aboutsummaryrefslogtreecommitdiffstats
path: root/src/amd/compiler/aco_ssa_elimination.cpp
blob: 3d76dcd88671b313c9bbbbee332a6be6e8c85a09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
/*
 * Copyright © 2018 Valve Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */


#include "aco_ir.h"

#include <map>

namespace aco {
namespace {

/* map: block-id -> pair (dest, src) to store phi information */
typedef std::map<uint32_t, std::vector<std::pair<Definition, Operand>>> phi_info;

struct ssa_elimination_ctx {
   phi_info logical_phi_info;
   phi_info linear_phi_info;
   std::vector<bool> empty_blocks;
   Program* program;

   ssa_elimination_ctx(Program* program) : empty_blocks(program->blocks.size(), true), program(program) {}
};

void collect_phi_info(ssa_elimination_ctx& ctx)
{
   for (Block& block : ctx.program->blocks) {
      for (aco_ptr<Instruction>& phi : block.instructions) {
         if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi)
            break;

         for (unsigned i = 0; i < phi->operands.size(); i++) {
            if (phi->operands[i].isUndefined())
               continue;
            if (phi->operands[i].isTemp() && phi->operands[i].physReg() == phi->definitions[0].physReg())
               continue;

            std::vector<unsigned>& preds = phi->opcode == aco_opcode::p_phi ? block.logical_preds : block.linear_preds;
            phi_info& info = phi->opcode == aco_opcode::p_phi ? ctx.logical_phi_info : ctx.linear_phi_info;
            const auto result = info.emplace(preds[i], std::vector<std::pair<Definition, Operand>>());
            result.first->second.emplace_back(phi->definitions[0], phi->operands[i]);
            ctx.empty_blocks[preds[i]] = false;
         }
      }
   }
}

void insert_parallelcopies(ssa_elimination_ctx& ctx)
{
   /* insert the parallelcopies from logical phis before p_logical_end */
   for (auto&& entry : ctx.logical_phi_info) {
      Block& block = ctx.program->blocks[entry.first];
      unsigned idx = block.instructions.size() - 1;
      while (block.instructions[idx]->opcode != aco_opcode::p_logical_end) {
         assert(idx > 0);
         idx--;
      }

      std::vector<aco_ptr<Instruction>>::iterator it = std::next(block.instructions.begin(), idx);
      aco_ptr<Pseudo_instruction> pc{create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO, entry.second.size(), entry.second.size())};
      unsigned i = 0;
      for (std::pair<Definition, Operand>& pair : entry.second)
      {
         pc->definitions[i] = pair.first;
         pc->operands[i] = pair.second;
         i++;
      }
      /* this shouldn't be needed since we're only copying vgprs */
      pc->tmp_in_scc = false;
      block.instructions.insert(it, std::move(pc));
   }

   /* insert parallelcopies for the linear phis at the end of blocks just before the branch */
   for (auto&& entry : ctx.linear_phi_info) {
      Block& block = ctx.program->blocks[entry.first];
      std::vector<aco_ptr<Instruction>>::iterator it = block.instructions.end();
      --it;
      assert((*it)->format == Format::PSEUDO_BRANCH);
      aco_ptr<Pseudo_instruction> pc{create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO, entry.second.size(), entry.second.size())};
      unsigned i = 0;
      for (std::pair<Definition, Operand>& pair : entry.second)
      {
         pc->definitions[i] = pair.first;
         pc->operands[i] = pair.second;
         i++;
      }
      pc->tmp_in_scc = block.scc_live_out;
      pc->scratch_sgpr = block.scratch_sgpr;
      block.instructions.insert(it, std::move(pc));
   }
}


void try_remove_merge_block(ssa_elimination_ctx& ctx, Block* block)
{
   /* check if the successor is another merge block which restores exec */
   // TODO: divergent loops also restore exec
   if (block->linear_succs.size() != 1 ||
       !(ctx.program->blocks[block->linear_succs[0]].kind & block_kind_merge))
      return;

   /* check if this block is empty and the exec mask is not needed */
   for (aco_ptr<Instruction>& instr : block->instructions) {
      if (instr->opcode == aco_opcode::p_parallelcopy) {
         if (instr->definitions[0].physReg() == exec)
            continue;
         else
            return;
      }

      if (instr->opcode != aco_opcode::p_linear_phi &&
          instr->opcode != aco_opcode::p_phi &&
          instr->opcode != aco_opcode::p_logical_start &&
          instr->opcode != aco_opcode::p_logical_end &&
          instr->opcode != aco_opcode::p_branch)
         return;
   }

   /* keep the branch instruction and remove the rest */
   aco_ptr<Instruction> branch = std::move(block->instructions.back());
   block->instructions.clear();
   block->instructions.emplace_back(std::move(branch));
}

void try_remove_invert_block(ssa_elimination_ctx& ctx, Block* block)
{
   assert(block->linear_succs.size() == 2);
   if (block->linear_succs[0] != block->linear_succs[1])
      return;

