBlockRef then_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
			merge_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");

			LLVMValueRef count = ac_unpack_param(&ctx.ac, ctx.merged_wave_info, 8 * i, 8);
			LLVMValueRef thread_id = ac_get_thread_id(&ctx.ac);
			LLVMValueRef cond = LLVMBuildICmp(ctx.ac.builder, LLVMIntULT,
			                                  thread_id, count, "");
			LLVMBuildCondBr(ctx.ac.builder, cond, then_block, merge_block);

			LLVMPositionBuilderAtEnd(ctx.ac.builder, then_block);
		}

		if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT)
			prepare_interp_optimize(&ctx, shaders[i]);
		else if(shaders[i]->info.stage == MESA_SHADER_VERTEX)
			handle_vs_inputs(&ctx, shaders[i]);
		else if(shader_count >= 2 && shaders[i]->info.stage == MESA_SHADER_GEOMETRY)
			prepare_gs_input_vgprs(&ctx);

		ac_nir_translate(&ctx.ac, &ctx.abi, shaders[i]);

		if (shader_count >= 2 || is_ngg) {
			LLVMBuildBr(ctx.ac.builder, merge_block);
			LLVMPositionBuilderAtEnd(ctx.ac.builder, merge_block);
		}

		/* This needs to be outside the if wrapping the shader body, as sometimes
		 * the HW generates waves with 0 es/vs threads. */
		if (is_pre_gs_stage(shaders[i]->info.stage) &&
		    ctx.options->key.vs_common_out.as_ngg &&
		    i == shader_count - 1) {
			handle_ngg_outputs_post(&ctx);
		} else if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY &&
			   ctx.options->key.vs_common_out.as_ngg) {
			gfx10_ngg_gs_emit_epilogue_2(&ctx);
		}

		if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
			shader_info->tcs.num_patches = ctx.tcs_num_patches;
			shader_info->tcs.lds_size = calculate_tess_lds_size(&ctx);
		}
	}

	LLVMBuildRetVoid(ctx.ac.builder);

	if (options->dump_preoptir) {
		fprintf(stderr, "%s LLVM IR:\n\n",
			radv_get_shader_name(shader_info,
					     shaders[shader_count - 1]->info.stage));
		ac_dump_module(ctx.ac.module);
		fprintf(stderr, "\n");
	}

	ac_llvm_finalize_module(&ctx, ac_llvm->passmgr, options);

	if (shader_count == 1)
		ac_nir_eliminate_const_vs_outputs(&ctx);

	if (options->dump_shader) {
		ctx.shader_info->private_mem_vgprs =
			ac_count_scratch_private_memory(ctx.main_function);
	}

	return ctx.ac.module;
}

static void ac_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
{
	unsigned *retval = (unsigned *)context;
	LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
	char *description = LLVMGetDiagInfoDescription(di);

	if (severity == LLVMDSError) {
		*retval = 1;
		fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n",
		        description);
	}

	LLVMDisposeMessage(description);
}

static unsigned radv_llvm_compile(LLVMModuleRef M,
                                  char **pelf_buffer, size_t *pelf_size,
                                  struct ac_llvm_compiler *ac_llvm)
{
	unsigned retval = 0;
	LLVMContextRef llvm_ctx;

	/* Setup Diagnostic Handler*/
	llvm_ctx = LLVMGetModuleContext(M);

	LLVMContextSetDiagnosticHandler(llvm_ctx, ac_diagnostic_handler,
	                                &retval);

