aboutsummaryrefslogtreecommitdiffstats
path: root/src/amd/llvm/ac_llvm_cull.c
blob: 9e8409fdbaf4a4f020de6974939b548496b39716 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 */

#include "ac_llvm_cull.h"
#include <llvm-c/Core.h>

struct ac_position_w_info {
	/* If a primitive intersects the W=0 plane, it causes a reflection
	 * of the determinant used for face culling. Every vertex behind
	 * the W=0 plane negates the determinant, so having 2 vertices behind
	 * the plane has no effect. This is i1 true if the determinant should be
	 * negated.
	 */
	LLVMValueRef w_reflection;

	/* If we simplify the "-w <= p <= w" view culling equation, we get
	 * "-w <= w", which can't be satisfied when w is negative.
	 * In perspective projection, a negative W means that the primitive
	 * is behind the viewer, but the equation is independent of the type
	 * of projection.
	 *
	 * w_accepted is false when all W are negative and therefore
	 * the primitive is invisible.
	 */
	LLVMValueRef w_accepted;

	LLVMValueRef all_w_positive;
	LLVMValueRef any_w_negative;
};

static void ac_analyze_position_w(struct ac_llvm_context *ctx,
				  LLVMValueRef pos[3][4],
				  struct ac_position_w_info *w)
{
	LLVMBuilderRef builder = ctx->builder;
	LLVMValueRef all_w_negative = ctx->i1true;

	w->w_reflection = ctx->i1false;
	w->any_w_negative = ctx->i1false;

	for (unsigned i = 0; i < 3; i++) {
		LLVMValueRef neg_w;

		neg_w = LLVMBuildFCmp(builder, LLVMRealOLT, pos[i][3], ctx->f32_0, "");
		/* If neg_w is true, negate w_reflection. */
		w->w_reflection = LLVMBuildXor(builder, w->w_reflection, neg_w, "");
		w->any_w_negative = LLVMBuildOr(builder, w->any_w_negative, neg_w, "");
		all_w_negative = LLVMBuildAnd(builder, all_w_negative, neg_w, "");
	}
	w->all_w_positive = LLVMBuildNot(builder, w->any_w_negative, "");
	w->w_accepted = LLVMBuildNot(builder, all_w_negative, "");
}

/* Perform front/back face culling and return true if the primitive is accepted. */
static LLVMValueRef ac_cull_face(struct ac_llvm_context *ctx,
				 LLVMValueRef pos[3][4],
				 struct ac_position_w_info *w,
				 bool cull_front,
				 bool cull_back,
				 bool cull_zero_area)
{
	LLVMBuilderRef builder = ctx->builder;

	if (cull_front && cull_back)
		return ctx->i1false;

	if (!cull_front && !cull_back && !cull_zero_area)
		return ctx->i1true;

	/* Front/back face culling. Also if the determinant == 0, the triangle
	 * area is 0.
	 */
	LLVMValueRef det_t0 = LLVMBuildFSub(builder, pos[2][0], pos[0][0], "");
	LLVMValueRef det_t1 = LLVMBuildFSub(builder, pos[1][1], pos[0][1], "");
	LLVMValueRef det_t2 = LLVMBuildFSub(builder, pos[0][0], pos[1][0], "");
	LLVMValueRef det_t3 = LLVMBuildFSub(builder, pos[0][1], pos[2][1], "");
	LLVMValueRef det_p0 = LLVMBuildFMul(builder, det_t0, det_t1, "");
	LLVMValueRef det_p1 = LLVMBuildFMul(builder, det_t2, det_t3, "");
	LLVMValueRef det = LLVMBuildFSub(builder, det_p0, det_p1, "");

	/* Negative W negates the determinant. */
	det = LLVMBuildSelect(builder, w->w_reflection,
			      LLVMBuildFNeg(builder, det, ""),
			      det, "");

	LLVMValueRef accepted = NULL;
	if (cull_front) {
		LLVMRealPredicate cond = cull_zero_area ? LLVMRealOGT : LLVMRealOGE;
		accepted = LLVMBuildFCmp(builder, cond, det, ctx->f32_0, "");
	} else if (cull_back) {
		LLVMRealPredicate cond = cull_zero_area ? LLVMRealOLT : LLVMRealOLE;
		accepted = LLVMBuildFCmp(builder, cond, det, ctx->f32_0, "");
	} else if (cull_zero_area) {
		accepted = LLVMBuildFCmp(builder, LLVMRealONE, det, ctx->f32_0, "");
	}
	return accepted;
}

/* Perform view culling and small primitive elimination and return true
 * if the primitive is accepted and initially_accepted == true. */
static LLVMValueRef cull_bbox(struct ac_llvm_context *ctx,
			      LLVMValueRef pos[3][4],
			      LLVMValueRef initially_accepted,
			      struct ac_position_w_info *w,
			      LLVMValueRef vp_scale[2],
			      LLVMValueRef vp_translate[2],
			      LLVMValueRef small_prim_precision,
			      bool cull_view_xy,
			      bool cull_view_near_z,
			      bool cull_view_far_z,
			      bool cull_small_prims,
			      bool use_halfz_clip_space)
{
	LLVMBuilderRef builder = ctx->builder;

	if (!cull_view_xy && !cull_view_near_z && !cull_view_far_z && !cull_small_prims)
		return initially_accepted;

	/* Skip the culling if the primitive has already been rejected or
	 * if any W is negative. The bounding box culling doesn't work when
	 * W is negative.
	 */
	LLVMValueRef cond = LLVMBuildAnd(builder, initially_accepted,
					 w->all_w_positive, "");
	LLVMValueRef accepted_var = ac_build_alloca_undef(ctx, ctx->i1, "");
	LLVMBuildStore(builder, initially_accepted, accepted_var);

	ac_build_ifcc(ctx, cond, 10000000 /* does this matter? */);
	{
		LLVMValueRef bbox_min[3], bbox_max[3];
		LLVMValueRef accepted = initially_accepted;