   /* check if we can remove this block */
   for (aco_ptr<Instruction>& instr : block->instructions) {
      if (instr->opcode != aco_opcode::p_linear_phi &&
          instr->opcode != aco_opcode::p_phi &&
          instr->opcode != aco_opcode::s_andn2_b64 &&
          instr->opcode != aco_opcode::p_branch)
         return;
   }

   unsigned succ_idx = block->linear_succs[0];
   assert(block->linear_preds.size() == 2);
   for (unsigned i = 0; i < 2; i++) {
      Block *pred = &ctx.program->blocks[block->linear_preds[i]];
      pred->linear_succs[0] = succ_idx;
      ctx.program->blocks[succ_idx].linear_preds[i] = pred->index;

      Pseudo_branch_instruction *branch = static_cast<Pseudo_branch_instruction*>(pred->instructions.back().get());
      assert(branch->format == Format::PSEUDO_BRANCH);
      branch->target[0] = succ_idx;
      branch->target[1] = succ_idx;
   }

   block->instructions.clear();
   block->linear_preds.clear();
   block->linear_succs.clear();
}

void try_remove_simple_block(ssa_elimination_ctx& ctx, Block* block)
{
   for (aco_ptr<Instruction>& instr : block->instructions) {
      if (instr->opcode != aco_opcode::p_logical_start &&
          instr->opcode != aco_opcode::p_logical_end &&
          instr->opcode != aco_opcode::p_branch)
         return;
   }

   Block& pred = ctx.program->blocks[block->linear_preds[0]];
   Block& succ = ctx.program->blocks[block->linear_succs[0]];
   Pseudo_branch_instruction* branch = static_cast<Pseudo_branch_instruction*>(pred.instructions.back().get());
   if (branch->opcode == aco_opcode::p_branch) {
      branch->target[0] = succ.index;
      branch->target[1] = succ.index;
   } else if (branch->target[0] == block->index) {
      branch->target[0] = succ.index;
   } else if (branch->target[0] == succ.index) {
      assert(branch->target[1] == block->index);
      branch->target[1] = succ.index;
      branch->opcode = aco_opcode::p_branch;
   } else if (branch->target[1] == block->index) {
      /* check if there is a fall-through path from block to succ */
      bool falls_through = true;
      for (unsigned j = block->index + 1; falls_through && j < succ.index; j++) {
         assert(ctx.program->blocks[j].index == j);
         if (!ctx.program->blocks[j].instructions.empty())
            falls_through = false;
      }
      if (falls_through) {
         branch->target[1] = succ.index;
      } else {
         /* check if there is a fall-through path for the alternative target */
         for (unsigned j = block->index + 1; j < branch->target[0]; j++) {
            if (!ctx.program->blocks[j].instructions.empty())
               return;
         }

         /* This is a (uniform) break or continue block. The branch condition has to be inverted. */
         if (branch->opcode == aco_opcode::p_cbranch_z)
            branch->opcode = aco_opcode::p_cbranch_nz;
         else if (branch->opcode == aco_opcode::p_cbranch_nz)
            branch->opcode = aco_opcode::p_cbranch_z;
         else
            assert(false);
         /* also invert the linear successors */
         pred.linear_succs[0] = pred.linear_succs[1];
         pred.linear_succs[1] = succ.index;
         branch->target[1] = branch->target[0];
         branch->target[0] = succ.index;
      }
   } else {
      assert(false);
   }

   if (branch->target[0] == branch->target[1])
      branch->opcode = aco_opcode::p_branch;

   for (unsigned i = 0; i < pred.linear_succs.size(); i++)
      if (pred.linear_succs[i] == block->index)
         pred.linear_succs[i] = succ.index;

   for (unsigned i = 0; i < succ.linear_preds.size(); i++)
      if (succ.linear_preds[i] == block->index)
         succ.linear_preds[i] = pred.index;

   block->instructions.clear();
   block->linear_preds.clear();
   block->linear_succs.clear();
}

void jump_threading(ssa_elimination_ctx& ctx)
{
   for (int i = ctx.program->blocks.size() - 1; i >= 0; i--) {
      Block* block = &ctx.program->blocks[i];

      if (!ctx.empty_blocks[i])
         continue;

      if (block->kind & block_kind_invert) {
         try_remove_invert_block(ctx, block);
         continue;
      }

      if (block->linear_succs.size() > 1)
         continue;

      if (block->kind & block_kind_merge ||
          block->kind & block_kind_loop_exit)
         try_remove_merge_block(ctx, block);

      if (block->linear_preds.size() == 1)
         try_remove_simple_block(ctx, block);
   }
}

} /* end namespace */


void ssa_elimination(Program* program)
{
   ssa_elimination_ctx ctx(program);

   /* Collect information about every phi-instruction */
   collect_phi_info(ctx);

   /* eliminate empty blocks */
   jump_threading(ctx);

   /* insert parallelcopies from SSA elimination */
   insert_parallelcopies(ctx);

}
}