aboutsummaryrefslogtreecommitdiffstats
path: root/src/amd/compiler/aco_instruction_selection_setup.cpp
blob: 644bc151fcbe484edbf0247cec32e4ae78bd5b3f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
/*
 * Copyright © 2018 Valve Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

#include <array>
#include <unordered_map>
#include "aco_ir.h"
#include "nir.h"
#include "nir_control_flow.h"
#include "vulkan/radv_shader.h"
#include "vulkan/radv_descriptor_set.h"
#include "vulkan/radv_shader_args.h"
#include "sid.h"
#include "ac_exp_param.h"
#include "ac_shader_util.h"

#include "util/u_math.h"

#define MAX_INLINE_PUSH_CONSTS 8

namespace aco {

struct shader_io_state {
   uint8_t mask[VARYING_SLOT_MAX];
   Temp temps[VARYING_SLOT_MAX * 4u];

   shader_io_state() {
      memset(mask, 0, sizeof(mask));
      std::fill_n(temps, VARYING_SLOT_MAX * 4u, Temp(0, RegClass::v1));
   }
};

struct isel_context {
   const struct radv_nir_compiler_options *options;
   struct radv_shader_args *args;
   Program *program;
   nir_shader *shader;
   uint32_t constant_data_offset;
   Block *block;
   bool *divergent_vals;
   std::unique_ptr<Temp[]> allocated;
   std::unordered_map<unsigned, std::array<Temp,NIR_MAX_VEC_COMPONENTS>> allocated_vec;
   Stage stage; /* Stage */
   bool has_gfx10_wave64_bpermute = false;
   struct {
      bool has_branch;
      uint16_t loop_nest_depth = 0;
      struct {
         unsigned header_idx;
         Block* exit;
         bool has_divergent_continue = false;
         bool has_divergent_branch = false;
      } parent_loop;
      struct {
         bool is_divergent = false;
      } parent_if;
      bool exec_potentially_empty_discard = false; /* set to false when loop_nest_depth==0 && parent_if.is_divergent==false */
      uint16_t exec_potentially_empty_break_depth = UINT16_MAX;
      /* Set to false when loop_nest_depth==exec_potentially_empty_break_depth
       * and parent_if.is_divergent==false. Called _break but it's also used for
       * loop continues. */
      bool exec_potentially_empty_break = false;
      std::unique_ptr<unsigned[]> nir_to_aco; /* NIR block index to ACO block index */
   } cf_info;

   Temp arg_temps[AC_MAX_ARGS];

   /* FS inputs */
   Temp persp_centroid, linear_centroid;

   /* GS inputs */
   Temp gs_wave_id;

   /* gathered information */
   uint64_t input_masks[MESA_SHADER_COMPUTE];
   uint64_t output_masks[MESA_SHADER_COMPUTE];

   /* VS output information */
   bool export_clip_dists;
   unsigned num_clip_distances;
   unsigned num_cull_distances;

   /* tessellation information */
   unsigned tcs_tess_lvl_out_loc;
   unsigned tcs_tess_lvl_in_loc;
   uint64_t tcs_temp_only_inputs;
   uint32_t tcs_num_inputs;
   uint32_t tcs_num_patches;
   bool tcs_in_out_eq = false;

   /* I/O information */
   shader_io_state inputs;
   shader_io_state outputs;
};

Temp get_arg(isel_context *ctx, struct ac_arg arg)
{
   assert(arg.used);
   return ctx->arg_temps[arg.arg_index];
}

unsigned get_interp_input(nir_intrinsic_op intrin, enum glsl_interp_mode interp)
{
   switch (interp) {
   case INTERP_MODE_SMOOTH:
   case INTERP_MODE_NONE:
      if (intrin == nir_intrinsic_load_barycentric_pixel ||
          intrin == nir_intrinsic_load_barycentric_at_sample ||
          intrin == nir_intrinsic_load_barycentric_at_offset)
         return S_0286CC_PERSP_CENTER_ENA(1);
      else if (intrin == nir_intrinsic_load_barycentric_centroid)
         return S_0286CC_PERSP_CENTROID_ENA(1);
      else if (intrin == nir_intrinsic_load_barycentric_sample)
         return S_0286CC_PERSP_SAMPLE_ENA(1);
      break;
   case INTERP_MODE_NOPERSPECTIVE:
      if (intrin == nir_intrinsic_load_barycentric_pixel)
         return S_0286CC_LINEAR_CENTER_ENA(1);
      else if (intrin == nir_intrinsic_load_barycentric_centroid)
         return S_0286CC_LINEAR_CENTROID_ENA(1);
      else if (intrin == nir_intrinsic_load_barycentric_sample)
         return S_0286CC_LINEAR_SAMPLE_ENA(1);
      break;
   default:
      break;
   }
   return 0;
}

/* If one side of a divergent IF ends in a branch and the other doesn't, we
 * might have to emit the contents of the side without the branch at the merge
 * block instead. This is so that we can use any SGPR live-out of the side
 * without the branch without creating a linear phi in the invert or merge block. */
bool
sanitize_if(nir_function_impl *impl, bool *divergent, nir_if *nif)
{
   if (!divergent[nif->condition.ssa->index])
      return false;

   nir_block *then_block = nir_if_last_then_block(nif);
   nir_block *else_block = nir_if_last_else_block(nif);
   bool then_jump = nir_block_ends_in_jump(then_block) || nir_block_is_unreachable(then_block);
   bool else_jump = nir_block_ends_in_jump(else_block) || nir_block_is_unreachable(else_block);
   if (then_jump == else_jump)
      return false;

   /* If the continue from block is empty then return as there is nothing to
    * move.
    */
   if (nir_cf_list_is_empty_block(else_jump ? &nif->then_list : &nif->else_list))
      return false;

   /* Even though this if statement has a jump on one side, we may still have
    * phis afterwards.  Single-source phis can be produced by loop unrolling
    * or dead control-flow passes and are perfectly legal.  Run a quick phi
    * removal on the block after the if to clean up any such phis.
    */
   nir_opt_remove_phis_block(nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node)));

   /* Finally, move the continue from branch after the if-statement. */
   nir_block *last_continue_from_blk = else_jump ? then_block : else_block;
   nir_block *first_continue_from_blk = else_jump ?
      nir_if_first_then_block(nif) : nir_if_first_else_block(nif);

   nir_cf_list tmp;
   nir_cf_extract(&tmp, nir_before_block(first_continue_from_blk),
                        nir_after_block(last_continue_from_blk));
   nir_cf_reinsert(&tmp, nir_after_cf_node(&nif->cf_node));

