aboutsummaryrefslogtreecommitdiffstats
path: root/src/amd/compiler/aco_live_var_analysis.cpp
blob: c6995e44e8d3f0e2f233d0a20f3d57a3c67f2f7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
/*
 * Copyright © 2018 Valve Corporation
 * Copyright © 2018 Google
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
 *    Bas Nieuwenhuizen (bas@basnieuwenhuizen.nl)
 *
 */

#include "aco_ir.h"
#include "util/u_math.h"

#include <set>
#include <vector>

#include "vulkan/radv_shader.h"

namespace aco {
RegisterDemand get_live_changes(aco_ptr<Instruction>& instr)
{
   RegisterDemand changes;
   for (const Definition& def : instr->definitions) {
      if (!def.isTemp() || def.isKill())
         continue;
      changes += def.getTemp();
   }

   for (const Operand& op : instr->operands) {
      if (!op.isTemp() || !op.isFirstKill())
         continue;
      changes -= op.getTemp();
   }

   return changes;
}

RegisterDemand get_temp_registers(aco_ptr<Instruction>& instr)
{
   RegisterDemand temp_registers;

   for (Definition def : instr->definitions) {
      if (!def.isTemp())
         continue;
      if (def.isKill())
         temp_registers += def.getTemp();
   }

   for (Operand op : instr->operands) {
      if (op.isTemp() && op.isLateKill() && op.isFirstKill())
         temp_registers += op.getTemp();
   }

   return temp_registers;
}

RegisterDemand get_demand_before(RegisterDemand demand, aco_ptr<Instruction>& instr, aco_ptr<Instruction>& instr_before)
{
   demand -= get_live_changes(instr);
   demand -= get_temp_registers(instr);
   if (instr_before)
      demand += get_temp_registers(instr_before);
   return demand;
}

namespace {
void process_live_temps_per_block(Program *program, live& lives, Block* block,
                                  std::set<unsigned>& worklist, std::vector<uint16_t>& phi_sgpr_ops)
{
   std::vector<RegisterDemand>& register_demand = lives.register_demand[block->index];
   RegisterDemand new_demand;

   register_demand.resize(block->instructions.size());
   block->register_demand = RegisterDemand();
   std::set<Temp> live = lives.live_out[block->index];

   /* add the live_out_exec to live */
   bool exec_live = false;
   if (block->live_out_exec != Temp()) {
      live.insert(block->live_out_exec);
      exec_live = true;
   }

   /* initialize register demand */
   for (Temp t : live)
      new_demand += t;
   new_demand.sgpr -= phi_sgpr_ops[block->index];

   /* traverse the instructions backwards */
   int idx;
   for (idx = block->instructions.size() -1; idx >= 0; idx--) {
      Instruction *insn = block->instructions[idx].get();
      if (is_phi(insn))
         break;

      /* substract the 1 or 2 sgprs from exec */
      if (exec_live)
         assert(new_demand.sgpr >= (int16_t) program->lane_mask.size());
      register_demand[idx] = RegisterDemand(new_demand.vgpr, new_demand.sgpr - (exec_live ? program->lane_mask.size() : 0));

      /* KILL */
      for (Definition& definition : insn->definitions) {
         if (!definition.isTemp()) {
            continue;
         }
         if ((definition.isFixed() || definition.hasHint()) && definition.physReg() == vcc)
            program->needs_vcc = true;

         const Temp temp = definition.getTemp();
         const size_t n = live.erase(temp);

         if (n) {
            new_demand -= temp;
            definition.setKill(false);
         } else {
            register_demand[idx] += temp;
            definition.setKill(true);
         }

         if (definition.isFixed() && definition.physReg() == exec)
            exec_live = false;
      }

      /* GEN */
      if (insn->opcode == aco_opcode::p_logical_end) {
         new_demand.sgpr += phi_sgpr_ops[block->index];
      } else {
         /* we need to do this in a separate loop because the next one can
          * setKill() for several operands at once and we don't want to
          * overwrite that in a later iteration */
         for (Operand& op : insn->operands)
            op.setKill(false);

         for (unsigned i = 0; i < insn->operands.size(); ++i)
         {
            Operand& operand = insn->operands[i];
            if (!operand.isTemp())
               continue;
            if (operand.isFixed() && operand.physReg() == vcc)
               program->needs_vcc = true;
            const Temp temp = operand.getTemp();
            const bool inserted = live.insert(temp).second;
            if (inserted) {
               operand.setFirstKill(true);
               for (unsigned j = i + 1; j < insn->operands.size(); ++j) {
                  if (insn->operands[j].isTemp() && insn->operands[j].tempId() == operand.tempId()) {
                     insn->operands[j].setFirstKill(false);
                     insn->operands[j].setKill(true);
                  }
               }
               if (operand.isLateKill())
                  register_demand[idx] += temp;
               new_demand += temp;
            }

            if (operand.isFixed() && operand.physReg() == exec)
               exec_live = true;
         }
      }

      block->register_demand.update(register_demand[idx]);
   }

   /* update block's register demand for a last time */
   if (exec_live)
      assert(new_demand.sgpr >= (int16_t) program->lane_mask.size());
   new_demand.sgpr -= exec_live ? program->lane_mask.size() : 0;
   block->register_demand.update(new_demand);