	/* Compile IR*/
	if (!radv_compile_to_elf(ac_llvm, M, pelf_buffer, pelf_size))
		retval = 1;
	return retval;
}

static void ac_compile_llvm_module(struct ac_llvm_compiler *ac_llvm,
				   LLVMModuleRef llvm_module,
				   struct radv_shader_binary **rbinary,
				   gl_shader_stage stage,
				   const char *name,
				   const struct radv_nir_compiler_options *options)
{
	char *elf_buffer = NULL;
	size_t elf_size = 0;
	char *llvm_ir_string = NULL;

	if (options->dump_shader) {
		fprintf(stderr, "%s LLVM IR:\n\n", name);
		ac_dump_module(llvm_module);
		fprintf(stderr, "\n");
	}

	if (options->record_llvm_ir) {
		char *llvm_ir = LLVMPrintModuleToString(llvm_module);
		llvm_ir_string = strdup(llvm_ir);
		LLVMDisposeMessage(llvm_ir);
	}

	int v = radv_llvm_compile(llvm_module, &elf_buffer, &elf_size, ac_llvm);
	if (v) {
		fprintf(stderr, "compile failed\n");
	}

	LLVMContextRef ctx = LLVMGetModuleContext(llvm_module);
	LLVMDisposeModule(llvm_module);
	LLVMContextDispose(ctx);

	size_t llvm_ir_size = llvm_ir_string ? strlen(llvm_ir_string) : 0;
	size_t alloc_size = sizeof(struct radv_shader_binary_rtld) + elf_size + llvm_ir_size + 1;
	struct radv_shader_binary_rtld *rbin = calloc(1, alloc_size);
	memcpy(rbin->data,  elf_buffer, elf_size);
	if (llvm_ir_string)
		memcpy(rbin->data + elf_size, llvm_ir_string, llvm_ir_size + 1);

	rbin->base.type = RADV_BINARY_TYPE_RTLD;
	rbin->base.stage = stage;
	rbin->base.total_size = alloc_size;
	rbin->elf_size = elf_size;
	rbin->llvm_ir_size = llvm_ir_size;
	*rbinary = &rbin->base;

	free(llvm_ir_string);
	free(elf_buffer);
}

void
radv_compile_nir_shader(struct ac_llvm_compiler *ac_llvm,
			struct radv_shader_binary **rbinary,
			struct radv_shader_info *shader_info,
			struct nir_shader *const *nir,
			int nir_count,
			const struct radv_nir_compiler_options *options)
{

	LLVMModuleRef llvm_module;

	llvm_module = ac_translate_nir_to_llvm(ac_llvm, nir, nir_count, shader_info,
	                                       options);

	ac_compile_llvm_module(ac_llvm, llvm_module, rbinary,
			       nir[nir_count - 1]->info.stage,
			       radv_get_shader_name(shader_info,
						    nir[nir_count - 1]->info.stage),
			       options);

	/* Determine the ES type (VS or TES) for the GS on GFX9. */
	if (options->chip_class >= GFX9) {
		if (nir_count == 2 &&
		    nir[1]->info.stage == MESA_SHADER_GEOMETRY) {
			shader_info->gs.es_type = nir[0]->info.stage;
		}
	}
	shader_info->wave_size = options->wave_size;
}

static void
ac_gs_copy_shader_emit(struct radv_shader_context *ctx)
{
	LLVMValueRef vtx_offset =
		LLVMBuildMul(ctx->ac.builder, ctx->abi.vertex_id,
			     LLVMConstInt(ctx->ac.i32, 4, false), "");
	LLVMValueRef stream_id;

	/* Fetch the vertex stream ID. */
	if (ctx->shader_info->so.num_outputs) {
		stream_id =
			ac_unpack_param(&ctx->ac, ctx->streamout_config, 24, 2);
	} else {
		stream_id = ctx->ac.i32_0;
	}