   /* nir_cf_extract() invalidates dominance metadata, but it should still be
    * correct because of the specific type of transformation we did. Block
    * indices are not valid except for block_0's, which is all we care about for
    * nir_block_is_unreachable(). */
   impl->valid_metadata =
      (nir_metadata)(impl->valid_metadata | nir_metadata_dominance | nir_metadata_block_index);

   return true;
}

bool
sanitize_cf_list(nir_function_impl *impl, bool *divergent, struct exec_list *cf_list)
{
   bool progress = false;
   foreach_list_typed(nir_cf_node, cf_node, node, cf_list) {
      switch (cf_node->type) {
      case nir_cf_node_block:
         break;
      case nir_cf_node_if: {
         nir_if *nif = nir_cf_node_as_if(cf_node);
         progress |= sanitize_cf_list(impl, divergent, &nif->then_list);
         progress |= sanitize_cf_list(impl, divergent, &nif->else_list);
         progress |= sanitize_if(impl, divergent, nif);
         break;
      }
      case nir_cf_node_loop: {
         nir_loop *loop = nir_cf_node_as_loop(cf_node);
         progress |= sanitize_cf_list(impl, divergent, &loop->body);
         break;
      }
      case nir_cf_node_function:
         unreachable("Invalid cf type");
      }
   }

   return progress;
}

void init_context(isel_context *ctx, nir_shader *shader)
{
   nir_function_impl *impl = nir_shader_get_entrypoint(shader);
   unsigned lane_mask_size = ctx->program->lane_mask.size();

   ctx->shader = shader;
   ctx->divergent_vals = nir_divergence_analysis(shader, nir_divergence_view_index_uniform);

   /* sanitize control flow */
   nir_metadata_require(impl, nir_metadata_dominance);
   sanitize_cf_list(impl, ctx->divergent_vals, &impl->body);
   nir_metadata_preserve(impl, (nir_metadata)~nir_metadata_block_index);

   /* we'll need this for isel */
   nir_metadata_require(impl, nir_metadata_block_index);

   if (!(ctx->stage & sw_gs_copy) && ctx->options->dump_preoptir) {
      fprintf(stderr, "NIR shader before instruction selection:\n");
      nir_print_shader(shader, stderr);
   }

   std::unique_ptr<Temp[]> allocated{new Temp[impl->ssa_alloc]()};

   unsigned spi_ps_inputs = 0;

   std::unique_ptr<unsigned[]> nir_to_aco{new unsigned[impl->num_blocks]()};