   /* handle phi definitions */
   int phi_idx = idx;
   while (phi_idx >= 0) {
      register_demand[phi_idx] = new_demand;
      Instruction *insn = block->instructions[phi_idx].get();

      assert(is_phi(insn));
      assert(insn->definitions.size() == 1 && insn->definitions[0].isTemp());
      Definition& definition = insn->definitions[0];
      if ((definition.isFixed() || definition.hasHint()) && definition.physReg() == vcc)
         program->needs_vcc = true;
      const Temp temp = definition.getTemp();
      const size_t n = live.erase(temp);

      if (n)
         definition.setKill(false);
      else
         definition.setKill(true);

      phi_idx--;
   }

   /* now, we need to merge the live-ins into the live-out sets */
   for (Temp t : live) {
      std::vector<unsigned>& preds = t.is_linear() ? block->linear_preds : block->logical_preds;

#ifndef NDEBUG
      if (preds.empty())
         fprintf(stderr, "Temporary never defined or are defined after use: %%%d in BB%d\n", t.id(), block->index);
#endif

      for (unsigned pred_idx : preds) {
         auto it = lives.live_out[pred_idx].insert(t);
         if (it.second)
            worklist.insert(pred_idx);
      }
   }

   /* handle phi operands */
   phi_idx = idx;
   while (phi_idx >= 0) {
      Instruction *insn = block->instructions[phi_idx].get();
      assert(is_phi(insn));
      /* directly insert into the predecessors live-out set */
      std::vector<unsigned>& preds = insn->opcode == aco_opcode::p_phi
                                   ? block->logical_preds
                                   : block->linear_preds;
      for (unsigned i = 0; i < preds.size(); ++i) {
         Operand &operand = insn->operands[i];
         if (!operand.isTemp())
            continue;
         if (operand.isFixed() && operand.physReg() == vcc)
            program->needs_vcc = true;
         /* check if we changed an already processed block */
         const bool inserted = lives.live_out[preds[i]].insert(operand.getTemp()).second;
         if (inserted) {
            operand.setKill(true);
            worklist.insert(preds[i]);
            if (insn->opcode == aco_opcode::p_phi && operand.getTemp().type() == RegType::sgpr)
               phi_sgpr_ops[preds[i]] += operand.size();
         }
      }
      phi_idx--;
   }

   assert(block->index != 0 || (new_demand == RegisterDemand() && live.empty()));
}

unsigned calc_waves_per_workgroup(Program *program)
{
   /* When workgroup size is not known, just go with wave_size */
   unsigned workgroup_size = program->workgroup_size == UINT_MAX
                             ? program->wave_size
                             : program->workgroup_size;

   return align(workgroup_size, program->wave_size) / program->wave_size;
}
} /* end namespace */

uint16_t get_extra_sgprs(Program *program)
{
   if (program->chip_class >= GFX10) {
      assert(!program->needs_flat_scr);
      assert(!program->xnack_enabled);
      return 2;
   } else if (program->chip_class >= GFX8) {
      if (program->needs_flat_scr)
         return 6;
      else if (program->xnack_enabled)
         return 4;
      else if (program->needs_vcc)
         return 2;
      else
         return 0;
   } else {
      assert(!program->xnack_enabled);
      if (program->needs_flat_scr)
         return 4;
      else if (program->needs_vcc)
         return 2;
      else
         return 0;
   }
}

uint16_t get_sgpr_alloc(Program *program, uint16_t addressable_sgprs)
{
   assert(addressable_sgprs <= program->sgpr_limit);
   uint16_t sgprs = addressable_sgprs + get_extra_sgprs(program);
   uint16_t granule = program->sgpr_alloc_granule + 1;
   return align(std::max(sgprs, granule), granule);
}

uint16_t get_vgpr_alloc(Program *program, uint16_t addressable_vgprs)
{
   assert(addressable_vgprs <= program->vgpr_limit);
   uint16_t granule = program->vgpr_alloc_granule + 1;
   return align(std::max(addressable_vgprs, granule), granule);
}

uint16_t get_addr_sgpr_from_waves(Program *program, uint16_t max_waves)
{
    uint16_t sgprs = program->physical_sgprs / max_waves & ~program->sgpr_alloc_granule;
    sgprs -= get_extra_sgprs(program);
    return std::min(sgprs, program->sgpr_limit);
}