		/* Compute the primitive bounding box for easy culling. */
		for (unsigned chan = 0; chan < 3; chan++) {
			bbox_min[chan] = ac_build_fmin(ctx, pos[0][chan], pos[1][chan]);
			bbox_min[chan] = ac_build_fmin(ctx, bbox_min[chan], pos[2][chan]);

			bbox_max[chan] = ac_build_fmax(ctx, pos[0][chan], pos[1][chan]);
			bbox_max[chan] = ac_build_fmax(ctx, bbox_max[chan], pos[2][chan]);
		}

		/* View culling. */
		if (cull_view_xy || cull_view_near_z || cull_view_far_z) {
			for (unsigned chan = 0; chan < 3; chan++) {
				LLVMValueRef visible;

				if ((cull_view_xy && chan <= 1) ||
				    (cull_view_near_z && chan == 2)) {
					float t = chan == 2 && use_halfz_clip_space ? 0 : -1;
					visible = LLVMBuildFCmp(builder, LLVMRealOGE, bbox_max[chan],
								LLVMConstReal(ctx->f32, t), "");
					accepted = LLVMBuildAnd(builder, accepted, visible, "");
				}

				if ((cull_view_xy && chan <= 1) ||
				    (cull_view_far_z && chan == 2)) {
					visible = LLVMBuildFCmp(builder, LLVMRealOLE, bbox_min[chan],
								ctx->f32_1, "");
					accepted = LLVMBuildAnd(builder, accepted, visible, "");
				}
			}
		}

		/* Small primitive elimination. */
		if (cull_small_prims) {
			/* Assuming a sample position at (0.5, 0.5), if we round
			 * the bounding box min/max extents and the results of
			 * the rounding are equal in either the X or Y direction,
			 * the bounding box does not intersect the sample.
			 *
			 * See these GDC slides for pictures:
			 * https://frostbite-wp-prd.s3.amazonaws.com/wp-content/uploads/2016/03/29204330/GDC_2016_Compute.pdf
			 */
			LLVMValueRef min, max, not_equal[2], visible;

			for (unsigned chan = 0; chan < 2; chan++) {
				/* Convert the position to screen-space coordinates. */
				min = ac_build_fmad(ctx, bbox_min[chan],
						    vp_scale[chan], vp_translate[chan]);
				max = ac_build_fmad(ctx, bbox_max[chan],
						    vp_scale[chan], vp_translate[chan]);
				/* Scale the bounding box according to the precision of
				 * the rasterizer and the number of MSAA samples. */
				min = LLVMBuildFSub(builder, min, small_prim_precision, "");
				max = LLVMBuildFAdd(builder, max, small_prim_precision, "");

				/* Determine if the bbox intersects the sample point.
				 * It also works for MSAA, but vp_scale, vp_translate,
				 * and small_prim_precision are computed differently.
				 */
				min = ac_build_round(ctx, min);
				max = ac_build_round(ctx, max);
				not_equal[chan] = LLVMBuildFCmp(builder, LLVMRealONE, min, max, "");
			}
			visible = LLVMBuildAnd(builder, not_equal[0], not_equal[1], "");
			accepted = LLVMBuildAnd(builder, accepted, visible, "");
		}

		LLVMBuildStore(builder, accepted, accepted_var);
	}
	ac_build_endif(ctx, 10000000);

	return LLVMBuildLoad(builder, accepted_var, "");
}

/**
 * Return i1 true if the primitive is accepted (not culled).
 *
 * \param pos                   Vertex positions 3x vec4
 * \param initially_accepted    AND'ed with the result. Some computations can be
 *                              skipped if this is false.
 * \param vp_scale              Viewport scale XY.
 *                              For MSAA, multiply them by the number of samples.
 * \param vp_translate          Viewport translation XY.
 *                              For MSAA, multiply them by the number of samples.
 * \param small_prim_precision  Precision of small primitive culling. This should
 *                              be the same as or greater than the precision of
 *                              the rasterizer. Set to num_samples / 2^subpixel_bits.
 *                              subpixel_bits are defined by the quantization mode.
 * \param options               See ac_cull_options.
 */
LLVMValueRef ac_cull_triangle(struct ac_llvm_context *ctx,
			      LLVMValueRef pos[3][4],
			      LLVMValueRef initially_accepted,
			      LLVMValueRef vp_scale[2],
			      LLVMValueRef vp_translate[2],
			      LLVMValueRef small_prim_precision,
			      struct ac_cull_options *options)
{
	struct ac_position_w_info w;
	ac_analyze_position_w(ctx, pos, &w);

	/* W culling. */
	LLVMValueRef accepted = options->cull_w ? w.w_accepted : ctx->i1true;
	accepted = LLVMBuildAnd(ctx->builder, accepted, initially_accepted, "");

	/* Face culling. */
	accepted = LLVMBuildAnd(ctx->builder, accepted,
				ac_cull_face(ctx, pos, &w,
					     options->cull_front,
					     options->cull_back,
					     options->cull_zero_area), "");

	/* View culling and small primitive elimination. */
	accepted = cull_bbox(ctx, pos, accepted, &w, vp_scale, vp_translate,
			     small_prim_precision,
			     options->cull_view_xy,
			     options->cull_view_near_z,
			     options->cull_view_far_z,
			     options->cull_small_prims,
			     options->use_halfz_clip_space);
	return accepted;
}