   bool done = false;
   while (!done) {
      done = true;
      nir_foreach_block(block, impl) {
         nir_foreach_instr(instr, block) {
            switch(instr->type) {
            case nir_instr_type_alu: {
               nir_alu_instr *alu_instr = nir_instr_as_alu(instr);
               unsigned size =  alu_instr->dest.dest.ssa.num_components;
               if (alu_instr->dest.dest.ssa.bit_size == 64)
                  size *= 2;
               RegType type = RegType::sgpr;
               switch(alu_instr->op) {
                  case nir_op_fmul:
                  case nir_op_fadd:
                  case nir_op_fsub:
                  case nir_op_fmax:
                  case nir_op_fmin:
                  case nir_op_fmax3:
                  case nir_op_fmin3:
                  case nir_op_fmed3:
                  case nir_op_fneg:
                  case nir_op_fabs:
                  case nir_op_fsat:
                  case nir_op_fsign:
                  case nir_op_frcp:
                  case nir_op_frsq:
                  case nir_op_fsqrt:
                  case nir_op_fexp2:
                  case nir_op_flog2:
                  case nir_op_ffract:
                  case nir_op_ffloor:
                  case nir_op_fceil:
                  case nir_op_ftrunc:
                  case nir_op_fround_even:
                  case nir_op_fsin:
                  case nir_op_fcos:
                  case nir_op_f2f32:
                  case nir_op_f2f64:
                  case nir_op_u2f32:
                  case nir_op_u2f64:
                  case nir_op_i2f32:
                  case nir_op_i2f64:
                  case nir_op_pack_half_2x16:
                  case nir_op_unpack_half_2x16_split_x:
                  case nir_op_unpack_half_2x16_split_y:
                  case nir_op_fddx:
                  case nir_op_fddy:
                  case nir_op_fddx_fine:
                  case nir_op_fddy_fine:
                  case nir_op_fddx_coarse:
                  case nir_op_fddy_coarse:
                  case nir_op_fquantize2f16:
                  case nir_op_ldexp:
                  case nir_op_frexp_sig:
                  case nir_op_frexp_exp:
                  case nir_op_cube_face_index:
                  case nir_op_cube_face_coord:
                     type = RegType::vgpr;
                     break;
                  case nir_op_flt:
                  case nir_op_fge:
                  case nir_op_feq:
                  case nir_op_fne:
                  case nir_op_ilt:
                  case nir_op_ige:
                  case nir_op_ult:
                  case nir_op_uge:
                  case nir_op_ieq:
                  case nir_op_ine:
                  case nir_op_i2b1:
                     size = lane_mask_size;
                     break;
                  case nir_op_f2i64:
                  case nir_op_f2u64:
                  case nir_op_b2i32:
                  case nir_op_b2f32:
                  case nir_op_f2i32:
                  case nir_op_f2u32:
                     type = ctx->divergent_vals[alu_instr->dest.dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
                     break;
                  case nir_op_bcsel:
                     if (alu_instr->dest.dest.ssa.bit_size == 1) {
                        size = lane_mask_size;
                     } else {
                        if (ctx->divergent_vals[alu_instr->dest.dest.ssa.index]) {
                           type = RegType::vgpr;
                        } else {
                           if (allocated[alu_instr->src[1].src.ssa->index].type() == RegType::vgpr ||
                               allocated[alu_instr->src[2].src.ssa->index].type() == RegType::vgpr) {
                              type = RegType::vgpr;
                           }
                        }
                        if (alu_instr->src[1].src.ssa->num_components == 1 && alu_instr->src[2].src.ssa->num_components == 1) {
                           assert(allocated[alu_instr->src[1].src.ssa->index].size() == allocated[alu_instr->src[2].src.ssa->index].size());
                           size = allocated[alu_instr->src[1].src.ssa->index].size();
                        }
                     }
                     break;
                  case nir_op_mov:
                     if (alu_instr->dest.dest.ssa.bit_size == 1) {
                        size = lane_mask_size;
                     } else {
                        type = ctx->divergent_vals[alu_instr->dest.dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
                     }
                     break;
                  default:
                     if (alu_instr->dest.dest.ssa.bit_size == 1) {
                        size = lane_mask_size;
                     } else {
                        for (unsigned i = 0; i < nir_op_infos[alu_instr->op].num_inputs; i++) {
                           if (allocated[alu_instr->src[i].src.ssa->index].type() == RegType::vgpr)
                              type = RegType::vgpr;
                        }
                     }
                     break;
               }
               allocated[alu_instr->dest.dest.ssa.index] = Temp(0, RegClass(type, size));
               break;
            }
            case nir_instr_type_load_const: {
               unsigned size = nir_instr_as_load_const(instr)->def.num_components;
               if (nir_instr_as_load_const(instr)->def.bit_size == 64)
                  size *= 2;
               else if (nir_instr_as_load_const(instr)->def.bit_size == 1)
                  size *= lane_mask_size;
               allocated[nir_instr_as_load_const(instr)->def.index] = Temp(0, RegClass(RegType::sgpr, size));
               break;
            }
            case nir_instr_type_intrinsic: {
               nir_intrinsic_instr *intrinsic = nir_instr_as_intrinsic(instr);
               if (!nir_intrinsic_infos[intrinsic->intrinsic].has_dest)
                  break;
               unsigned size =  intrinsic->dest.ssa.num_components;
               if (intrinsic->dest.ssa.bit_size == 64)
                  size *= 2;
               RegType type = RegType::sgpr;
               switch(intrinsic->intrinsic) {
                  case nir_intrinsic_load_push_constant:
                  case nir_intrinsic_load_work_group_id:
                  case nir_intrinsic_load_num_work_groups:
                  case nir_intrinsic_load_subgroup_id:
                  case nir_intrinsic_load_num_subgroups:
                  case nir_intrinsic_load_first_vertex:
                  case nir_intrinsic_load_base_instance:
                  case nir_intrinsic_get_buffer_size:
                  case nir_intrinsic_vote_all:
                  case nir_intrinsic_vote_any:
                  case nir_intrinsic_read_first_invocation:
                  case nir_intrinsic_read_invocation:
                  case nir_intrinsic_first_invocation:
                     type = RegType::sgpr;
                     if (intrinsic->dest.ssa.bit_size == 1)
                        size = lane_mask_size;
                     break;
                  case nir_intrinsic_ballot:
                     type = RegType::sgpr;
                     break;
                  case nir_intrinsic_load_sample_id:
                  case nir_intrinsic_load_sample_mask_in:
                  case nir_intrinsic_load_input:
                  case nir_intrinsic_load_output:
                  case nir_intrinsic_load_input_vertex:
                  case nir_intrinsic_load_per_vertex_input:
                  case nir_intrinsic_load_per_vertex_output:
                  case nir_intrinsic_load_vertex_id:
                  case nir_intrinsic_load_vertex_id_zero_base:
                  case nir_intrinsic_load_barycentric_sample:
                  case nir_intrinsic_load_barycentric_pixel:
                  case nir_intrinsic_load_barycentric_model:
                  case nir_intrinsic_load_barycentric_centroid:
                  case nir_intrinsic_load_barycentric_at_sample:
                  case nir_intrinsic_load_barycentric_at_offset:
                  case nir_intrinsic_load_interpolated_input:
                  case nir_intrinsic_load_frag_coord:
                  case nir_intrinsic_load_sample_pos:
                  case nir_intrinsic_load_layer_id:
                  case nir_intrinsic_load_local_invocation_id:
                  case nir_intrinsic_load_local_invocation_index:
                  case nir_intrinsic_load_subgroup_invocation:
                  case nir_intrinsic_load_tess_coord:
                  case nir_intrinsic_write_invocation_amd:
                  case nir_intrinsic_mbcnt_amd:
                  case nir_intrinsic_load_instance_id:
                  case nir_intrinsic_ssbo_atomic_add:
                  case nir_intrinsic_ssbo_atomic_imin:
                  case nir_intrinsic_ssbo_atomic_umin:
                  case nir_intrinsic_ssbo_atomic_imax:
                  case nir_intrinsic_ssbo_atomic_umax:
                  case nir_intrinsic_ssbo_atomic_and:
                  case nir_intrinsic_ssbo_atomic_or:
                  case nir_intrinsic_ssbo_atomic_xor:
                  case nir_intrinsic_ssbo_atomic_exchange:
                  case nir_intrinsic_ssbo_atomic_comp_swap:
                  case nir_intrinsic_global_atomic_add:
                  case nir_intrinsic_global_atomic_imin:
                  case nir_intrinsic_global_atomic_umin:
                  case nir_intrinsic_global_atomic_imax:
                  case nir_intrinsic_global_atomic_umax:
                  case nir_intrinsic_global_atomic_and:
                  case nir_intrinsic_global_atomic_or:
                  case nir_intrinsic_global_atomic_xor:
                  case nir_intrinsic_global_atomic_exchange:
                  case nir_intrinsic_global_atomic_comp_swap:
                  case nir_intrinsic_image_deref_atomic_add:
                  case nir_intrinsic_image_deref_atomic_umin:
                  case nir_intrinsic_image_deref_atomic_imin:
                  case nir_intrinsic_image_deref_atomic_umax:
                  case nir_intrinsic_image_deref_atomic_imax:
                  case nir_intrinsic_image_deref_atomic_and:
                  case nir_intrinsic_image_deref_atomic_or:
                  case nir_intrinsic_image_deref_atomic_xor:
                  case nir_intrinsic_image_deref_atomic_exchange:
                  case nir_intrinsic_image_deref_atomic_comp_swap:
                  case nir_intrinsic_image_deref_size:
                  case nir_intrinsic_shared_atomic_add:
                  case nir_intrinsic_shared_atomic_imin:
                  case nir_intrinsic_shared_atomic_umin:
                  case nir_intrinsic_shared_atomic_imax:
                  case nir_intrinsic_shared_atomic_umax:
                  case nir_intrinsic_shared_atomic_and:
                  case nir_intrinsic_shared_atomic_or:
                  case nir_intrinsic_shared_atomic_xor:
                  case nir_intrinsic_shared_atomic_exchange:
                  case nir_intrinsic_shared_atomic_comp_swap:
                  case nir_intrinsic_load_scratch:
                  case nir_intrinsic_load_invocation_id:
                  case nir_intrinsic_load_primitive_id:
                     type = RegType::vgpr;
                     break;
                  case nir_intrinsic_shuffle:
                  case nir_intrinsic_quad_broadcast:
                  case nir_intrinsic_quad_swap_horizontal:
                  case nir_intrinsic_quad_swap_vertical:
                  case nir_intrinsic_quad_swap_diagonal:
                  case nir_intrinsic_quad_swizzle_amd:
                  case nir_intrinsic_masked_swizzle_amd:
                  case nir_intrinsic_inclusive_scan:
                  case nir_intrinsic_exclusive_scan:
                     if (intrinsic->dest.ssa.bit_size == 1) {
                        size = lane_mask_size;
                        type = RegType::sgpr;
                     } else if (!ctx->divergent_vals[intrinsic->dest.ssa.index]) {
                        type = RegType::sgpr;
                     } else {
                        type = RegType::vgpr;
                     }
                     break;
                  case nir_intrinsic_load_view_index:
                     type = ctx->stage == fragment_fs ? RegType::vgpr : RegType::sgpr;
                     break;
                  case nir_intrinsic_load_front_face:
                  case nir_intrinsic_load_helper_invocation:
                  case nir_intrinsic_is_helper_invocation:
                     type = RegType::sgpr;
                     size = lane_mask_size;
                     break;
                  case nir_intrinsic_reduce:
                     if (intrinsic->dest.ssa.bit_size == 1) {
                        size = lane_mask_size;
                        type = RegType::sgpr;
                     } else if (!ctx->divergent_vals[intrinsic->dest.ssa.index]) {
                        type = RegType::sgpr;
                     } else {
                        type = RegType::vgpr;
                     }
                     break;
                  case nir_intrinsic_load_ubo:
                  case nir_intrinsic_load_ssbo:
                  case nir_intrinsic_load_global:
                  case nir_intrinsic_vulkan_resource_index:
                     type = ctx->divergent_vals[intrinsic->dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
                     break;
                  /* due to copy propagation, the swizzled imov is removed if num dest components == 1 */
                  case nir_intrinsic_load_shared:
                     if (ctx->divergent_vals[intrinsic->dest.ssa.index])
                        type = RegType::vgpr;
                     else
                        type = RegType::sgpr;
                     break;
                  default:
                     for (unsigned i = 0; i < nir_intrinsic_infos[intrinsic->intrinsic].num_srcs; i++) {
                        if (allocated[intrinsic->src[i].ssa->index].type() == RegType::vgpr)
                           type = RegType::vgpr;
                     }
                     break;
               }
               allocated[intrinsic->dest.ssa.index] = Temp(0, RegClass(type, size));