	LLVMBasicBlockRef end_bb;
	LLVMValueRef switch_inst;

	end_bb = LLVMAppendBasicBlockInContext(ctx->ac.context,
					       ctx->main_function, "end");
	switch_inst = LLVMBuildSwitch(ctx->ac.builder, stream_id, end_bb, 4);

	for (unsigned stream = 0; stream < 4; stream++) {
		unsigned num_components =
			ctx->shader_info->gs.num_stream_output_components[stream];
		LLVMBasicBlockRef bb;
		unsigned offset;

		if (!num_components)
			continue;

		if (stream > 0 && !ctx->shader_info->so.num_outputs)
			continue;

		bb = LLVMInsertBasicBlockInContext(ctx->ac.context, end_bb, "out");
		LLVMAddCase(switch_inst, LLVMConstInt(ctx->ac.i32, stream, 0), bb);
		LLVMPositionBuilderAtEnd(ctx->ac.builder, bb);

		offset = 0;
		for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
			unsigned output_usage_mask =
				ctx->shader_info->gs.output_usage_mask[i];
			unsigned output_stream =
				ctx->shader_info->gs.output_streams[i];
			int length = util_last_bit(output_usage_mask);

			if (!(ctx->output_mask & (1ull << i)) ||
			    output_stream != stream)
				continue;

			for (unsigned j = 0; j < length; j++) {
				LLVMValueRef value, soffset;

				if (!(output_usage_mask & (1 << j)))
					continue;

				soffset = LLVMConstInt(ctx->ac.i32,
						       offset *
						       ctx->shader->info.gs.vertices_out * 16 * 4, false);

				offset++;

				value = ac_build_buffer_load(&ctx->ac,
							     ctx->gsvs_ring[0],
							     1, ctx->ac.i32_0,
							     vtx_offset, soffset,
							     0, ac_glc | ac_slc, true, false);

				LLVMTypeRef type = LLVMGetAllocatedType(ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
				if (ac_get_type_size(type) == 2) {
					value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
					value = LLVMBuildTrunc(ctx->ac.builder, value, ctx->ac.i16, "");
				}

				LLVMBuildStore(ctx->ac.builder,
					       ac_to_float(&ctx->ac, value), ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
			}
		}

		if (ctx->shader_info->so.num_outputs)
			radv_emit_streamout(ctx, stream);

		if (stream == 0) {
			handle_vs_outputs_post(ctx, false, true,
					       &ctx->shader_info->vs.outinfo);
		}

		LLVMBuildBr(ctx->ac.builder, end_bb);
	}

	LLVMPositionBuilderAtEnd(ctx->ac.builder, end_bb);
}

void
radv_compile_gs_copy_shader(struct ac_llvm_compiler *ac_llvm,
			    struct nir_shader *geom_shader,
			    struct radv_shader_binary **rbinary,
			    struct radv_shader_info *shader_info,
			    const struct radv_nir_compiler_options *options)
{
	struct radv_shader_context ctx = {0};
	ctx.options = options;
	ctx.shader_info = shader_info;

	enum ac_float_mode float_mode =
		options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
				       AC_FLOAT_MODE_DEFAULT;

	ac_llvm_context_init(&ctx.ac, ac_llvm, options->chip_class,
			     options->family, float_mode, 64, 64);
	ctx.context = ctx.ac.context;

	ctx.is_gs_copy_shader = true;
	ctx.stage = MESA_SHADER_VERTEX;
	ctx.shader = geom_shader;

	radv_nir_shader_info_pass(geom_shader, options, shader_info);

	create_function(&ctx, MESA_SHADER_VERTEX, false, MESA_SHADER_VERTEX);

	ac_setup_rings(&ctx);

	nir_foreach_variable(variable, &geom_shader->outputs) {
		scan_shader_output_decl(&ctx, variable, geom_shader, MESA_SHADER_VERTEX);
		ac_handle_shader_output_decl(&ctx.ac, &ctx.abi, geom_shader,
					     variable, MESA_SHADER_VERTEX);
	}

	ac_gs_copy_shader_emit(&ctx);

	LLVMBuildRetVoid(ctx.ac.builder);

	ac_llvm_finalize_module(&ctx, ac_llvm->passmgr, options);

	ac_compile_llvm_module(ac_llvm, ctx.ac.module, rbinary,
			       MESA_SHADER_VERTEX, "GS Copy Shader", options);
	(*rbinary)->is_gs_copy_shader = true;
	
}