uint16_t get_addr_vgpr_from_waves(Program *program, uint16_t max_waves)
{
    uint16_t vgprs = 256 / max_waves & ~program->vgpr_alloc_granule;
    return std::min(vgprs, program->vgpr_limit);
}

void calc_min_waves(Program* program)
{
   unsigned waves_per_workgroup = calc_waves_per_workgroup(program);
   /* currently min_waves is in wave64 waves */
   if (program->wave_size == 32)
      waves_per_workgroup = DIV_ROUND_UP(waves_per_workgroup, 2);

   unsigned simd_per_cu = 4; /* TODO: different on Navi */
   bool wgp = program->chip_class >= GFX10; /* assume WGP is used on Navi */
   unsigned simd_per_cu_wgp = wgp ? simd_per_cu * 2 : simd_per_cu;

   program->min_waves = DIV_ROUND_UP(waves_per_workgroup, simd_per_cu_wgp);
}

void update_vgpr_sgpr_demand(Program* program, const RegisterDemand new_demand)
{
   /* TODO: max_waves_per_simd, simd_per_cu and the number of physical vgprs for Navi */
   unsigned max_waves_per_simd = 10;
   unsigned simd_per_cu = 4;

   bool wgp = program->chip_class >= GFX10; /* assume WGP is used on Navi */
   unsigned simd_per_cu_wgp = wgp ? simd_per_cu * 2 : simd_per_cu;
   unsigned lds_limit = wgp ? program->lds_limit * 2 : program->lds_limit;

   /* this won't compile, register pressure reduction necessary */
   if (new_demand.vgpr > program->vgpr_limit || new_demand.sgpr > program->sgpr_limit) {
      program->num_waves = 0;
      program->max_reg_demand = new_demand;
   } else {
      program->num_waves = program->physical_sgprs / get_sgpr_alloc(program, new_demand.sgpr);
      program->num_waves = std::min<uint16_t>(program->num_waves, 256 / get_vgpr_alloc(program, new_demand.vgpr));
      program->max_waves = max_waves_per_simd;

      /* adjust max_waves for workgroup and LDS limits */
      unsigned waves_per_workgroup = calc_waves_per_workgroup(program);
      unsigned workgroups_per_cu_wgp = max_waves_per_simd * simd_per_cu_wgp / waves_per_workgroup;
      if (program->config->lds_size) {
         unsigned lds = program->config->lds_size * program->lds_alloc_granule;
         workgroups_per_cu_wgp = std::min(workgroups_per_cu_wgp, lds_limit / lds);
      }
      if (waves_per_workgroup > 1 && program->chip_class < GFX10)
         workgroups_per_cu_wgp = std::min(workgroups_per_cu_wgp, 16u); /* TODO: is this a SI-only limit? what about Navi? */

      /* in cases like waves_per_workgroup=3 or lds=65536 and
       * waves_per_workgroup=1, we want the maximum possible number of waves per
       * SIMD and not the minimum. so DIV_ROUND_UP is used */
      program->max_waves = std::min<uint16_t>(program->max_waves, DIV_ROUND_UP(workgroups_per_cu_wgp * waves_per_workgroup, simd_per_cu_wgp));

      /* incorporate max_waves and calculate max_reg_demand */
      program->num_waves = std::min<uint16_t>(program->num_waves, program->max_waves);
      program->max_reg_demand.vgpr = get_addr_vgpr_from_waves(program, program->num_waves);
      program->max_reg_demand.sgpr = get_addr_sgpr_from_waves(program, program->num_waves);
   }
}

live live_var_analysis(Program* program,
                       const struct radv_nir_compiler_options *options)
{
   live result;
   result.live_out.resize(program->blocks.size());
   result.register_demand.resize(program->blocks.size());
   std::set<unsigned> worklist;
   std::vector<uint16_t> phi_sgpr_ops(program->blocks.size());
   RegisterDemand new_demand;

   program->needs_vcc = false;

   /* this implementation assumes that the block idx corresponds to the block's position in program->blocks vector */
   for (Block& block : program->blocks)
      worklist.insert(block.index);
   while (!worklist.empty()) {
      std::set<unsigned>::reverse_iterator b_it = worklist.rbegin();
      unsigned block_idx = *b_it;
      worklist.erase(block_idx);
      process_live_temps_per_block(program, result, &program->blocks[block_idx], worklist, phi_sgpr_ops);
      new_demand.update(program->blocks[block_idx].register_demand);
   }

   /* calculate the program's register demand and number of waves */
   update_vgpr_sgpr_demand(program, new_demand);

   return result;
}

}