               switch(intrinsic->intrinsic) {
                  case nir_intrinsic_load_barycentric_sample:
                  case nir_intrinsic_load_barycentric_pixel:
                  case nir_intrinsic_load_barycentric_centroid:
                  case nir_intrinsic_load_barycentric_at_sample:
                  case nir_intrinsic_load_barycentric_at_offset: {
                     glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(intrinsic);
                     spi_ps_inputs |= get_interp_input(intrinsic->intrinsic, mode);
                     break;
                  }
                  case nir_intrinsic_load_barycentric_model:
                     spi_ps_inputs |= S_0286CC_PERSP_PULL_MODEL_ENA(1);
                     break;
                  case nir_intrinsic_load_front_face:
                     spi_ps_inputs |= S_0286CC_FRONT_FACE_ENA(1);
                     break;
                  case nir_intrinsic_load_frag_coord:
                  case nir_intrinsic_load_sample_pos: {
                     uint8_t mask = nir_ssa_def_components_read(&intrinsic->dest.ssa);
                     for (unsigned i = 0; i < 4; i++) {
                        if (mask & (1 << i))
                           spi_ps_inputs |= S_0286CC_POS_X_FLOAT_ENA(1) << i;

                     }
                     break;
                  }
                  case nir_intrinsic_load_sample_id:
                     spi_ps_inputs |= S_0286CC_ANCILLARY_ENA(1);
                     break;
                  case nir_intrinsic_load_sample_mask_in:
                     spi_ps_inputs |= S_0286CC_ANCILLARY_ENA(1);
                     spi_ps_inputs |= S_0286CC_SAMPLE_COVERAGE_ENA(1);
                     break;
                  default:
                     break;
               }
               break;
            }
            case nir_instr_type_tex: {
               nir_tex_instr* tex = nir_instr_as_tex(instr);
               unsigned size = tex->dest.ssa.num_components;

               if (tex->dest.ssa.bit_size == 64)
                  size *= 2;
               if (tex->op == nir_texop_texture_samples)
                  assert(!ctx->divergent_vals[tex->dest.ssa.index]);
               if (ctx->divergent_vals[tex->dest.ssa.index])
                  allocated[tex->dest.ssa.index] = Temp(0, RegClass(RegType::vgpr, size));
               else
                  allocated[tex->dest.ssa.index] = Temp(0, RegClass(RegType::sgpr, size));
               break;
            }
            case nir_instr_type_parallel_copy: {
               nir_foreach_parallel_copy_entry(entry, nir_instr_as_parallel_copy(instr)) {
                  allocated[entry->dest.ssa.index] = allocated[entry->src.ssa->index];
               }
               break;
            }
            case nir_instr_type_ssa_undef: {
               unsigned size = nir_instr_as_ssa_undef(instr)->def.num_components;
               if (nir_instr_as_ssa_undef(instr)->def.bit_size == 64)
                  size *= 2;
               else if (nir_instr_as_ssa_undef(instr)->def.bit_size == 1)
                  size *= lane_mask_size;
               allocated[nir_instr_as_ssa_undef(instr)->def.index] = Temp(0, RegClass(RegType::sgpr, size));
               break;
            }
            case nir_instr_type_phi: {
               nir_phi_instr* phi = nir_instr_as_phi(instr);
               RegType type;
               unsigned size = phi->dest.ssa.num_components;

               if (phi->dest.ssa.bit_size == 1) {
                  assert(size == 1 && "multiple components not yet supported on boolean phis.");
                  type = RegType::sgpr;
                  size *= lane_mask_size;
                  allocated[phi->dest.ssa.index] = Temp(0, RegClass(type, size));
                  break;
               }

               if (ctx->divergent_vals[phi->dest.ssa.index]) {
                  type = RegType::vgpr;
               } else {
                  type = RegType::sgpr;
                  nir_foreach_phi_src (src, phi) {
                     if (allocated[src->src.ssa->index].type() == RegType::vgpr)
                        type = RegType::vgpr;
                     if (allocated[src->src.ssa->index].type() == RegType::none)
                        done = false;
                  }
               }

               size *= phi->dest.ssa.bit_size == 64 ? 2 : 1;
               RegClass rc = RegClass(type, size);
               if (rc != allocated[phi->dest.ssa.index].regClass()) {
                  done = false;
               } else {
                  nir_foreach_phi_src(src, phi)
                     assert(allocated[src->src.ssa->index].size() == rc.size());
               }
               allocated[phi->dest.ssa.index] = Temp(0, rc);
               break;
            }
            default:
               break;
            }
         }
      }
   }

   if (G_0286CC_POS_W_FLOAT_ENA(spi_ps_inputs)) {
      /* If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be enabled too */
      spi_ps_inputs |= S_0286CC_PERSP_CENTER_ENA(1);
   }

   if (!(spi_ps_inputs & 0x7F)) {
      /* At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled */
      spi_ps_inputs |= S_0286CC_PERSP_CENTER_ENA(1);
   }

   ctx->program->config->spi_ps_input_ena = spi_ps_inputs;
   ctx->program->config->spi_ps_input_addr = spi_ps_inputs;

   for (unsigned i = 0; i < impl->ssa_alloc; i++)
      allocated[i] = Temp(ctx->program->allocateId(), allocated[i].regClass());

   ctx->allocated.reset(allocated.release());
   ctx->cf_info.nir_to_aco.reset(nir_to_aco.release());
}

Pseudo_instruction *add_startpgm(struct isel_context *ctx)
{
   unsigned arg_count = ctx->args->ac.arg_count;
   if (ctx->stage == fragment_fs) {
      /* LLVM optimizes away unused FS inputs and computes spi_ps_input_addr
       * itself and then communicates the results back via the ELF binary.
       * Mirror what LLVM does by re-mapping the VGPR arguments here.
       *
       * TODO: If we made the FS input scanning code into a separate pass that
       * could run before argument setup, then this wouldn't be necessary
       * anymore.
       */
      struct ac_shader_args *args = &ctx->args->ac;
      arg_count = 0;
      for (unsigned i = 0, vgpr_arg = 0, vgpr_reg = 0; i < args->arg_count; i++) {
         if (args->args[i].file != AC_ARG_VGPR) {
            arg_count++;
            continue;
         }

         if (!(ctx->program->config->spi_ps_input_addr & (1 << vgpr_arg))) {
            args->args[i].skip = true;
         } else {
            args->args[i].offset = vgpr_reg;
            vgpr_reg += args->args[i].size;
            arg_count++;
         }
         vgpr_arg++;
      }
   }

   aco_ptr<Pseudo_instruction> startpgm{create_instruction<Pseudo_instruction>(aco_opcode::p_startpgm, Format::PSEUDO, 0, arg_count + 1)};
   for (unsigned i = 0, arg = 0; i < ctx->args->ac.arg_count; i++) {
      if (ctx->args->ac.args[i].skip)
         continue;

      enum ac_arg_regfile file = ctx->args->ac.args[i].file;
      unsigned size = ctx->args->ac.args[i].size;
      unsigned reg = ctx->args->ac.args[i].offset;
      RegClass type = RegClass(file == AC_ARG_SGPR ? RegType::sgpr : RegType::vgpr, size);
      Temp dst = Temp{ctx->program->allocateId(), type};
      ctx->arg_temps[i] = dst;
      startpgm->definitions[arg] = Definition(dst);
      startpgm->definitions[arg].setFixed(PhysReg{file == AC_ARG_SGPR ? reg : reg + 256});
      arg++;
   }
   startpgm->definitions[arg_count] = Definition{ctx->program->allocateId(), exec, ctx->program->lane_mask};
   Pseudo_instruction *instr = startpgm.get();
   ctx->block->instructions.push_back(std::move(startpgm));

   /* Stash these in the program so that they can be accessed later when
    * handling spilling.
    */
   ctx->program->private_segment_buffer = get_arg(ctx, ctx->args->ring_offsets);
   ctx->program->scratch_offset = get_arg(ctx, ctx->args->scratch_offset);

   return instr;
}

int
type_size(const struct glsl_type *type, bool bindless)
{
   // TODO: don't we need type->std430_base_alignment() here?
   return glsl_count_attribute_slots(type, false);
}

void
shared_var_info(const struct glsl_type *type, unsigned *size, unsigned *align)
{
   assert(glsl_type_is_vector_or_scalar(type));

   uint32_t comp_size = glsl_type_is_boolean(type)
      ? 4 : glsl_get_bit_size(type) / 8;
   unsigned length = glsl_get_vector_elements(type);
   *size = comp_size * length,
   *align = comp_size;
}

static bool
mem_vectorize_callback(unsigned align, unsigned bit_size,
                       unsigned num_components, unsigned high_offset,
                       nir_intrinsic_instr *low, nir_intrinsic_instr *high)
{
   if ((bit_size != 32 && bit_size != 64) || num_components > 4)
      return false;

   /* >128 bit loads are split except with SMEM */
   if (bit_size * num_components > 128)
      return false;

   switch (low->intrinsic) {
   case nir_intrinsic_load_ubo:
   case nir_intrinsic_load_ssbo:
   case nir_intrinsic_store_ssbo:
   case nir_intrinsic_load_push_constant:
      return align % 4 == 0;
   case nir_intrinsic_load_deref:
   case nir_intrinsic_store_deref:
      assert(nir_src_as_deref(low->src[0])->mode == nir_var_mem_shared);
      /* fallthrough */
   case nir_intrinsic_load_shared:
   case nir_intrinsic_store_shared:
      if (bit_size * num_components > 64) /* 96 and 128 bit loads require 128 bit alignment and are split otherwise */
         return align % 16 == 0;
      else
         return align % 4 == 0;
   default:
      return false;
   }
   return false;
}

void
setup_vs_output_info(isel_context *ctx, nir_shader *nir,
                     bool export_prim_id, bool export_clip_dists,
                     radv_vs_output_info *outinfo)
{
   memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
          sizeof(outinfo->vs_output_param_offset));

   outinfo->param_exports = 0;
   int pos_written = 0x1;
   if (outinfo->writes_pointsize || outinfo->writes_viewport_index || outinfo->writes_layer)
      pos_written |= 1 << 1;

   uint64_t mask = ctx->output_masks[nir->info.stage];
   while (mask) {
      int idx = u_bit_scan64(&mask);
      if (idx >= VARYING_SLOT_VAR0 || idx == VARYING_SLOT_LAYER || idx == VARYING_SLOT_PRIMITIVE_ID ||
          ((idx == VARYING_SLOT_CLIP_DIST0 || idx == VARYING_SLOT_CLIP_DIST1) && export_clip_dists)) {
         if (outinfo->vs_output_param_offset[idx] == AC_EXP_PARAM_UNDEFINED)
            outinfo->vs_output_param_offset[idx] = outinfo->param_exports++;
      }
   }
   if (outinfo->writes_layer &&
       outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] == AC_EXP_PARAM_UNDEFINED) {
      /* when ctx->options->key.has_multiview_view_index = true, the layer
       * variable isn't declared in NIR and it's isel's job to get the layer */
      outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] = outinfo->param_exports++;
   }

   if (export_prim_id) {
      assert(outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] == AC_EXP_PARAM_UNDEFINED);
      outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = outinfo->param_exports++;
   }

   ctx->export_clip_dists = export_clip_dists;
   ctx->num_clip_distances = util_bitcount(outinfo->clip_dist_mask);
   ctx->num_cull_distances = util_bitcount(outinfo->cull_dist_mask);

   assert(ctx->num_clip_distances + ctx->num_cull_distances <= 8);

   if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
      pos_written |= 1 << 2;
   if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
      pos_written |= 1 << 3;

   outinfo->pos_exports = util_bitcount(pos_written);
}

void
setup_vs_variables(isel_context *ctx, nir_shader *nir)
{
   nir_foreach_variable(variable, &nir->inputs)
   {
      variable->data.driver_location = variable->data.location * 4;
   }
   nir_foreach_variable(variable, &nir->outputs)
   {
      if (ctx->stage == vertex_geometry_gs)
         variable->data.driver_location = util_bitcount64(ctx->output_masks[nir->info.stage] & ((1ull << variable->data.location) - 1ull)) * 4;
      else if (ctx->stage == vertex_es ||
               ctx->stage == vertex_ls ||
               ctx->stage == vertex_tess_control_hs)
         // TODO: make this more compact
         variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
      else if (ctx->stage == vertex_vs)
         variable->data.driver_location = variable->data.location * 4;
      else
         unreachable("Unsupported VS stage");
   }

   if (ctx->stage == vertex_vs) {
      radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
      setup_vs_output_info(ctx, nir, outinfo->export_prim_id,
                           ctx->options->key.vs_common_out.export_clip_dists, outinfo);
   } else if (ctx->stage == vertex_geometry_gs || ctx->stage == vertex_es) {
      /* TODO: radv_nir_shader_info_pass() already sets this but it's larger
       * than it needs to be in order to set it better, we have to improve
       * radv_nir_shader_info_pass() because gfx9_get_gs_info() uses
       * esgs_itemsize and has to be done before compilation
       */
      /* radv_es_output_info *outinfo = &ctx->program->info->vs.es_info;
      outinfo->esgs_itemsize = util_bitcount64(ctx->output_masks[nir->info.stage]) * 16u; */
   }
}

void setup_gs_variables(isel_context *ctx, nir_shader *nir)
{
   if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
      nir_foreach_variable(variable, &nir->inputs) {
         variable->data.driver_location = util_bitcount64(ctx->input_masks[nir->info.stage] & ((1ull << variable->data.location) - 1ull)) * 4;
      }
   } else if (ctx->stage == geometry_gs) {
      //TODO: make this more compact
      nir_foreach_variable(variable, &nir->inputs) {
         variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot)variable->data.location) * 4;
      }
   } else {
      unreachable("Unsupported GS stage.");
   }

   nir_foreach_variable(variable, &nir->outputs) {
      variable->data.driver_location = variable->data.location * 4;
   }

   if (ctx->stage == vertex_geometry_gs)
      ctx->program->info->gs.es_type = MESA_SHADER_VERTEX;
   else if (ctx->stage == tess_eval_geometry_gs)
      ctx->program->info->gs.es_type = MESA_SHADER_TESS_EVAL;
}

void
setup_tcs_info(isel_context *ctx, nir_shader *nir)
{
   /* When the number of TCS input and output vertices are the same (typically 3):
    * - There is an equal amount of LS and HS invocations
    * - In case of merged LSHS shaders, the LS and HS halves of the shader
    *   always process the exact same vertex. We can use this knowledge to optimize them.
    */
   ctx->tcs_in_out_eq =
      ctx->stage == vertex_tess_control_hs &&
      ctx->args->options->key.tcs.input_vertices == nir->info.tess.tcs_vertices_out;

   if (ctx->stage == tess_control_hs) {
      ctx->tcs_num_inputs = ctx->args->options->key.tcs.num_inputs;
   } else if (ctx->stage == vertex_tess_control_hs) {
      ctx->tcs_num_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);

      if (ctx->tcs_in_out_eq) {
         ctx->tcs_temp_only_inputs = ~nir->info.tess.tcs_cross_invocation_inputs_read &
                                     ~nir->info.inputs_read_indirectly &
                                     nir->info.inputs_read;
      }
   } else {
      unreachable("Unsupported TCS shader stage");
   }

   ctx->tcs_num_patches = get_tcs_num_patches(
                             ctx->args->options->key.tcs.input_vertices,
                             nir->info.tess.tcs_vertices_out,
                             ctx->tcs_num_inputs,
                             ctx->args->shader_info->tcs.outputs_written,
                             ctx->args->shader_info->tcs.patch_outputs_written,
                             ctx->args->options->tess_offchip_block_dw_size,
                             ctx->args->options->chip_class,
                             ctx->args->options->family);
   unsigned lds_size = calculate_tess_lds_size(
                             ctx->args->options->key.tcs.input_vertices,
                             nir->info.tess.tcs_vertices_out,
                             ctx->tcs_num_inputs,
                             ctx->tcs_num_patches,
                             ctx->args->shader_info->tcs.outputs_written,
                             ctx->args->shader_info->tcs.patch_outputs_written);

   ctx->args->shader_info->tcs.num_patches = ctx->tcs_num_patches;
   ctx->args->shader_info->tcs.lds_size = lds_size;
   ctx->program->config->lds_size = (lds_size + ctx->program->lds_alloc_granule - 1) /
                                    ctx->program->lds_alloc_granule;
}

void
setup_tcs_variables(isel_context *ctx, nir_shader *nir)
{
   nir_foreach_variable(variable, &nir->inputs) {
      variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
   }

   nir_foreach_variable(variable, &nir->outputs) {
      variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
   }

   ctx->tcs_tess_lvl_out_loc = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER) * 16u;
   ctx->tcs_tess_lvl_in_loc = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER) * 16u;
}

void
setup_tes_variables(isel_context *ctx, nir_shader *nir)
{
   ctx->tcs_num_patches = ctx->args->options->key.tes.num_patches;

   nir_foreach_variable(variable, &nir->inputs) {
      variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
   }

   nir_foreach_variable(variable, &nir->outputs) {
      if (ctx->stage == tess_eval_vs)
         variable->data.driver_location = variable->data.location * 4;
      else if (ctx->stage == tess_eval_es)
         variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
      else if (ctx->stage == tess_eval_geometry_gs)
         variable->data.driver_location = util_bitcount64(ctx->output_masks[nir->info.stage] & ((1ull << variable->data.location) - 1ull)) * 4;
      else
         unreachable("Unsupported TES shader stage");
   }

   if (ctx->stage == tess_eval_vs) {
      radv_vs_output_info *outinfo = &ctx->program->info->tes.outinfo;
      setup_vs_output_info(ctx, nir, outinfo->export_prim_id,
                           ctx->options->key.vs_common_out.export_clip_dists, outinfo);
   }
}

void
setup_variables(isel_context *ctx, nir_shader *nir)
{
   switch (nir->info.stage) {
   case MESA_SHADER_FRAGMENT: {
      nir_foreach_variable(variable, &nir->outputs)
      {
         int idx = variable->data.location + variable->data.index;
         variable->data.driver_location = idx * 4;
      }
      break;
   }
   case MESA_SHADER_COMPUTE: {
      ctx->program->config->lds_size = (nir->info.cs.shared_size + ctx->program->lds_alloc_granule - 1) /
                                       ctx->program->lds_alloc_granule;
      break;
   }
   case MESA_SHADER_VERTEX: {
      setup_vs_variables(ctx, nir);
      break;
   }
   case MESA_SHADER_GEOMETRY: {
      setup_gs_variables(ctx, nir);
      break;
   }
   case MESA_SHADER_TESS_CTRL: {
      setup_tcs_variables(ctx, nir);
      break;
   }
   case MESA_SHADER_TESS_EVAL: {
      setup_tes_variables(ctx, nir);
      break;
   }
   default:
      unreachable("Unhandled shader stage.");
   }
}

void
get_io_masks(isel_context *ctx, unsigned shader_count, struct nir_shader *const *shaders)
{
   for (unsigned i = 0; i < shader_count; i++) {
      nir_shader *nir = shaders[i];
      if (nir->info.stage == MESA_SHADER_COMPUTE)
         continue;

      uint64_t output_mask = 0;
      nir_foreach_variable(variable, &nir->outputs) {
         const glsl_type *type = variable->type;
         if (nir_is_per_vertex_io(variable, nir->info.stage))
            type = type->fields.array;
         unsigned slots = type->count_attribute_slots(false);
         if (variable->data.compact) {
            unsigned component_count = variable->data.location_frac + type->length;
            slots = (component_count + 3) / 4;
         }
         output_mask |= ((1ull << slots) - 1) << variable->data.location;
      }

      uint64_t input_mask = 0;
      nir_foreach_variable(variable, &nir->inputs) {
         const glsl_type *type = variable->type;
         if (nir_is_per_vertex_io(variable, nir->info.stage))
            type = type->fields.array;
         unsigned slots = type->count_attribute_slots(false);
         if (variable->data.compact) {
            unsigned component_count = variable->data.location_frac + type->length;
            slots = (component_count + 3) / 4;
         }
         input_mask |= ((1ull << slots) - 1) << variable->data.location;
      }

      ctx->output_masks[nir->info.stage] |= output_mask;
      if (i + 1 < shader_count)
         ctx->input_masks[shaders[i + 1]->info.stage] |= output_mask;

      ctx->input_masks[nir->info.stage] |= input_mask;
      if (i)
         ctx->output_masks[shaders[i - 1]->info.stage] |= input_mask;
   }
}

void
setup_nir(isel_context *ctx, nir_shader *nir)
{
   Program *program = ctx->program;

   /* align and copy constant data */
   while (program->constant_data.size() % 4u)
      program->constant_data.push_back(0);
   ctx->constant_data_offset = program->constant_data.size();
   program->constant_data.insert(program->constant_data.end(),
                                 (uint8_t*)nir->constant_data,
                                 (uint8_t*)nir->constant_data + nir->constant_data_size);

   /* the variable setup has to be done before lower_io / CSE */
   setup_variables(ctx, nir);

   /* optimize and lower memory operations */
   bool lower_to_scalar = false;
   bool lower_pack = false;
   if (nir_opt_load_store_vectorize(nir,
                                    (nir_variable_mode)(nir_var_mem_ssbo | nir_var_mem_ubo |
                                                        nir_var_mem_push_const | nir_var_mem_shared),
                                    mem_vectorize_callback)) {
      lower_to_scalar = true;
      lower_pack = true;
   }
   if (nir->info.stage != MESA_SHADER_COMPUTE)
      nir_lower_io(nir, (nir_variable_mode)(nir_var_shader_in | nir_var_shader_out), type_size, (nir_lower_io_options)0);
   nir_lower_explicit_io(nir, nir_var_mem_global, nir_address_format_64bit_global);

   if (lower_to_scalar)
      nir_lower_alu_to_scalar(nir, NULL, NULL);
   if (lower_pack)
      nir_lower_pack(nir);

   /* lower ALU operations */
   // TODO: implement logic64 in aco, it's more effective for sgprs
   nir_lower_int64(nir, nir->options->lower_int64_options);

   nir_opt_idiv_const(nir, 32);
   nir_lower_idiv(nir, nir_lower_idiv_precise);

   /* optimize the lowered ALU operations */
   bool more_algebraic = true;
   while (more_algebraic) {
      more_algebraic = false;
      NIR_PASS_V(nir, nir_copy_prop);
      NIR_PASS_V(nir, nir_opt_dce);
      NIR_PASS_V(nir, nir_opt_constant_folding);
      NIR_PASS(more_algebraic, nir, nir_opt_algebraic);
   }

   /* Do late algebraic optimization to turn add(a, neg(b)) back into
    * subs, then the mandatory cleanup after algebraic.  Note that it may
    * produce fnegs, and if so then we need to keep running to squash
    * fneg(fneg(a)).
    */
   bool more_late_algebraic = true;
   while (more_late_algebraic) {
      more_late_algebraic = false;
      NIR_PASS(more_late_algebraic, nir, nir_opt_algebraic_late);
      NIR_PASS_V(nir, nir_opt_constant_folding);
      NIR_PASS_V(nir, nir_copy_prop);
      NIR_PASS_V(nir, nir_opt_dce);
      NIR_PASS_V(nir, nir_opt_cse);
   }

   /* cleanup passes */
   nir_lower_load_const_to_scalar(nir);
   nir_opt_shrink_load(nir);
   nir_move_options move_opts = (nir_move_options)(
      nir_move_const_undef | nir_move_load_ubo | nir_move_load_input |
      nir_move_comparisons | nir_move_copies);
   nir_opt_sink(nir, move_opts);
   nir_opt_move(nir, move_opts);
   nir_convert_to_lcssa(nir, true, false);
   nir_lower_phis_to_scalar(nir);

   nir_function_impl *func = nir_shader_get_entrypoint(nir);
   nir_index_ssa_defs(func);
}

isel_context
setup_isel_context(Program* program,
                   unsigned shader_count,
                   struct nir_shader *const *shaders,
                   ac_shader_config* config,
                   struct radv_shader_args *args,
                   bool is_gs_copy_shader)
{
   program->stage = 0;
   for (unsigned i = 0; i < shader_count; i++) {
      switch (shaders[i]->info.stage) {
      case MESA_SHADER_VERTEX:
         program->stage |= sw_vs;
         break;
      case MESA_SHADER_TESS_CTRL:
         program->stage |= sw_tcs;
         break;
      case MESA_SHADER_TESS_EVAL:
         program->stage |= sw_tes;
         break;
      case MESA_SHADER_GEOMETRY:
         program->stage |= is_gs_copy_shader ? sw_gs_copy : sw_gs;
         break;
      case MESA_SHADER_FRAGMENT:
         program->stage |= sw_fs;
         break;
      case MESA_SHADER_COMPUTE:
         program->stage |= sw_cs;
         break;
      default:
         unreachable("Shader stage not implemented");
      }
   }
   bool gfx9_plus = args->options->chip_class >= GFX9;
   bool ngg = args->shader_info->is_ngg && args->options->chip_class >= GFX10;
   if (program->stage == sw_vs && args->shader_info->vs.as_es)
      program->stage |= hw_es;
   else if (program->stage == sw_vs && !args->shader_info->vs.as_ls)
      program->stage |= hw_vs;
   else if (program->stage == sw_gs)
      program->stage |= hw_gs;
   else if (program->stage == sw_fs)
      program->stage |= hw_fs;
   else if (program->stage == sw_cs)
      program->stage |= hw_cs;
   else if (program->stage == sw_gs_copy)
      program->stage |= hw_vs;
   else if (program->stage == (sw_vs | sw_gs) && gfx9_plus && !ngg)
      program->stage |= hw_gs;
   else if (program->stage == sw_vs && args->shader_info->vs.as_ls)
      program->stage |= hw_ls; /* GFX6-8: VS is a Local Shader, when tessellation is used */
   else if (program->stage == sw_tcs)
      program->stage |= hw_hs; /* GFX6-8: TCS is a Hull Shader */
   else if (program->stage == (sw_vs | sw_tcs))
      program->stage |= hw_hs; /* GFX9-10: VS+TCS merged into a Hull Shader */
   else if (program->stage == sw_tes && !args->shader_info->tes.as_es && !ngg)
      program->stage |= hw_vs; /* GFX6-9: TES without GS uses the HW VS stage (and GFX10/legacy) */
   else if (program->stage == sw_tes && args->shader_info->tes.as_es && !ngg)
      program->stage |= hw_es; /* GFX6-8: TES is an Export Shader */
   else if (program->stage == (sw_tes | sw_gs) && gfx9_plus && !ngg)
      program->stage |= hw_gs; /* GFX9: TES+GS merged into a GS (and GFX10/legacy) */
   else
      unreachable("Shader stage not implemented");

   program->config = config;
   program->info = args->shader_info;
   program->chip_class = args->options->chip_class;
   program->family = args->options->family;
   program->wave_size = args->shader_info->wave_size;
   program->lane_mask = program->wave_size == 32 ? s1 : s2;

   program->lds_alloc_granule = args->options->chip_class >= GFX7 ? 512 : 256;
   program->lds_limit = args->options->chip_class >= GFX7 ? 65536 : 32768;
   /* apparently gfx702 also has 16-bank LDS but I can't find a family for that */
   program->has_16bank_lds = args->options->family == CHIP_KABINI || args->options->family == CHIP_STONEY;

   program->vgpr_limit = 256;
   program->vgpr_alloc_granule = 3;

   if (args->options->chip_class >= GFX10) {
      program->physical_sgprs = 2560; /* doesn't matter as long as it's at least 128 * 20 */
      program->sgpr_alloc_granule = 127;
      program->sgpr_limit = 106;
      program->vgpr_alloc_granule = program->wave_size == 32 ? 7 : 3;
   } else if (program->chip_class >= GFX8) {
      program->physical_sgprs = 800;
      program->sgpr_alloc_granule = 15;
      if (args->options->family == CHIP_TONGA || args->options->family == CHIP_ICELAND)
         program->sgpr_limit = 94; /* workaround hardware bug */
      else
         program->sgpr_limit = 102;
   } else {
      program->physical_sgprs = 512;
      program->sgpr_alloc_granule = 7;
      program->sgpr_limit = 104;
   }

   isel_context ctx = {};
   ctx.program = program;
   ctx.args = args;
   ctx.options = args->options;
   ctx.stage = program->stage;

   /* TODO: Check if we need to adjust min_waves for unknown workgroup sizes. */
   if (program->stage & (hw_vs | hw_fs)) {
      /* PS and legacy VS have separate waves, no workgroups */
      program->workgroup_size = program->wave_size;
   } else if (program->stage == compute_cs) {
      /* CS sets the workgroup size explicitly */
      unsigned* bsize = program->info->cs.block_size;
      program->workgroup_size = bsize[0] * bsize[1] * bsize[2];
   } else if ((program->stage & hw_es) || program->stage == geometry_gs) {
      /* Unmerged ESGS operate in workgroups if on-chip GS (LDS rings) are enabled on GFX7-8 (not implemented in Mesa)  */
      program->workgroup_size = program->wave_size;
   } else if (program->stage & hw_gs) {
      /* If on-chip GS (LDS rings) are enabled on GFX9 or later, merged GS operates in workgroups */
      program->workgroup_size = UINT_MAX; /* TODO: set by VGT_GS_ONCHIP_CNTL, which is not plumbed to ACO */
   } else if (program->stage == vertex_ls) {
      /* Unmerged LS operates in workgroups */
      program->workgroup_size = UINT_MAX; /* TODO: probably tcs_num_patches * tcs_vertices_in, but those are not plumbed to ACO for LS */
   } else if (program->stage == tess_control_hs) {
      /* Unmerged HS operates in workgroups, size is determined by the output vertices */
      setup_tcs_info(&ctx, shaders[0]);
      program->workgroup_size = ctx.tcs_num_patches * shaders[0]->info.tess.tcs_vertices_out;
   } else if (program->stage == vertex_tess_control_hs) {
      /* Merged LSHS operates in workgroups, but can still have a different number of LS and HS invocations */
      setup_tcs_info(&ctx, shaders[1]);
      program->workgroup_size = ctx.tcs_num_patches * MAX2(shaders[1]->info.tess.tcs_vertices_out, ctx.args->options->key.tcs.input_vertices);
   } else {
      unreachable("Unsupported shader stage.");
   }

   calc_min_waves(program);
   program->vgpr_limit = get_addr_vgpr_from_waves(program, program->min_waves);
   program->sgpr_limit = get_addr_sgpr_from_waves(program, program->min_waves);

   get_io_masks(&ctx, shader_count, shaders);

   unsigned scratch_size = 0;
   if (program->stage == gs_copy_vs) {
      assert(shader_count == 1);
      setup_vs_output_info(&ctx, shaders[0], false, true, &args->shader_info->vs.outinfo);
   } else {
      for (unsigned i = 0; i < shader_count; i++) {
         nir_shader *nir = shaders[i];
         setup_nir(&ctx, nir);
      }

      for (unsigned i = 0; i < shader_count; i++)
         scratch_size = std::max(scratch_size, shaders[i]->scratch_size);
   }

   ctx.program->config->scratch_bytes_per_wave = align(scratch_size * ctx.program->wave_size, 1024);

   ctx.block = ctx.program->create_and_insert_block();
   ctx.block->loop_nest_depth = 0;
   ctx.block->kind = block_kind_top_level;

   return ctx;
}

}